Complementary Silicon Plastic Power Transistors # **DPAK-3 for Surface Mount Applications** Designed for low voltage, low-power, high-gain audio amplifier applications. #### **Features** - High DC Current Gain - Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix) - Straight Lead Version in Plastic Sleeves ("-1" Suffix) - Low Collector-Emitter Saturation Voltage - High Current-Gain Bandwidth Product - Annular Construction for Low Leakage - Epoxy Meets UL 94 V-0 @ 0.125 in - NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|--------------|-----------| | Collector-Base Voltage | V _{CB} | 100 | Vdc | | Collector-Emitter Voltage | V _{CEO} | 100 | Vdc | | Emitter-Base Voltage | V _{EB} | 7.0 | Vdc | | Collector Current – Continuous | I _C | 4.0 | Adc | | Collector Current – Peak | I _{CM} | 8.0 | Adc | | Base Current | Ι _Β | 1.0 | Adc | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 12.5
0.1 | W
W/°C | | Total Device Dissipation @ T _A = 25°C (Note 2) Derate above 25°C | P _D | 1.4
0.011 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | °C | | ESD – Human Body Model | HBM | 3B | V | | ESD – Machine Model | MM | С | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. When surface mounted on minimum pad sizes recommended. ### ON Semiconductor® www.onsemi.com # 4.0 A, 100 V, 12.5 W POWER TRANSISTOR #### **COMPLEMENTARY** IPAK CASE 369D STYLE 1 DPAK-3 CASE 369C STYLE 1 #### **MARKING DIAGRAMS** A = Assembly Location Y = Year WW = Work Week x = 4 or 5 G = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |--|--------------------------------------|------------|------| | Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 2) | R _{θJC}
R _{θJA} | 10
89.3 | °C/W | ^{2.} When surface mounted on minimum pad sizes recommended. ## **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |---|-----------------------|----------|------------|--------------| | OFF CHARACTERISTICS | , | | • | • | | Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 10 \text{ mAdc}, I_B = 0)$ | V _{CEO(sus)} | 100 | - | Vdc | | Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_J = 125^{\circ}\text{C})$ | I _{CBO} | -
- | 100
100 | nAdc
μAdc | | Emitter Cutoff Current
(V _{BE} = 7.0 Vdc, I _C = 0) | I _{EBO} | - | 100 | nAdc | | DC Current Gain (Note 3)
($I_C = 200 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$) | h _{FE} | 40
15 | 180 | - | | Collector–Emitter Saturation Voltage (Note 3) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$) | V _{CE(sat)} | - | 0.3
0.6 | Vdc | | Base–Emitter Saturation Voltage (Note 3)
(I _C = 2.0 Adc, I _B = 200 mAdc) | V _{BE(sat)} | - | 1.8 | Vdc | | Base–Emitter On Voltage (Note 3)
(I _C = 500 mAdc, V _{CE} = 1.0 Vdc) | V _{BE(on)} | - | 1.5 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | Current-Gain - Bandwidth Product (Note 4)
(I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz) | f _T | 40 | _ | MHz | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) | C _{ob} | | 50 | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%. ^{4.} $f_T = |h_{FE}| \cdot f_{test}$. Figure 1. Power Derating There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. Figure 2. Active Region Maximum Safe Operating Area The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 3. Thermal Response Figure 4. DC Current Gain Figure 5. "On" Voltages **Figure 6. Temperature Coefficients** R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D_1 MUST BE FAST RECOVERY TYPE, e.g.: $1N5825 \ USED \ ABOVE \ I_B \approx 100 \ mA$ $MSD6100 \ USED \ BELOW \ I_B \approx 100 \ mA$ FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES 1K 500 300 200 100 t, TIME (ns) 50 30 20 10 $I_C/I_B = 10$ $T_J = 25^{\circ}C$ NPN MJD243 3 2 PNP MJD253 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 10 I_C, COLLECTOR CURRENT (AMPS) Figure 8. Turn-On Time Figure 7. Switching Time Test Circuit Figure 9. Turn-Off Time Figure 10. Capacitance Figure 11. Capacitance #### **ORDERING INFORMATION** | Device | Package Type | Package | Shipping [†] | |---------------|---------------------|---------|-----------------------| | MJD243G | DPAK-3
(Pb-Free) | 369C | 75 Units / Rail | | MJD243T4G | DPAK-3
(Pb-Free) | 369C | 2,500 / Tape & Reel | | NJVMJD243T4G* | DPAK-3
(Pb-Free) | 369C | 2,500 / Tape & Reel | | MJD253-1G | IPAK
(Pb–Free) | 369D | 75 Units / Rail | | MJD253T4G | DPAK-3
(Pb-Free) | 369C | 2,500 / Tape & Reel | | NJVMJD253T4G* | DPAK-3
(Pb-Free) | 369C | 2,500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP # **MECHANICAL CASE OUTLINE** **DATE 15 DEC 2010** STYLE 2: PIN 1. GATE 3 STYLE 6: PIN 1. MT1 2. MT2 3. GATE 2. DRAIN 4. DRAIN MT2 SOURCE STYLE 3: PIN 1. ANODE 2. CATHODE 4. CATHODE 3 ANODE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR STYLE 1: PIN 1. BASE 3 STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE ANODE 2. COLLECTOR **EMITTER** COLLECTOR #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI V14 5M 1992 - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIN | IETERS | |-----|-----------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.235 | 0.245 | 5.97 | 6.35 | | В | 0.250 | 0.265 | 6.35 | 6.73 | | С | 0.086 | 0.094 | 2.19 | 2.38 | | D | 0.027 | 0.035 | 0.69 | 0.88 | | E | 0.018 | 0.023 | 0.46 | 0.58 | | F | 0.037 | 0.045 | 0.94 | 1.14 | | G | 0.090 BSC | | 2.29 BSC | | | Н | 0.034 | 0.040 | 0.87 | 1.01 | | J | 0.018 | 0.023 | 0.46 | 0.58 | | K | 0.350 | 0.380 | 8.89 | 9.65 | | R | 0.180 | 0.215 | 4.45 | 5.45 | | S | 0.025 | 0.040 | 0.63 | 1.01 | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | Z | 0 155 | | 3 93 | | #### MARKING DIAGRAMS STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE Discrete XXXXX ALYWW XXXXXXXX X xxxxxxxxx = Device Code A = Assembly Location IL = Wafer Lot Y = Year WW = Work Week | DOCUMENT NUMBER: | 98AON10528D Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--|--|-------------| | DESCRIPTION: | IPAK (DPAK INSERTION MOUNT) | | PAGE 1 OF 1 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. | DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|---------------------|---|-------------| | DESCRIPTION: | DPAK (SINGLE GAUGE) | | PAGE 1 OF 1 | STYLE 10: PIN 1. CATHODE 2. ANODE 3 CATHODE 4. ANODE STYLE 9: PIN 1. ANODE 2. CATHODE 3 RESISTOR ADJUST CATHODE onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. STYLE 7: PIN 1. GATE 2. COLLECTOR 3 FMITTER 4. COLLECTOR STYLE 8: PIN 1. N/C 2. CATHODE 3 ANODE CATHODE STYLE 6: PIN 1. MT1 2. MT2 3 GATE *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales