

NTE329 Silicon NPN Transistor RF Power Amp, CB

Description:

The NTE329 is designed primarily for use in large–signal output amplifier stages. Intended for use in Citizen–Band communications equipment operating to 30MHz. High breakdown voltages allow a high percentage of up–modulation in AM circuits.

Features:

- Specified 12.5V, 28MHz Characteristic:
 - Power Output = 3.5W Power Gain = 10dB Efficiency = 70% Typical

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO}	30V
Collector–Base Voltage, V _{CBO}	60V
Emitter–Base Voltage, V _{EBO}	3V
Continuous Collector Current, I _C	1A
Total Device Dissipation (T _C = +25°C, Note 1), P _D Derate above 25°C	5W 28.6mW/°C
Storage Temperature Range, T _{stg} 65	5° to +200°C

Note 1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

<u>Electrical Characteristics</u>: ($T_A = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
OFF Characteristics									
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	$I_{\rm C} = 50 {\rm mA}, I_{\rm B} = 0$	30	-	-	V			
	V _{(BR)CES}	$I_{\rm C} = 200 {\rm mA}, V_{\rm BE} = 0$	60	-	-	V			
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = 1mA, I _C = 0	3	-	-	V			
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15V, I_E = 0$	-	-	0.01	mA			
ON Characteristics	•								
DC Current Gain	h _{FE}	$V_{CE} = 2V, I_{C} = 400 \text{mA}$	10	-	-	-			
Dynamic Characteristics									
Output Capacitance	C _{ob}	V _{CB} = 12.5V, I _E = 0, f = 1MHz	-	35	70	pF			

Electrical Characteristics (Cont'd): (T_A = +25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Functional Test						8
Common-Emitter Amplifier Power Gain	G _{PE}	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz$	10	-	—	dB
Collector Efficiency	η	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz, Note 3$	62.5	70.0	_	%
Percent Up–Modulation	_	f = 27MHz, Note 2	-	85	-	%
Parallel Equivalent Input Resistance	R _{in}	P _{OUT} = 3.5W, V _{CC} = 12.5V, f = 27MHz	-	21	-	Ω
Parallel Equivalent Input Capacitance	C _{in}	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz$	-	900	-	pF
Parallel Equivalent Output Capaciatnce	C _{out}	P _{OUT} = 3.5W, V _{CC} = 12.5V, f = 27MHz	-	200	-	pF

Note 2. $\eta = R_F P_{OUT} \cdot 100$

 $(\mathsf{V}_{\mathsf{C}\mathsf{C}})\;(\mathsf{I}_{\mathsf{C}})$

Note 3. Percentage Up–Modulation is measured by setting the Carrier Power (P_C) to 3.5 Watts with $V_{CC} = 12.5$ Vdc and noting the power input. The peak envelope power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25Vdc (to simulate the modulating voltage). Percentage Up–Modulation is then determined by the relation:

Percentage Up–Modulation = (PEP)
$$1/2_{-1} \cdot 100$$

