MCF5407 ColdFire®
Integrated Microprocessor
User’s Manual

MCF5407UM/D
Rev. 0.1, 11/2001

ssssssssssssss

’:‘Digigman! MDO!! é 68K CIUTIRE’ @ MOTOROLA

ColdFire is a registered trademark and DigitalDNA is a trademark of Motorola, Inc.
I2C is a registered trademark of Philips Semiconductors

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola
and &) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303—-675-2140
or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20—1, Minami—Azabu. Minato—ku, Tokyo 106—-8573 Japan.
81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T.,
Hong Kong. 852—-26668334

Technical Information Center: 1-800-521-6274
HOME PAGE: http://www.motorola.com/semiconductors

Document Comments: FAX (512) 895-2638, Attn: TECD Applications Engineering

© Motorola Inc., 2001. All rights reserved.

Overview

Part I: MCF5407 Processor Core

ColdFire Core

Hardware Multiply/Accumulate (MAC) Unit
Local Memory

Debug Support

Part II: System Integration Module (SIM)
SIM Overview

Phase-Locked Loop (PLL)

12C Module

Interrupt Controller

Chip-Select Module
Synchronous/Asynchronous DRAM Controller Module
Part Ill: Peripheral Module

DMA Controller Module

Timer Module

UART Modules

Parallel Port (General-Purpose 1/0)
Part IV: Hardware Interface
Mechanical Data

Signal Descriptions

Bus Operation

IEEE 1149.1 Test Access Port (JTAG)
Electrical Specifications

Appendix A: Migration

Appendix B: Memory Map

Glossary of Terms and Abbreviations
Index

I

Part |

Part Il

—_ =
— O

Part Ill

—
[\

— -
e K

—_
o1

Part IV

—
(e}

—_ =
(ool BN

N
o

I"

Part |

Part Il

—_
—_

—_

Part Ill

-
\V)

—
N

—_
w

—
()]

Part IV

N
o

)

—_ —_ —_ —_

L

o

IND

Overview

Part I: MCF5407 Processor Core

ColdFire Core

Hardware Multiply/Accumulate (MAC) Unit
Local Memory

Debug Support

Part II: System Integration Module (SIM)
SIM Overview

Phase-Locked Loop (PLL)

I2C Module
Interrupt Controller
Chip-Select Module

Synchronous/Asynchronous DRAM Controller Module

Part Ill: Peripheral Module

DMA Controller Module

Timer Module

UART Modules

Parallel Port (General-Purpose 1/0O)
Part IV: Hardware Interface
Mechanical Data

Signal Descriptions

Bus Operation

IEEE 1149.1 Test Access Port (JTAG)
Electrical Specifications

Appendix A: Migration

Appendix B: Memory Map

Glossary of Terms and Abbreviations
Index

Paragraph
Number

1.1

1.2
1.2.1
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.2.1
1.3.2.2
1.33
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.8.1
1.3.8.2
1.3.8.3
1.3.8.4
1.3.8.5
1.3.9
1.3.10
1.4
1.4.1
1.4.2

CONTENTS

. Page
Title Number
Chapter 1
Overview

FOATUIES ...ttt ettt sttt et e b 1-1
MOCFS5407 FEAUTES.......eeueeteeiieiieniieieeitesieeieete st etesite st eeesatesbeebesatesbeeneesaeesbeens 1-4
PLOCESS ...ttt 1-7
ColdFire Module DeSCriptionc.cecuerieriiecienienieeieeiesieeiesieesee e seeseeeeeseeens 1-7
COIAFITE COTE ...ttt ettt ettt sttt et st be et e b e b eaee 1-7
Instruction Fetch Pipeline (IFP).......ccccoceiiiiiiiiniiiinicnicienieeeeeicseee 1-7
Operand Execution Pipeline (OEP)ccccccoveiiririinienieieeieeee e 1-8
MAC MOQUIE......ouiiiiiiieriieiietesee ettt st s 1-8
Integer Divide ModUIe.........cccuevieniiriinieniiiieneeeeieseese e 1-8
Harvard ArChiteCtUIecceeuieriieiieierieeie ettt 1-8
16-Kbyte Instruction Cache/8-Kbyte Data Cachecccceeeevieiieniennnnnee. 1-9
Internal 2-Kbyte SRAMScccuiiiiiiiiirieieeieneeeetestese et 1-9
DRAM CONIOIET ...ttt 1-9
DIMA CONIOLIETeeuiiiieiieieeitettee ettt st 1-9
UART MOQUIES.....ccueeriiiiiiiiniiiniieiesiteste ettt sttt st s sresaee e 1-10
TIMEr MOAUIE ...ttt 1-11
T2C MOGUIE ... 1-11
System INtEITaCecoveriiiviiiiiriiiieee e 1-11
External Bus INterfaceccccevveeiieienieieeieeeeetee e 1-11
CRIP SCLECES ..ttt ettt et et saees 1-11
16-Bit Parallel Port Interfaceccceeevveenieneniienieninicnecsenienecenene 1-12
Interrupt CONLrOIIETccveeeieieeieeiee ettt 1-12
TJTAG .ttt 1-12
System Debug INterface..........ccoveverieniriieniiiniiiiniceceeceee e 1-12

PLL Module
Programming Model, Addressing Modes, and Instruction Set..........c.ccccceueeee. 1-13
Programming Model.........cccooieriiiiiiiniiieiieeeeeee e 1-15
USEI REZISIEIS ..ottt eteeiee et e sttt ettt et et eteeeeesseensesneesseenseeneas 1-15

@ MOTOROLA Contents v

Paragraph
Number

143
1.4.4

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.1.1
2.1.2.2
2.1.2.2.1
21222
21223
2.1.23
2.13
2.2

2.2.1
22.1.1
22.1.2
2213
2214
22.1.5
22.1.6
222
2221
2222
2223
2224
2225
2226
23

24

24.1
242
2.5

2.6

2.6.1

Vi

CONTENTS

. Page
Title Number
SUPErVISOr REZISETSc.oueiiiiiiiiiiiiiieicceceece e 1-16
INSEIUCHON SEL..cviiiiriiriiriiriiriirireree et 1-16
Part |
MCF5407 Processor Core
Chapter 2
ColdFire Core

Features and Enhancements...........cccocevieriiiienieniniientenieee et 2-1
Clock-Multiplied Microprocessor COre..........ccooveiviririeirieinieieieeeeenenes 2-2
Enhanced PIipelinescccceeieriieiiinieriieie et 2-2
Instruction Fetch Pipeline (IFP)........cccoceiiiiiiiiniiiiiencciececeeseee 2-4
Branch Accelerationceeecuieeiieniieeiiieeiieeee et 2-4
Operand Execution Pipeline (OEP)ccccccoiviiiiiiiniinieeeieeeeeeeeeene 2-4
Mlegal Opcode Handling.........ccccecuevieririienieneniienieieeieseeeeee e 2-5
Hardware Multiply/Accumulate (MAC) Unit.......cccccecvvieiiinininninnns 2-5
Hardware Divide Unit........coccoevereninininenenenenenenenenesesesesesieneens 2-6
Harvard Memory ATChiteCtUIEcccuerveriiiiiirieniieieriesiceie et 2-6
Debug Module Enhancements.............cocoevivinininininininiececeeeeeeee 2-6
Programming MOdelcociiiiiiiiieieeieeeesee et 2-7
User Programming Modelcoccoviiiiiiiiniininienieienteseee st 2-8
Data Registers (DO—D7)coeviriirerienienienierieriesiesesiesesie e 2-8
Address Registers (AD—AD)covieueeierieieeierieeieeee st eee et eae e 2-9
Stack PoINter (A7, SP) ..couvieieeeeeeeeee ettt 2-9
Program Counter (PC)cc.cociiiiriiinieiiiieneeeeeseeieee e 2-9
Condition Code Register (CCR).......ceeieriieiiieieiieieeieeeie et 2-9
MAC Programming Model..........ccccooirieniininiienieniieienceeeie e 2-10
Supervisor Programming Model.............ccccoevinininininininiicccces 2-10
Status RegiSter (SR)..c.uiiierieiieieeieieeeseee ettt 2-11
Vector Base Register (VBR) ...cc.coouiiiiiiiiiiiiiiiieeieecceeeeeee 2-12
Cache Control Register (CACR)cccoocuerieviriienienieieneeneeeneesieeeeee 2-12
Access Control Registers (ACRO—ACR3)......cccecvevirienierieeeieeeeeneen 2-12
RAM Base Address Registers (RAMBARO and RAMBARI) 2-12
Module Base Address Register (MBAR)coceeverieniiiinicnieicnicenee, 2-12

Integer Data FOImMats.coocuiiiiiiiiiiiiiiee e

Organization of Data in Registers

Organization of Integer Data Formats in Registersccccccevvevvvininnnnn. 2-13
Organization of Integer Data Formats in Memoryccocceeevevvereeeeennenee. 2-14
Addressing Mode SUMMATYcoccevieriirienienienieneeeeete et 2-15
Instruction Set SUMMATY.........ccccivviiiiiiiiiie e 2-15
Additions to the Instruction Set Architectureccccecevververenerererenennn. 2-18

MCF5407 User’s Manual (M) moToroLa

CONTENTS

Paragraph . Page
Numstierp Title Numbger
2.6.2 Instruction Set SUMMATYccccoeviiiiiiiniiieeeeee e 2-19
2.7 EXeCUtion TIMINES ...cveeviieieriieiieieeieeieeie sttt ettt ettt ettt eee st eseeenee s eneeenes 2-23
2.7.1 MOVE Instruction Execution Timingcccceeceeveevienienenieneenenieneeneeene 2-25
272 Execution Timings —One-Operand InStructionsccceceeveeveeeiecneenns 2-26
2.7.3 Execution Timings —Two-Operand Instructions.............cecceeveneeveeeeeneeenne. 2-27
2.7.4 Miscellaneous Instruction Execution Times........c.cccceceevevivvininininenenennens 2-29
2.7.5 Branch Instruction Execution Timescccoeceeeiieriienieeiieniieeiceie e 2-30
2.8 Exception Processing OVEIVIEWccecerieriieienieniieieeicesieeie e see e 2-31
2.8.1 Exception Stack Frame Definition..........ccoceeverieniiienienieniencenceieeceeeeen 2-32
2.8.2 Processor EXCEPLIONSc.cciviiiiiiiiiiiiiiiceececeeec e 2-34
29 ColdFire Instruction Set Architecture Enhancements.........cc.cocceeevevercnenennen. 2-36
Chapter 3
Hardware Multiply/Accumulate (MAC) Unit
3.1 OVEIVIEW ...ttt st 3-1
3.1.0.1 MAC Programming Model............cccociviiinininiiiniii 3-2
3.1.0.2 General OPeration...........eeeuierueeierierieeiieneeeiestenteeteseee st eteseeesseensesneenseenes 33
3.1.0.3 MAC Instruction Set SUMMATYccceecverierierieneerienieneeie et eeesieenee 3-4
3.1.04 Data Representation...........couevuevuirieienienienicnieesesesiesiesiesiese s 3-4
32 MAC Instruction Execution Timings.........ccceceeiereriieneeseeieseene e seeseeeieneens 3-5
Chapter 4
Local Memory

4.1 Interactions between Local Memory Modulescocceeeeverienieneniienceniennen. 4-1
4.2 SRAM OVEIVIEW ..oouiiiiiiieeiiieiie ettt ettt stteette st e s teesieeebeesseesnseesnneeseeennes 4-1
4.3 SRAM OPETAtION «..cuvieieeieiieiiesiteieeeeesteeieeeee st eteseeesseeeesseesseeseeseenseensesneenseenes 4-2
4.4 SRAM Programming Model..........cccocuerirniniiniiiinienieeienteieeie st 4-3
44.1 SRAM Base Address Registers (RAMBARO/RAMBARI).........cccecvvvruennen. 4-3
4.5 SRAM INAlIZAONcoueriririiriiniineneneneneeeeeee e 4-4
4.5.1 SRAM Initialization COdec..coeveriirienrininenienienienienesesesesrese e 4-5
4.6 Power Managementccoeceeiviiiiiinininineeeecee s 4-6
4.7 CaAChE OVETVIEW ...c.veiiiiiiiiiieeieet ettt

4.8 Cache Organization

4.8.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified............. 4-8
482 The Cache at Start-Up........ccceeeeviiiiniiniiiiinicieenece e 4-9
4.9 CaChe OPETALION.couiriiiiiieiiiie ittt ettt st b ettt b et st esbe e b eae 4-11
4.9.1 Caching MOdEScccovuiviiiiiiiiiiiecee e 4-13
49.1.1 CaCheable ACCESSEScueuiruirriniiiententenientententeste sttt sttt e e see e e 4-14
49.1.2 Write-Through Mode (Data Cache Only).......cccceccevieniineniieninnienienenee. 4-14
49.13 Copyback Mode (Data Cache Only)..........cccceevevinininininincnincecee, 4-14

@ MOTOROLA Contents Vii

Paragraph
Number

4.9.2
493
4.9.3.1
4.9.3.2
4933
4934
494
495
4.9.5.1
4.9.5.2
49521
4.9.5.2.2
4.9.6
4.10
4.10.1
4.10.2
4.11
4.12
4.12.1
4.12.2
4.13

5.1

52

5.2.1
53

53.1
532
533
5.4

54.1
542
543
544
545
5.4.6

5.4.7
54.8

viii

CONTENTS

. Page
Title Number
Cache-Inhibited ACCESSEScocuerueerrerieriiiiirienieerte ettt erenaees 4-14
Cache ProtoCOL.......cocevuiriiriririniciitr e 4-15
REAA MISS ..ottt ettt s 4-16
Write Miss (Data Cache Only)cocooeevierieninienieninieneceneeseeieeeens 4-16
ReEAd Hil..coveiiiiiiiiiiiiiiiiciec s 4-16
Write Hit (Data Cache Only).......ccccoovieviiiiiieniiienieneeeseneeee e 4-17
Cache Coherency (Data Cache Only).........cccoceevieiiiiiiininininiiiiiicee 4-17
Memory Accesses for Cache Maintenance...........cceceeeereereeeeeneeneeeeeneeenne 4-17
CaChe FIllINE.....coiieiiiiiiieiieie ettt sttt e 4-17
CaChe PUSHESocueiiiieiiecie e 4-18
Push and Store BUfferscoooeverinenenininnccceeesceeseee 4-18
Push and Store Buffer Bus Operation...........c..ccoceevverienieneniencenennen. 4-18
Cache LOCKINGcocoeuiiiiiiiiiiiciiiccceccee e 4-19
CaChe REZISIEIS. . .euieiieiieiieeiieie ettt ettt sttt st eeeeae e seenes 4-21
Cache Control Register (CACR)cccevieviiiienieniinieeeesceeeseeeeee e 4-21
Access Control Registers (ACRO—ACR3)......cccceeervenieninienienecieneeieeaen 4-23
Cache Management.........c.coocuieiiiiiiiiiieeie ettt ettt e st 4-24
Cache Operation SUMMATYcccceveerieriereenienieneenteetesieenteetesieeseeesesieesseene 4-27
Instruction Cache State Transitionscceeevveecieerieenieeriesiieseeesee e 4-27
Data Cache State Transitions.........ceceeerererererenenenenesesesesesesiesiesresnens 4-28
Cache Initialization COde..........ccoeevuerieririienieieeierteie ettt 4-32
Chapter 5
Debug Support

OVEIVIBW ... euieeitieeiiteeiteeiteette st e s te e tbe e seeeseesaseesabeeseeenseesnseesnseensseenseeenseesnseanns 5-1
Signal DESCTIPLIONS ...evveeieieeiiesiieie e eeete ettt ettt seeseeesteete et e sseeeeeneeseeenes 5-2
Processor Status/Debug Data (PSTDDATA[7:0]) «eeeveevienienieienieneeieneene 5-3
Real-Time Trace SUPPOIt........cccciviviiiiiniiiiiniciee e 5-4
Begin Execution of Taken Branch (PST = 0X5) ..c.cccevieiienierieieeieeeieeeene 5-6
Processor Stopped or Breakpoint State Change (PST = 0XE)cccceveeieenene 5-7
Processor Halted (PST = OXF) ..oooviiiiiiiieieeeeee e 5-7
Programming MOdElcooieiiiiiniieieeieeeeeee ettt 5-8
Address Attribute Trigger Registers (AATR, AATRI)...ccccccecvvvvvvivinnnnene 5-10
Address Breakpoint Registers (ABLR/ABLR1, ABHR/ABHRI)............. 5-12
BDM Address Attribute Register (BAAR).....cccoevieierierieeeieeeeeeeee, 5-12
Configuration/Status Register (CSR).......coceiverieniiienieniiierieneeeeeeeeen 5-13
Data Breakpoint/Mask Registers (DBR/DBR1, DBMR/DBMRI) 5-15

Program Counter Breakpoint/Mask Registers
(PBR, PBR1, PBR2, PBR3, PBMR)cceccesiniiriiniiniiniinerienienieeeeeie e 5-16
Trigger Definition Register (TDR)cccceoiviiiiiniiiiiiiiiiiicieccceee 5-18
Extended Trigger Definition Register (XTDR)cccccceceverinerenenenenennn. 5-19

MCF5407 User’s Manual (M) moToroLa

CONTENTS

Paragraph . Page
Numstierp Title Numbger
549 Resulting Set of Possible Trigger Combinations............cccceceeveieeeeeeeeenen. 5-21
5.5 Background Debug Mode (BDM)oocuviieiiiienieiteieeeeee et 5-22
5.5.1 CPU Halt....coooiiiiiiiiieieicintctctetet sttt 5-22
5.5.2 BDM Serial INterface..........coeviieriiiniieiieeieeeee e 5-24
5.5.2.1 Receive Packet FOrmMatcocceevevirinininininnesccscsesicsesesesese e 5-25
5522 Transmit Packet FOrmat...........ccoccoviriiniiiiniiiniiicnienceeeeseeeeseeeeen 5-26
553 BDM Command SeLt..........cccueeriieriiiniieeiieeiiesie et eiteeiee et e seeesieeeiee s e 5-26
5.5.3.1 ColdFire BDM Command FOrmat..........cccceceevevenenenenenenenenenenenene 5-27
5.5.3.1.1 Extension Words as Required............ccoceveeverienienienieneeienienceeeen 5-28
5532 Command Sequence Diagrams............ccoeevueriiniinieneneneneneneneseeeeeen 5-28
5.5.3.3 Command Set DESCIIPLIONSc.eeueeruieienierieieeiere et eee e eeeeeees 5-30
5.5.3.3.1 Read A/D Register (RAREG/RDREG)cooueeverueenieeuenieeniensesieenieeseesaees 5-30
55332 Write A/D Register (WAREG/WDREG).....c.cecuerueenreeuereenieenueneenseeseennees 5-31
5.5.333 Read Memory Location (READ)........cccveruierierieniieieeienieeeeeneeneeeeeenees 5-32
55334 Write Memory Location (WRITE)ccccevtevuereenennieneenieeeeneenieeeesaees 5-33
55335 Dump Memory BIock (DUMP)cccoeviiriiniiniiienienieniesiesesiee e 5-35
5.5.3.3.6 Fill Memory BlocK (FILL)ccueiierieiieieriieie e 5-37
5.5.3.3.7 Resume EXECUtion (GO)........ceeevvveieiveeeieireeeeereeeeereeeeereeeeeneeeeeereeesennees 5-39
55338 NO OpEration (NOP)cc.eeueruereerueruerierienserieniessessessessessessessessessessessessenne 5-40
5.5.3.39 Synchronize PC to the PSTDDATA Lines (SYNC_PC)cccccvevuvruvennenne 5-41
5.5.3.3.10 Read Control Register (RCREG)ceverueeriireerieeniieienieenieeeesieenieeeesaees 5-42
5.5.3.3.11 Write Control Register (WCREG)ceevueervereereeniieeenieenieeeeneenreeeenaees 5-43
5.5.3.3.12 Read Debug Module Register (RDMREG)cccerueeeerienieeseeseeneeeneeenees 5-44
5.5.3.3.13 Write Debug Module Register (WDMREG)c..coceeuereenieeseeneeneeneennees 5-45
5.6 Real-Time Debug SUpportcccoceviviiiiiniiiiiiiiicseesceee 5-45
5.6.1 Theory Of OPEration...........cceeverieriieierierieeiesteste e st eseeeeee st eee e seeeeeeaeas 5-46
5.6.1.1 EmUulator MOdecc.oooviiiiiiiiiiienieeteeee ettt 5-48
5.6.2 Concurrent BDM and Processor Operation............c.cceeeeivieininincnceeenns 5-48
5.7 Motorola-Recommended BDM Pinout..........ccccecevererenininienenencnencnenenns 5-49
5.8 Debug C Definition of PSTDDATA OUtputs.....c.ccoeeveerieriienienieneeeeneeneeenen 5-49
5.8.1 USser INSIUCHION SOtcccuieiiieiiieeiieeiieeite ettt ettt e e s 5-50
5.8.2 Supervisor INStruCtioN Set........ccvecieierieriieieniieie ettt 5-53
Part Il
System Integration Module (SIM)
Chapter 6
SIM Overview
6.1 FRALUTES ...ttt ettt st b et st s se e st esbeens 6-1
6.2 Programming Modelccocoviiiiiiiiiiii e 6-3
6.2.1 SIM Register MEmMOTY Map.......cccoieviiiieniieniieieeiieie et eee e 6-3

@ MOTOROLA Contents iX

CONTENTS

Paragraph . Page
Num%er Title Numb%r
6.2.2 Module Base Address Register (MBAR)cccoeciriiniiiiniininicneeneeieneene 6-4
6.2.3 Reset Status Register (RSR)
6.2.4 Software Watchdog TimeTcc.cecuerieriiriienieiieieneee ettt
6.2.5 System Protection Control Register (SYPCR)ccccccceviiiiiiiininniiine 6-8
6.2.6 Software Watchdog Interrupt Vector Register (SWIVR).....c.cccecvvvivininennen. 6-9
6.2.7 Software Watchdog Service Register (SWSR).....cocevirvienieniniiiniicrienenee, 6-9
6.2.8 PLL Clock Control for CPU STOP Instruction............cccceeeveercveencvrenveennnenns 6-10
6.2.9 Pin Assignment Register (PAR)cocvvereverininininenincnesesesesesesieene 6-10
6.2.10 Bus Arbitration Controlccoeeviiiieriininiienieieneseeeeee e 6-11
6.2.10.1 Default Bus Master Park Register (MPARK)cccccocevvieniininicniinenne 6-11
6.2.10.1.1 Arbitration for Internally Generated Transfers (MPARK[PARK])...... 6-12
6.2.10.1.2 Arbitration between Internal and External Masters
for Accessing Internal ReSOUrcesc..cocooevivivinininininiiiecnne 6-14
Chapter 7
Phase-Locked Loop (PLL)

7.1 (01775 G 1) TP SUTRPUSP 7-1
7.1.1 PLL:PCLK RAtIOS..c.tiiiiiieieiiieiteiesiteieete sttt sttt et s 7-2
7.2 PLL OPEIationcc.couiiuiiiiiiiiiiiieiieiicece e 7-2
7.2.1 Reset/INItialiZatioNcoeeiieiieriieieeiceeee ettt 7-2
7.2.2 NOTMAL MOAE.....coiiiiiiiiiieieiteteestee ettt ettt et s 7-2
7.2.3 Reduced-Power Mode...........coocuiiriiiiiiiiieeiecteee et 7-3
724 PLL Control Register (PLLCR).......ccccooiriiieieieieeieieeeeeee e 7-3
7.3 PLL PO LISttt ettt sttt st sbeen 7-4
7.4 Timing Relationships.........ccocoiiiiiiiiiiiiie 7-4
7.4.1 PCLK, PSTCLK, and BCLKOc.ccceiiiiieieiieiesteeeeeee e 7-4
7.4.2 RSTI TMNG ... eses e senessenensees 7-5
7.5 PLL Power Supply Filter CirCuit..........ccocevivivininiiiiiiiiicieiecceececeee 7-6

Chapter 8

I2C Module
8.1 OVETVIBW ...ttt ettt ete et ettt e e et e bt et e s bt e bt et e e bt enseente s bt enseeneasseensesnnesseensesneenseens
8.2 Interface Features
8.3 I2C System CONFIGUIAtION.ovveeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeeseeseeeeee 8-3
8.4 T2C PLOLOCOL ..o 8-3
8.4.1 ATDItration ProCEAUIEcc.evuieiiiiiiiniiiiiiieniteicetescee et 8-4
8.4.2 Clock SynChroniZation..........cccceieiviiiiiniiiiieceseeee e 8-5
8.4.3 HandShaKingoceeoiiienieieeeeee et 8-5
8.4.4 ClOCK SEIEtCRING ..ottt 8-5
8.5 Programming Modelccocoviiiiiiiiiiii e 8-6

X MCF5407 User’s Manual (M) moToroLa

Paragraph
Number

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.6

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7

9.1
9.2
9.2.1
922
923
9.2.4

10.1
10.2
10.3
10.3.1
10.3.1.1
10.3.1.2
10.4
10.4.1
10.4.1.1
104.1.2
10.4.1.3
10.4.1.4

CONTENTS

@ MOTOROLA Contents

. Page
Title Number
I>C Address Register (IADR)cocveviiiiniiiirieneceeeseee et 8-6
I>C Frequency Divider Register (IFDR).........ccceoiiiiinieiiiieiceeieeeieeee 8-6
I2C Control Register (I2CR)cooviiiiiiiiieieiieeeeeee et 8-7
IC Status Register (I2ZSR) ...euiiiriiriirieriiierieieeesesese e 8-8
I>C Data /O Register (IZDR) ..c..ooevviririirininenenesescresesesee e 8-9
1’C Programming EXamplescoceevuirieniininienienienienceeeeesceee e 8-10
Initialization SEQUENCE...........cccciviririiiiiiieccce e 8-10
Generation Of STARTcccoviviiiriririnnrenneeee e 8-10
Post-Transfer Software RESpONSe........ccccevvervierieniiiiienieniniereeeeeeeeeeeee 8-11
Generation Of STOP.......ccooviiiiiiiiirieeeeee et 8-12
Generation of Repeated STARTccoeieiiiienieeeeeeee e 8-12
S1AVE MOMEviiniiniiiiicieicteteteteteete ettt sre e sre e 8-13
ATDIrAtion LLOST...cuvieiiieiieeiieeit ettt 8-13

Chapter 9

Interrupt Controller

OVEIVIEW ..ttt ettt ettt ettt b e st sb et sb e bbb s bbb naes 9-1
Interrupt Controller REGISIETScovuiiiirieriiiiiniierieeie ettt 9-2
Interrupt Control Registers (ICRO-ICRY)cccccvviiiviiiiiniiiiiiieiie, 9-3
Autovector Register (AVR)cooiviiiiiiieieeeeee et 9-5
Interrupt Pending and Mask Registers (IPR and IMR)..........ccccceceecvevrenncnne. 9-6
Interrupt Port Assignment Register (IRQPAR)ccccceviviniiiiinninine. 9-7

Chapter 10

Chip-Select Module

OVEIVIEW ..ottt sttt sttt st b st b e sb e s bt b e sb e b s bt st s b sbesbesbesne 10-1
Chip-Select Module Signalscoeeverieniininiieniiteeeeeee e 10-1
Chip-Select OPEration............ccevuivuiriiiiiiiiiiiiieieeee e 10-2
General Chip-Select Operation..........cceeveeeereeiereeseeieseeieeeeseeeee e seeeneas 10-3
8-, 16-, and 32-Bit Port Sizing.........cccocevieiiniieniiinienieeieceeeieens 10-4
Global Chip-Select Operation...........cocoevuevueruenienieneneneneseseseseeeeee 10-4
Chip-Select REZISIEIS.ccieriieiieieeiieie ettt ettt ettt eee et see e 10-5
Chip-Select Module REZISLETScc.eeverieririieniieniieiereesieeeeseeeeeee e 10-6
Chip-Select Address Registers (CSARO-CSART7)......ccccovvvivivinininnnnne 10-6
Chip-Select Mask Registers (CSMRO—CSMR7)......ccccecevieniecieneenrennnne 10-7
Chip-Select Control Registers (CSCRO-CSCRT7)ccccecevvevenveneenennene 10-8
Code EXamPle.....cooouiiiiiiiiiiiiiiiieccccceee e 10-9

Chapter 11

Synchronous/Asynchronous DRAM Controller Module

Xi

Paragraph
Number

11.1
11.1.1
11.1.2
11.2
11.2.1
11.3
11.3.1
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.33
11.3.3.1
11.3.3.2
11.3.33
11.3.3.4
11.3.3.5
11.4
11.4.1
11.4.2
1143
11.4.3.1
11.4.3.2

11.4.3.3
11.4.4
11.4.4.1
11.4.4.2
11.4.4.3
11444
11.4.4.5
11.4.4.6
11.4.5
11.4.5.1
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6

Xii

CONTENTS

. Page
Title Number
(01075 04 TS RS R 11-1
DEfINITIONS ..veveriiriirieriinienieniereeeeee e 11-2
Block Diagram and Major COMPONENLScceevveruereenierieeneenieneeneeneeennes 11-2
DRAM Controller Operationoceeeeevinirinininiiiieeeeeseeeeeseseseenes 11-3
DRAM Controller REZIStErsccuveierierieieeierieeieeeee e 11-3
ASYNchronous OPETatioNc.cecuereerierierierierteneerteetesteerteeee e eseeeresreenseeane 11-4
DRAM Controller Signals in Asynchronous Mode.............ccccecvririninnnnene 11-4
Asynchronous ReGISter SEt.........coeviviirieriiienieieeiescee e 11-4
DRAM Control Register (DCR) in Asynchronous Modecc.cccueuee. 11-4
DRAM Address and Control Registers (DACRO/DACR1)ccccceueuee. 11-5
DRAM Controller Mask Registers (DMRO/DMRI1)ccccoovecieeienenennn. 11-7
General Asynchronous Operation Guidelinesccccoeceeveerieneniieneenennne. 11-8
Non-Page-Mode Operation............cccecevevivinirinininiiineeeeeeeeeeeenns 11-11
Burst Page-Mode OPerationcceeeerueeiereeesieeieniesieseeseeeeeseeneeens 11-12
Continuous Page Mode........c.ccoveiiiriiniiiiiiieniieierteeee e 11-13
Extended Data Out (EDO) Operation.............cocceeeevuereeneenuereeneeneeneens 11-15
Refresh Operationccceviecieeierieieeiereee et 11-16
Synchronous OPEration.........cc.cecveeieriereriienienieeteseeneeste et e s e siee i 11-16
DRAM Controller Signals in Synchronous Mode............ccccecvvivinininnnns 11-17
Using Edge Select (EDGESEL)cccoeoiiriiiiiieeiee e 11-18
Synchronous REZISter Set........ccceviriiiiiiniiriiinienieeierteseee st 11-19
DRAM Control Register (DCR) in Synchronous Mode........................ 11-19
DRAM Address and Control Registers (DACRO/DACR1)
in Synchronous Modecccevieririienieniniienieeee et 11-20
DRAM Controller Mask Registers (DMRO/DMR1)cccccoveveruenennns 11-22
General Synchronous Operation Guidelines.............cecceveverieneeienveneennnns 11-23
Address MUltipleXingcccoeceevierierienieienieneeie et 11-23
Interfacing EXample........c.ccooouiviiiiiiniiniiniicceecceceseees 11-27
Burst Page Mode........coouiiiiiiii e 11-27
Continuous Page Mode........c.ccoviiiiriininiiiiieniieieteeee e 11-29
Auto-Refresh Operation...........cocouevuevierieniiniencneneneeseeeeeseeeeeas 11-31
Self-Refresh OPperationcccveceeierieiieeiereeie et 11-32
Initialization SEQUENCE.......c..cecuiriertiiriieienieieete sttt 11-32
Mode Register SEttngS.........ccceviviriiirieiiiiieeeeeeeeeeeeee e 11-33
SDRAM EXAMPIEeieiiiieiieiieiieieetieit ettt sttt e eee e 11-34
SDRAM Interface Configuration...........cceeevuereereenienienienenieneeneeeeseenee 11-34
DCR INItialiZAtiON.....co.eririiriiriieiieienieeieeesieeeeese et 11-35
DACR INitialiZationcc.ceerverierirerininenenenesesesiese e 11-35
DMR InitialiZation........ccccceeviriririniiinininineneeeseeeseseee e 11-37
Mode Register InitialiZationcccccoeviviviiieiiiiiiiiiiiieiceeeeeeeee 11-38
Initialization COde........ccceveriririririiiierreneee e 11-39

MCF5407 User’s Manual (M) moToroLa

CONTENTS

Paragraph . Page
Number Title Number

Part il
Peripheral Module

Chapter 12
DMA Controller Module
12.1 OVEIVIBW ...eeutieeeiieeiie ettt ette et teete ettt e btesbte s bt essteeaeesseesaseesnseenseeenseesnseesaseenneean 12-1
12.1.1 DMA Module FEALUIEScc.ceeruiriririiriininieniniseseseseeese et 12-2
12.2 DMA Signal DEeSCIIPLIONc.eevveruieriiiienieniieieetesieeee ettt 12-2
12.3 DMA Transfer OVEIVIEWcccuieeiieriieeeiieeiieeeeesteeeiteetee et eseeeeeesseesseesneees 12-4
12.4 DMA Controller Module Programming Model............coccevvieninienienenieenee. 12-5
12.4.1 Source Address Registers (SARO—SAR3)cccooviriiiniininiiiiiiinienceiee 12-7
12.4.2 Destination Address Registers (DARO-DAR3)ccccoceeviiiinieniiiinienenee. 12-7
1243 Byte Count Registers (BCRO-BCR3).......ccccceviiiiiiierieieeeeeee e 12-7
12.4.4 DMA Control Registers (DCRO-DCR3).......cccceeviriiinieniniinienieeiereeneeen 12-8
12.4.5 DMA Status Registers (DSRO-DSR3)c.coovviririririnininineneeeeeeeeene 12-10
12.4.6 DMA Interrupt Vector Registers (DIVRO-DIVR3)cccooieiveiienieienne 12-11
12.5 DMA Controller Module Functional Description...........c..ceceveenervieneenennnen. 12-11
12.5.1 Transfer Requests (Cycle-Steal and Continuous Modes)cccecveueenne 12-12
12.5.2 Data Transfer MOdESscoccverireririninineninenesesesesese e 12-12
12.5.2.1 Dual-Address Transferscooeeverierieneniienieneeescese et 12-12
12.5.2.2 Single-Address Transfers........c.ccooevvivininininiiniinceeee 12-13
12.5.3 Channel Initialization and Startupccccceeeeeeeiereereeieseee e 12-13
12.5.3.1 Channel PrioritiZationc.coveeierienieiienieneeeestesieee e 12-13
12.5.3.2 Programming the DMA Controller Modulec.cccccoeviiiniinininninnns 12-13
12.5.4 Data Trans ercccoveviiiiirirercee e 12-14
12.5.4.1 External Request and Acknowledge Operation...........cccccecveveeneerceeneenns 12-14
12.5.4.2 AUtO-ALIGNMENL ...ttt 12-17
12.5.4.3 Bandwidth COntrol..........cocoevererenineneneenenesesesesese e 12-18
12.5.5 TEIMINAtION. ¢...eieteitieie ettt ettt sttt b et s e saeens 12-18
Chapter 13

Timer Module

13.1 OVEIVIBW ...eeetieeiiieeiie ettt ette et e s bt e tte e btesttesabeessteeateeaseesaseesnseenseeenseesnseesnseenneean
13.1.1 Ky Featurescc.cooiiiiiiiiiiei et

13.2 General-Purpose Timer Units

13.3 General-Purpose Timer Programming Modelc.cccecovviiininninnnnnne 13-2
13.3.1 Timer Mode Registers (TMRO/TMRI1) ...cc.oooiiiiiiiiiiesieeeeeee e 13-3
13.3.2 Timer Reference Registers (TRRO/TRR1) .cc.coviiiiiiiiniiniiiiiiiiiicieeee, 13-4
13.3.3 Timer Capture Registers (TCRO/TCRI).....c..cccooveiiiiiiiininiiicicieicieene 13-4
13.34 Timer Counters (TCNO/TCNL) ..cuviiiiiiiieeieecee et 13-5

@ MOTOROLA Contents Xiii

Paragraph
Number

13.3.5
13.4
13.5

14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.3.10
14.3.11
14.3.12
14.3.13
14.3.14
14.3.15
14.3.16
14.3.17
14.3.18
14.3.19
14.4
14.5
14.5.1
14.5.1.1
14.5.1.2
14.5.1.2.1
14.5.1.2.2
14.5.2
14.5.2.1
14.5.2.2
14.5.2.2.1
14.5.2.3
14.5.2.4

Xiv

CONTENTS

. Page
Title Number
Timer Event Registers (TERO/TER1)......ccccocenieniiiiniiiniiiinicnecicneeeeneen 13-5
COde EXAMPIC.....eiiuieiieiieiieiieie ettt sttt ettt ettt ete st saeeneeeneeseenes 13-6
Calculating Time-Out Valuesccceceeririienieninienieieeieseeieste e 13-7
Chapter 14
UART Modules

OVEIVIBW ...eetieeiiieeiit ettt ette et te et ettt e ttesbtesaseessteaatesstesaseesnseenseeenseesnseesnseenneean 14-1
Serial ModUule OVEIVIEWcccerereririririinineneniesiesiese st 14-2
RegiSter DeSCIIPHIONSevutetiiiiriieiieieete sttt sttt sttt 14-3
UART Mode Registers 1 (UMRIN).....ccccovevirininininininenenesiesesiesesieneens 14-5
UART Mode Register 2 (UMR2N)occoeviiienieiieienieeeeeeee e 14-7
Rx FIFO Threshold Register (RXLVL)......ccccovviiniiiiniiniiienieneeieeeeen 14-8
Modem Control Register (MODCTL).....cc.ccccevieniriienieninieneeneceeneeeeanen 14-9
Tx FIFO Threshold Register (TXLVL)ccccuevieiiiiieiieienieeeeeeeeeeene 14-10
UART Status Registers (USRN)cocevvieniininiieniinienieiteeeeesceieeeeeene 14-10
UART Clock-Select Registers (UCSRN).....cceecverieniriienienieienienieeienens 14-12
Receive Samples Available Register (RSMP).......cccooviviiiiieiinienieeeee 14-12
Transmit Space Available Register (TSPC)coccevivviniininiinienieeene 14-13
UART Command Registers (UCRRN)ccccecerienieneriieniiienieneenicnienens 14-13
UART Receiver Buffers (URBN)c..cocviiiiieciiiieceeceee e 14-15
UART Transmitter Buffers (UTBN)ccoouveieiiiiieiiieeeeieeeceieeeeeveee e 14-16
UART Input Port Change Registers (UIPCRD).........c.cccoeceviiiiininininnnns 14-17
UART Auxiliary Control Register (UACRN).........cccveviriinieiieeierieeeene 14-17
UART Interrupt Status/Mask Registers (UISRn/UIMRnD)........c.cccevevuennen. 14-18
UART Divider Upper/Lower Registers (UDUn/UDLn)cccccceveuenene 14-19
UART Interrupt Vector Register (UTVRN)cccoeeieviriiniinieieeieeeee 14-20
UART Input Port Register (UIPN)ccooceeviriienieniniinienieeieeeniceieeene 14-20
UART Output Port Data Registers (UOP1n/UOPOD).........ccccoeovvveieinnnnn 14-21
UART Module Signal Definitions..........ccccceeverierenienieiesieseeie e 14-21
OPCTALION.euiiiietieie ettt ettt ettt ettt et et e sb e et s it e s bt e bt sabesbeebesaeenaeens 14-23
Transmitter/Receiver Clock SOUrce.........coocveviieniiecieicieeiieeieeee e 14-23
Programmable Divider...........ccooieiiiienieiicieceee et 14-24
Calculating Baud Rates...........coieviirieniiiiinieniieieecee e 14-24
CLKIN Baud Rates.....cc.coevteriiriinienienierierieniesiesiesiesiesiesiesie s 14-24

External Clock
Transmitter and Receiver Operating Modes...........coceeveevienienieniieneenennn. 14-25
Transmitting in UART Modeccociviviiiniiiiiiiiiieeeccs 14-26
Transmitter in Modem Mode (UARTL) ...ccvievieeiiieiieieceeceeeee e 14-27
AC ‘97 Low-PoWer Modecooeeviirieniiiiiieniieniecieseeeeee e 14-29
RECEIVET ..ottt et s 14-29
UARTI in UART MOGE ..ottt 14-31

MCF5407 User’s Manual (M) moToroLa

CONTENTS

Paragraph . Page
Num?;erp Title Numbger
14.5.2.4.1 Receiver in Modem Mode (UARTT).....coooivriiiniieiieieeieeeeeeee e 14-31
14.5.2.5 FIFO Stack in UARTO....cc.cociviiiririninenenenenesesiesesesesese e 14-32
14.5.2.6 FIFOS in UART ..ottt 14-33
14.5.3 Looping MOAESccoiviiiriiiiiiiicee e 14-34
14.5.3.1 Automatic ECho MOde.......cc.coueriirieniiniiniiniininienenenecscsiesesesesesieseens 14-34
14.5.3.2 Local Loop-Back Mode..........cccoeiiiiieniiiiiiieiieientesieeeeseee e 14-34
14.5.3.3 Remote Loop-Back Mode...........ccoiviiiniiiniiiiiiiccee 14-35
14.5.4 MUltidrop MOGE......ceieiieeieiieieeie sttt ettt seeens 14-35
14.5.5 BUS OPEIAtiON ...coviiniiiiiiiiietieieeiteste ettt sttt sttt be e e saeens 14-37
14.5.5.1 REAA CYCILS ..ttt 14-37
14.55.2 W CYCIES ..ttt ettt sttt e saeese e saeens 14-37
14553 Interrupt Acknowledge CyClescocveriereriieniinienienieeeeeseeee e 14-37
14.5.6 Programmingccccoceeviviiiniiiniii e 14-37
14.5.6.1 UART Module Initialization SEqQUENCEcceveeveerieneecienieneeeieaeeene 14-38

Chapter 15

Parallel Port (General-Purpose I/0)
15.1 Paralle]l Port Operation...........c.cceoieierieniniienierieniesieeie sttt 15-1
15.1.1 Pin Assignment Register (PAR)cocooiivinieniiniiienicececeneeeceee 15-1
15.1.2 Port A Data Direction Register (PADDR)........ccccceeveiienieiinieieeeeeeee, 15-2
15.1.3 Port A Data Register (PADAT) ...coooiviiriiniiieieeeeeteeeeestee e 15-2
15.1.4 Code EXaMPIE.....ccooiiiiiiiiiiiiiiiiicecee 15-4
Part IV
Hardware Interface
Chapter 16
Mechanical Data

16.1 PaCKAZEeoveiiiicieeiee e 16-1
16.2 PINOUL ..ottt 16-1
16.3 Mechanical DIagram..........cccceeeuerienieiinienierienieneesee ettt 16-8
16.4 CaS€ DIAWING.c..ecveriiiiiriiiiiiieiieeierteet sttt sre b sae 16-9

Chapter 17

Signal Descriptions

17.1 OVEIVIEW ...ttt sb s sbe b b sne 17-1
17.2 MCFS5407 BUS SIZNALS ..c.vevviiviriiriiriinieniesieeiestesiesese sttt 17-7
17.2.1 AQAIESS BUS ..ottt 17-7

@ MOTOROLA Contents Xxv

Paragraph
Number

17.2.1.1
17.2.1.2
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.2.7
17.2.8
17.2.9
17.2.10
17.3
17.3.1
17.4
17.4.1
17.4.2
17.4.3
17.5
17.5.1
17.5.2
17.5.3
17.5.4
17.5.5
17.5.5.1
17.55.2
17.5.5.3
17.5.5.4
17.5.6
17.5.6.1
17.6
17.6.1
17.6.2
17.6.3
17.7
17.7.1
17.7.2
17.7.3
17.7.4
17.7.5
17.7.6
17.7.7
17.8
17.8.1

Xvi

CONTENTS

. Page

Title Number

Address Bus (A[23:0])..ccueeieieieeienie et eie e aeeeeas 17-7
Address Bus (A[31:24]/PP[15:8]) c.eeeveeieeieiieieeieetee et 17-7
Data Bus (D[31:0]) vvveieeriieeerieeeeree ettt e eereeeeeereeeeevreeeereeeennns 17-8
ReAd/WTIte (R/W) ..ottt aenas 17-8
SIZE (SIZLT:0T) ceeeeieeeeeee ettt ettt eteeneen 17-8
TLANSTET SATE (T'S) +.vvveveeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeseeeeeeeeeeeseseseseneaesenenenens 17-9
Address Strobe (AS)eccueeeiieeiieeie ettt 17-9
Transfer ACKNOWIEdge (TA)oovvruereeeeeeeeeeeeeeeeeeeeeeeeeeeee e sesenesae e 17-9
Transfer In Progress (TIP/PP7)........coueuevrueeeeueeereeeeeseessesesesessessesesessnens 17-10
Transfer Type (TT[1:0]/PP[1:0]) cc.eeeriririiiiieieieieieeeeeeeeeeeeeeeeeiee 17-10
Transfer Modifier (TM[2:0]1/PP[4:2]/DACK[1:0])..ccceecuieeriieiiecieerreennee. 17-10
Interrupt Control SigNals........coccevieiiiiinirieiieeeeee et 17-12
Interrupt Request (IRQ1/IRQ2, IRQ3/IRQ6, IRQS5/IRQ4, and IRQ7)....... 17-12
Bus Arbitration Signals........ccceceeieiiiienierieeiese e 17-12
Bus Request (BR)cuveevveeeeeeieeeeeeeeeeeesieeeeseseseeseesesessseessee e ssessanens 17-12
BUS GIant (BG)c.cuovvieieieeeieeeeeeeeeeeeeeeeeveseeese s esseseeneseeses e 17-12
BUs Driven (BD)ooooueiiieieieceeee ettt ettt e e e 17-13
Clock and Reset Signals.........cocceverviiriininiienienieeeseesie et 17-13
ReSet I (RSTI) ...t nens 17-13
Clock Input (CLEKIN)....cooiiiieiiieiierieeie ettt sttt ste e eeeens 17-13
Bus Clock Output (BCLKO)co.coiiiiiiiiiniiiieiienieeiestesieeie st 17-13
ReSet OUL (RSTO)...cuiiiieiieiieieeieciteie ettt sae et seeeseesae e eseessassaens 17-13
Data/Configuration Pins (D[7:0])cooveeoierienieieeiereeieeiereeee e 17-14
D[7:5,3]—Boot Chip-Select (CS0) Configuration...............ccc.cccevvueeee.. 17-14
D7—Auto Acknowledge Configuration (AA_CONFIG)c........ 17-14
D[6:5]—Port Size Configuration (PS_CONFIG[1:0])....ccccvevrreirrrannnns 17-14

D3 —Byte-Enable Configuration (BE_CONFIG)ccccceceeviiniruenennns 17-15

D4 — Address Configuration (ADDR_CONFIG)ccceceverereneninenenne 17-15
D[2:0]—Divide Control (DIVIDE[2:0]) ...cecveeieniieieeieieeieeiesieeieeieens 17-15
Chip-Select Module Signalsccccovceeriiieniieniiinieneeeeeeneee st 17-15
Chip-Select (CS[7:0]) cueriririririrerereeeeeeeee e 17-15
Byte Enables/Byte Write Enables (BE[3:0]/BWE[3:0]) ...cccccovvviievveniennne 17-16
Output Enable (OF)ccooiiiiiiiiiiiiieienteeee ettt 17-16
DRAM Controller Signalscccocivivirinininiiiiiieceeeeeee 17-16
Row Address Strobes (RAS[1:0]).ccccuiiiieiiieeiieeeciieeeree e 17-16
Column Address Strobes (CAS[3:0]) uveeevvreieiieeeereee e 17-16
DRAM Write (DRAMW)ooiiiiieiieiieieeiteieeteet e vt ese e sseesseesaassnens 17-16
Synchronous DRAM Column Address Strobe (SCAS)ccccvvveeiecieneenns 17-17
Synchronous DRAM Row Address Strobe (SRAS).....cccevvvieniininiieneens 17-17
Synchronous DRAM Clock Enable (SCKE).....c..ccccvvenieninienienenicneene 17-17
Synchronous Edge Select (EDGESEL)ccccociiiiiiiiienieiieieeieieee e 17-17
DMA Controller Module Signals.........ccccecerieniriinieniiiiencerenieseeieeeenene 17-17
DMA Request (DREQ[L:0]/PPLO:5])...ccuveirerieiiiniriniinieieeeeeeeeeeeeiene 17-17

MCF5407 User’s Manual (M) moToroLa

Paragraph
Number

17.8.2
17.9
17.9.1
17.9.2
17.9.3
17.9.4
17.10
17.10.1
17.10.2
17.11
17.12
17.12.1
17.12.2
17.13
17.13.1
17.13.2
17.13.3
17.13.4
17.14
17.14.1
17.14.2
17.14.3
17.14.4
17.14.5

18.1
18.2
18.3
18.4
18.4.1
18.4.2
18.4.3
18.4.4
18.4.5
18.4.6
18.4.7
18.4.7.1
18.4.7.2
18.4.7.3

CONTENTS

. Page
Title Number
Transfer Modifier/DMA Acknowledge (TM[2:0]/DACK][1:0]) 17-18
Serial Module SigNalscccecierieiirieniieieeiee et 17-18
Transmitter Serial Data Output (TXD).....cocveviriiiniieniiiiniinieieneneeeene 17-18
Receiver Serial Data Input (RXD)....ccoervieriininiieniiniiiiinicnecieneenieeieeene 17-19
Clear to SeNd (CTS) . .icoueeieeiieieeeiesteecie ettt sae ettt et esseeneeseeens 17-19
Request to Send (RTS) ..o.eeiiiiiiiieieienieeeieteee et 17-19
Timer Module Signals...........ccocoviiiiiiiiiiiiii e 17-19
Timer Inputs (TIN[L1:0]).cueeeieiieieeiee ettt 17-19
Timer Outputs (TOUTT, TOUTO) ...cccervieriiiinienieieeiesteieeeeeee e 17-19
Parallel I/O Port (PP[15:0]) c.coevveriririiniiniirieerieeiteeeieeesieeieeieeeeieeie e 17-19
T2C MOQUIE SIGNAIS ... eeeeee e eeeeees e 17-20
I2C Serial CIOCK (SCL)voovveeeeeeeeeeeseeeseeeeeeeeeeeeeeseeeeeseeseseseeseeeeesnseens 17-20
I2C Serial DAta (SDA)vveeeveeeeeeeeeeeeeeeeeeeeeeeeseeseee e seseeeseee e 17-20
Debug and Test SIgNalscc.eeeerieiiiienieieeiese ettt eeeeaeens 17-20
Test Mode (MTMODI[3:0]) .uvieieivieiierieeeeiee et eereeeeetreeeeeareeeeeraeeeeans 17-20
High Impedance (HIZ)...........ccooeueeeeueeeeeeeeereeeeeeseseeseeeseseesesesesaesessesesaesenen. 17-20
Processor Clock Output (PSTCLK)......cceviiiiiierieieeieeieeeee e 17-20
Processor Status Debug Data (PSTDDATA[7:0]).cccccevevieniininienieiennene 17-21
Debug Module/JTAG Signals.........cccoceviviniiininiiiiiiincieeeeeee 17-21
Test Reset/Development Serial Clock (TRST/DSCLK)cccoeevevveienncns 17-21
Test Mode Select/Breakpoint (TMS/BKPT)ccocoeviiiiiniiiiniiniiiciienens 17-21
Test Data Input/Development Serial Input (TDI/DSI)cccccceoveininnes 17-22
Test Data Output/Development Serial Output (TDO/DSO).........cccceeunen. 17-22
TeSt CIOCK (TCK) .uvviiieiriieeciiee ettt ettt et eetree e eareeeeraeeeeans 17-22
Chapter 18

Bus Operation
FRALUIES ..ottt st 18-1
Bus and Control Signals..........ccceeierieiirienieieeieseee et 18-1
BUS CharacCteriStiCS.....eerirueertirieriienieeiesitesie ettt ettt sttt st esbe e b e 18-2
Data Transfer Operationccccececveiiirinininiiiiinieceeeeeeee e 18-2
Bus Cycle EXECUION.......ccuiiiiiieriieieeiesiceie ettt 18-4
Data Transfer Cycle Statescoceveevierieniiiienienieeieeeesceee e 18-5
Read CyCle....oouiiiiiiiiiiiiiic 18-7
WIIEE CYCLE ..ttt ettt sttt et ae et eete e neeenes 18-8
Fast-Termination CyCIeS.........cceeieririiinieninienienieeiestesie et 18-9
Back-to-Back Bus Cyclesccoceviviiiiiniiiiiiccccee 18-10
BUISE CYCIES ..ttt sttt et eneeseeens 18-11
Line Transfersc..cooiiienierienieneeiestet ettt 18-12
Line Read Bus CyCles........cccoociviviiiiiiiiiiiiiicececeeceeeee 18-12
Line Write BUs CYCIES....c.eoviriieieiieieeieeee ettt 18-14

@ MOTOROLA Contents xvii

Paragraph
Number

18.4.7.4
18.5
18.6
18.7
18.7.1
18.7.2
18.8
18.8.1
18.9
18.9.1
18.9.2
18.10
18.10.1
18.10.2

19.1
19.2
19.3
19.4
19.4.1
19.4.2
19.4.3
19.4.4
19.5
19.6
19.7

20.1
20.1.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

XViii

CONTENTS

. Page

Title Number

Transfers Using Mixed Port Sizesccccoceviviiiiiniinninniiiiice 18-15
Misaligned OPErandscceecvereeruerieriesieeeesteseeeeesteeteseeeseeeeesseesseeneesaeens 18-16
BUS EITOTS ..ottt 18-17
Interrupt EXCEPLIONS.......cc.eviviiiiiiiiiiicicceee e 18-17
Level 7 INEITUPLS ...cooveeeieeieeiieie ettt ettt ettt eeee st steeneeseeens 18-18
Interrupt-Acknowledge CyCle.......coviviiieniiniiiiinieieierteeeeseeee e 18-19

B 31 TN 4031 21 8 (o) 1 LU 18-20
Bus Arbitration SignalsS..........ccceeierieriieienieieeie et 18-21
General Operation of External Master Transfers..........ccccevevveeneriencenennn. 18-21
Two-Device Bus Arbitration Protocol (Two-Wire Mode)cc.......... 18-25
Multiple External Bus Device Arbitration Protocol (Three-Wire Mode)... 18-29
RESEt OPETALION. ...c..iiuiiiiieiiiiiiiieieete ettt sttt ettt et sb e b saee i ens 18-33
MaASEET RESELvieniieeiieeiieeee ettt ettt ettt e et e e s 18-34
Software Watchdog ReSet........cccovieiiiieniiiieiiecee e 18-35

Chapter 19
IEEE 1149.1 Test Access Port (JTAG)
OVEIVIEW ..ottt sb s s sbe e 19-1
JTAG Signal DeSCIIPiONScccceiviviiriiiiiiiiiinineeeeee e 19-2
TAP CONIOLIET.....cueiiiriiiiiitiiieiisrereees e 19-3
JTAG Register DEeSCTIPLIONScevvirieriieniieieniieieeie sttt sttt siee e 19-4
JTAG Instruction Shift REISterccccvviviiiiiiiiiiiiiiicicccee 19-5
IDCODE REZISLETvieuieeiieiieiieeiieieeie ettt ettt sae et seeeee e sseeneeeneas 19-6
JTAG Boundary-Scan RegIStercceeveeririienieniiiienieniceeerceieeee e 19-7
JTAG Bypass REISIETcccooiviviiiiiiiiiiieicces e 19-10
RESIIICHONS ..ttt 19-10
Disabling IEEE Standard 1149.1 Operationccccoeeeverieneenencieneenennens 19-10
Obtaining the IEEE Standard 1149.1.......cccocevivininininininineneneseseeeee 19-11
Chapter 20
Electrical Specifications

General Parametersc..evevereriirireninieriesiesicsesicsesieet e 20-1
Supply Voltage Sequencing and Separation Cautions............cccceeceereenuennnen. 20-3
Clock Timing SpecifiCations...........ccceveviririniniiiiirieeseseee e 20-4
Input/Output AC Timing SpecifiCations..........ccceevuerieririienienieieniere e 20-6
Reset Timing SPecifiCationscccevcvereerieriienieniinienceeeteseeee st 20-15
Debug AC Timing SpecifiCations...........cceceviviriniiinininiiiececeeeeeeeeee 20-16
Timer Module AC Timing SpecifiCationscccceeeueeeerieienieneeiesieseeeens 20-17
1’C Input/Output Timing SpecifiCations..........cccceverveereeririieneenenieneeeneene 20-18
UART Module AC Timing Specificationsccocevevirivinininininininene 20-19

MCF5407 User’s Manual (M) moToroLa

Paragraph
Number

20.9
20.10
20.11

Al
A2
A3
A4
A5
A.6
A6.1
A.6.2
AT
A8
A8.1

A2
A8.2.1
A83
A83.1
AB3.2
A833
A83.4
A83.5
A84
A5
A8.6
A9
A.10
A.ll

CONTENTS

. Page
Title Number
Parallel Port (General-Purpose I/O) Timing Specificationscccceceeuee 20-22
DMA Timing SpecifiCations..........cccerveriererieriieiieeieseeie e eee e eeesaeens 20-23
IEEE 1149.1 JTAG) AC Timing Specificationsc..ccoceeceereeverivencenennns 20-24
Appendix A

Migrating from the ColdFire MCF5307 to the MCF5407
OVEIVIBW ...eetieeiieeeiieeieeette st eette et teebte s bt esateesbeesaseesnbeenseeenseesaseesaseenseeeseesnseanns A-1
Instruction Set AdditiONScccceerererererinenererree e A-2
Enhanced MEMmOTIES.coeveriiririininininesesesese st A-3
On-Chip DMA ModifiCations.........cocevvereriirineninininesieniesiesesiesie s A-4
UART EnhancCementscccceceeererererenineneninenesiesiesiesiesiesiesie e sne e A-5
Timing DIfferencescovieriiriiiienieeneeee et A-6
Phase-Locked Loop (PLL)....c..cootiiiiiiniiinienicieneeeeeesecie e A-6
Timing RelationShips........coceeierieriieieeieie ettt A-7
Reset Initialization Modifications............ccceveeieirininiininininieieeeeeeeeeeeene A-8
Revision C Debug.........cccceiviiiiiiiiiiii e A-10

Debug Interrupts and Interrupt Requests
N EMUlator MOAEcoevviriiniiniiniiniinienienenesestesrcsestesesiese e A-10
On-Chip Breakpoint REISIErS........ccoeiviviriviiiiiiicceeeececee A-12
Write Debug Module Register (Wdmreg)ceeveeeeevenienieeienieieneene A-12
Debug Programming Modelc.ccoceiiininiiinieniiiinieeeencee e A-14
Address Breakpoint 1 Registers (ABLR1, ABHR1)cccccceceeinnn. A-14
Address Attribute Breakpoint Register 1 (AATR1) ccoooveiieiiiieieeee, A-14
Program Counter Breakpoint Registers 1-3 (PBR1-PBR3)................... A-14
Data Breakpoint Register 1 (DBR1, DBMR1)......cccccccceviiiiininininnne. A-15
Extended Trigger Definition Register (XTDR).......cccecevveiieieniecieniene A-15
Debug Interrupt EXCeption VECIOTScceevueevierienienienienieenieeiesieeiesresieene A-15
Processor Status and Debug Data Output Signalscccececvvviiinininnne. A-16
Debug C SUMMATY......ooiiiiiiiiiieiieee ettt e A-17
Voltage INput Changes........cceeteriiriienieniinieneeieetescee ettt A-17
PLL Power Supply Filter CirCuit...........ccocevvivivivininiiiiieieieceiecccecee A-18
Pin-Assignment Compatibility........ccccccevieeierierieieniere e A-18
Appendix B
List of Memory Maps

Xix

@ MOTOROLA Contents

CONTENTS

Paragraph . Page
Number Title Number

XX MCF5407 User’s Manual (M) moToroLa

ILLUSTRATIONS

Figure . Page
Nl?mber Title Numb%r
1-1 MCF5407 BIOCK DIagram.......c.ccoeeriieiiniiniieieiieieeie sttt sttt sttt 1-2
1-2 UART Module Block Diagrami...........ccoceereeriiriieneenieniieneenienieneeniestesicesie e e 1-10
1-3 PLL MOGUILc..eoviitiiiiiiiieiiesiesteeicsest sttt s 1-13
1-4 ColdFire MCF5407 Programming Modelccccooiiviiiiniieniiienieeeiesceeeeeecene 1-15
2-1 ColdFire Enhanced Pipelinecccceoerienieniinieniiiiiieneeieeeeseeieeteseesee e 2-3
2-2 ColdFire Multiply-Accumulate Functionality Diagramcccccoeeeeveeieneeseeienennee. 2-5
2-3 ColdFire Programming Model..........ccccooieriiriiiiiniiiiiienteiteee et 2-8
2-4 Condition Code RegiSter (CCR)cc.eeuiriiriiiiinieiieientesie ettt 2-9
2-5 Status ReZiSter (SR)...covieieiieiieieeeee ettt 2-11
2-6 Vector Base Register (VBR)......ooiiiiiiiiiiiiieceeteeeees et 2-12
2-7 Organization of Integer Data Formats in Data Registers.......cc.ccceeveneevienienenieneenne 2-13
2-8 Organization of Integer Data Formats in Address Registersccoevvevveieneesieeienne 2-14
2-9 Memory Operand AddreSSINg........cceeeeruieierieriiriieneenie ettt ettt seee e eae 2-14
2-1 Exception Stack Frame FOrm........coccovieviiiiiiiiiiiiicicececcceeccee e 2-33
3-1 ColdFire MAC Multiplication and Accumulation...........cecceceevevererererenerenenenennens 3-2
3-2 MAC Programming MOdelc.cooiiiiiiiniiieiieieiestestee ettt 3-2
4-1 SRAM Base Address Registers (RAMBARD)cccoviiniiiinieniiinicncciesicneeeeens 4-3
4-2 Data Cache Organizationcceeieeieeieriesieeieniesieete st e seeeee st esaeseesseenseennesseenseennes

4-3 Data Cache Organization and Line Format

4-4 Data Cache—A: at Reset, B: after Invalidation, C and D: Loading Pattern............... 4-10
4-5 Data Caching OPeration.........c.cceeruerereriniirireneniesiesiesiesie sttt b sbe i sbe e e 4-11
4-6 Write-Miss in Copyback Mode.........coueviiiiiiiiiniiiiiieteeeeeees et 4-16
4-7 Data Cache LOCKING.......ccotiiiiiiiiiiieiieieeeseee ettt st 4-20
4-8 Cache Control RegisSter (CACR)c.ocveviieiieeierieieeieie ettt 4-21
4-9 Access Control Register Format (ACRIN)ccccieiiiiiiniriienieiecieeeeeceee e 4-24
4-10 An Format (Data CaChe)ccueeeeiiiiiiiiee ettt eevee e eeeveeeseareeeeeareeeenes 4-25
4-11 An Format (Instruction Cache)cccueeeuiieiiiiiiiieieceie ettt 4-25
4-12 Instruction Cache Line State Diagram.........coccoeeeveiienienienienieiesieeeiescese e 4-27
4-13 Data Cache Line State Diagram —Copyback Modecoceeerveniininienieneniieneene 4-28
4-14 Data Cache Line State Diagram — Write-Through Mode.............ccoccciviiniinncnne. 4-29
5-1 Processor/Debug Module INterface..........eeeevuerierieniiiiienienieeieseeeee e 5-1
5-2 PSTCLEK TIMING ...c.coviieiiieiinieinieieienteitstee ettt ettt sttt ereses sttt ereseenenaenesaenes 5-3
5-3 PSTDDATA: Single-Cycle Instruction Timing.........c.cceceverererenenenenenenenenenennens 5-3
5-4 Example JMP Instruction Output on PSTDDATA......ccccooiiiiiiirieieeeeeeeeeeee, 5-6
5-5 Debug Programming Modelccooviiiiniiiiiiiniiiienieeciceeeeecteeeee e 5-9
5-6 Address Attribute Trigger Registers (AATR, AATRI)...coceeverervinininininineneneeene 5-11

@ MOTOROLA lllustrations XXi

Figure
Number

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-21
5-20
5-23
5-22
5-25
5-24
5-26
5-27
5-28
5-29
5-30
5-31
5-33
5-32
5-35
5-34
5-37
5-36
5-39
5-38
5-41
5-40
5-43
5-42
5-45
5-44
5-46
6-1

6-2

6-3

XXii

ILLUSTRATIONS

. Page
Title Number

Address Breakpoint Registers (ABLR, ABHR, ABLR1, ABHR1)......c.ccccevruennne 5-12
BDM Address Attribute Register (BAAR)......ccoeviiiiniiiiniiiiciceeeneceeeeeeee 5-13
Configuration/Status Register (CSR).....ccooiiieiieiieienieie ettt 5-13
Data Breakpoint/Mask Registers (DBR/DBR1 and DBMR/DBMRI1)..........ccccccceu.. 5-16
Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)c.c....... 5-17
Program Counter Breakpoint Mask Register (PBMR)cccccevieiinieciinienieieeiene 5-17
Trigger Definition Register (TDR)coveiiiiiiiiiiiienieieetecces et 5-18
Extended Trigger Definition Register (XTDR)ccceoveviiriininieniininicnicnenicneee 5-20
BDM Serial Interface Timingccceecieriereeienieieeiesie ettt ee e 5-24
Receive BDM PaCKet......cc.eiouiiiiiiiieiieiieieseet ettt st 5-25
Transmit BDM PaCKeLtccooiiriiiiiiiiiiieieiieceetee ettt 5-26
BDM Command FOrmatcccooouiiiiiiiiiiieieeee ettt 5-27
Command Sequence DIagram..........cooeeverierieriinieneeie ettt s 5-29
RAREG/RDREG COomMmand SEQUENCE.........cccuereeruereeniienienienieenienieenieetesieesieeeesieenseenne 5-30
RAREG/RDREG Command FOrmatcccoooiiiiiiiiiiiiiiiieceecee e 5-30
WAREG/WDREG Command SEQUENCEccerueeruirierieenierienieenieeieesieeeesiteseeeeeseeenseenns 5-31
WAREG/WDREG Command FOrmat.............ccceceviniiininininiiicesecee 5-31
READ COmMMANd SEQUEINICEcccuueeruiiiriiietieetieeteeeiteesiteeettestee st e sieeesbeeebeesbeesaeeenaeeas 5-32
read Command/Result FOrmMats.cocceviriierieiiiiieniiicnecee et 5-32
WRITE Command FOrmatccooeivieiieniiienieiieeeeeseeseeiese et 5-33
WRITE COMMANA SEQUEIICEuvieuiieiiiiatieetieeieeeiteesiteestteebeesteesieeesateebeesbeesneeesaeeas 5-34
DUMP Command/Result FOrmatscccoecerieriniiinieniiienieecesceeeese e 5-35
DUMP COmMMANd SEQUEIICEc..corviruierieeiirienieeniereenieestenitesteessesieesieesesaeesseensesaeenseenne 5-36
FILL Command FOIMAat.........c.coiiiiiiiiiiiie ettt 5-37
FILL ComMMANd SEQUETICE.......cc.eeruiriertieiieieniiesteetesieeste st sttt e sttt satesieeneesaeeneeenee 5-38
GO ComMmMANA SEQUETICEc.eerueeriruieniieieeienieerte et et site st etesieesbeeteseeesbeearesaeenbeeane 5-39
GO Command FOrmat.........coc.iiiiiiiiiiiiiee et 5-39
NOP COmMMANA SEQUETICEceoueeiiiieriieriieienieesieetesteete st ettt st e sttt sate bt eaeesaeeneeeane 5-40
NOP Command FOrmat.........c.coceeriiiiiniiniiiinieeneece et 5-40
SYNC_PC Command SEQUENCEcccueeruuieruieniieatieeiteesieeseeestteeeeesteesaeeesieeenbeesreeas 5-41
SYNC_PC Command FOrmat..........c.cceoirieniiniiniienieienieseeie et 5-41
RCREG COomMmAand SEQUEIICEcc.eruerueeriirieniienieneenieentenieesieessesieenseeresseenseeasesmeensesnne 5-42
RCREG Command/Result FOrmats...........ccecveierieiiinienieeieeeee e 5-42
WCREG ComMmMAand SEQUENCEcecueruieriieieniienieetesitente sttt ete st este et sete et eneeseeeneeeae 5-43
WCREG Command/Result FOrmats...........cocerieiiiiiiniiiinienieeneenecesteeee e 5-43
RDMREG CommMAand SEQUEIICEc.ceeruuieriieiiieeiienieesiteesitestee st e sieeesieeebeesbeesaeeesaeeas 5-44
RDMREG bdm Command/Result Formats............ccccoveeviriiinieninienieenieneee e 5-44
WDMREG Command SEQUENCEcoeeruirierieeniereenieenienieenieessenieesieesesieenseensesmeenseenne 5-45
WDMREG BDM Command FOrmat............ccocceeiiiiiiiiniiiiieiieeceeeee e 5-45
Recommended BDM CONNECLOTc..cevuieieriieniirieniieieetesieeie ettt 5-49
SIM BIOCK DIa@Iam.......cc.cevuiriiniiiiiiieniieieeiesieeie ettt sttt sbe et e st sane b ens 6-1
Module Base Address Register (MBAR)ccccverieiiiienieieeieeeee e 6-4
Reset Status Register (RSR) ..ccuiiiiriiiiiiieiieeeeee et 6-5

MCF5407 User’s Manual (M) moToroLA

Figure
Number

6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
7-1
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

ILLUSTRATIONS

Title

MCF5407 Embedded System Recovery from Unterminated Access.........
System Protection Control Register (SYPCR)ccccooeeveniiininiiniienene
Software Watchdog Interrupt Vector Register (SWIVR).........cccceceeenene
Software Watchdog Service Register (SWSR)....ccoccvvvieiiiiiniiiinieeeene

Pin Assignment Register (PAR)cccoceviiiiinieniiineeeeeeceee

Default Bus Master Register (MPARK)cccccoceeviniininiiniciinicneeenne

Round Robin Arbitration (PARK =00)......cccccecieiiiiieiieeieeieeeeeee e

Park on Master Core Priority (PARK =01) ...coooiviiiiiiiiiniieieeee

Park on DMA Module Priority (PARK = 10).....ccccceceeniriienieninicnieienene

Park on Current Master Priority (PARK =01) .c..ccccocevivinininininincnennene

PLL Module Block Diagramc..cecceeeeerieniniienieniieienceneeee e

PLL Control Register (PLLCR).....cccoceviiiienieniiienieieeieneeieeeenieeeeeeens

CLKIN, PCLK, PSTCLK, and BCLKO Timingccccccceeeeevereerereenennne.

Reset and Initialization Timing........ccecceveevieriienieiienienieiereeeeee e
PLL Power Supply Filter CirCuitcoceeverieneeneriieneiicnieniecieneenieene

I>C Module Block DIagram......cceeuieiieieeiieii e

I°C Standard COMMUNICAtON PrOtoCO]evveeeveeeeeeeeeereeeeeeeeseeeseens

Repeated START ..ot

Synchronized Clock SCL.......cccooiiiieiiiienieie et

I2C Address Register (IADR)ooiiiiiiinieieiesteeeeseee e

1’C Frequency Divider Register (IFDR).........cccccceciviivinninininiiiiiie,

I2C Control Re@ister (I2CR)uveuveeeeeeeereeeeeeereeseeeeseeeseeeseesseeseseesseseees

I2CR Status Register (I2SR)oouieiiiiiieieeeee e

I2C Data I/O Re@iSter (I2DR)oveeveeeereeeeeeeeeseeseeeeeseeeeeeeeeeeeeeseeessoean

Flow-Chart of Typical 12C Interrupt Routine...........ccccceeeeevenvecienienirennnne

Interrupt Controller Block Diagram...........ccceceveeviinieninienieninienceneene

Interrupt Control Registers ICRO-ICRY)ccccocovvivivivinininiiiiieee

Autovector Register (AVR)ccuiiiiiieieieceeeeeeee e

Interrupt Pending Register (IPR) and Interrupt Mask Register (IMR)

Interrupt Port Assignment Register (IRQPAR)ccccovviviiiniiiininnnnne
Connections for External Memory Port Sizescccceceveevevevenenencncnnene
Chip Select Address Registers (CSARO—CSART) .c..covvvvieniiviniienieenene
Chip Select Mask Registers (CSMRN)cc.covveviriiinienenienienenieneeseneene
Chip-Select Control Registers (CSCRO-CSCRT7)ccccecevvevererenenenennne
Asynchronous/Synchronous DRAM Controller Block Diagram
DRAM Control Register (DCR) (Asynchronous Mode)..........ccccceeevuennen.
DRAM Address and Control Registers (DACRO/DACRI).........ccccuvneeee.
DRAM Controller Mask Registers (DMRO and DMR1).......ccccccevveienen.
Basic Non-Page-Mode Operation RCD =0, RNCN =1 (4-4-4-4)
Basic Non-Page-Mode Operation RCD = 1, RNCN =0 (5-5-5-5)
Burst Page-Mode Read Operation (4-3-3-3)....ccccociviininienieninenieneeene
Burst Page-Mode Write Operation (4-3-3-3).......cccocvvivivinininnininieeenne
Continuous Page-Mode Operation...........cecceeeerererenenenenenenienesienennens

@ MOTOROLA lllustrations

Page
Number

xxiii

Figure
Number
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
12-1
12-2
12-3
12-4
12-6
12-5
12-7
12-8
12-9
12-10
12-11
12-12
12-13
13-1
13-2
13-3
13-4
13-5
13-6
14-1
14-2
14-3
14-4

XXiv

ILLUSTRATIONS

. Page
Title Number
Write Hit in Continuous Page Mode.........cccoocivieniiiinieniiiecieeeeseiceeeee e 11-15
EDO Read Operation (3-2-2-2) .c..ccoeecierienieiententeetesieenieeeesieesseesesieesseensesieesseennes 11-15
DRAM Access Delayed by Refresh

MCF5407 SDRAM Interface

Using EDGESEL to Change Signal Timing.......c.ccocceeeeveriieneeneniieneeneneeneeseeneens 11-19
DRAM Control Register (DCR) (Synchronous Mode)ccccecevererererencnennenne. 11-19
DACRO and DACR1 Registers (Synchronous Mode)..........cceceeveecierienennieneeneenne. 11-20
DRAM Controller Mask Registers (DMRO and DMR1).......cccccovevviniiniininicnnnee. 11-22
Burst Read SDRAM ACCESSuuiiiuiiiiiiiiieiiieeie ettt ettt 11-28
Burst Write SDRAM ACCESScovuieiiiieniieiieieeitenteete sttt sttt sttt e e 11-29
Synchronous, Continuous Page-Mode Access—Consecutive Reads...........cueu.eee. 11-30
Synchronous, Continuous Page-Mode Access—Read after Write.........cc.cccceeeuenee. 11-31
Auto-Refresh Operation..........c.oceevuiiieriiniiniierieieetes ettt 11-32
Self-Refresh OPerationc.ccoeeveriereeiinieneee ettt 11-32
Mode Register Set (mrs) COmMmMANAccceecveeieriieiienienieieeeee e 11-34
Initialization Values for DCRcccoooiiiiiiiiieieeeeeeeee e 11-35
SDRAM CONfigUIAtIONeeviriieiieiiiiienieetenitentt ettt et et sttt et eatesbeenbesaeenbeens 11-36
DACR Register CoNfigUuration............ceeveriiecieeierieiesiesieeieseesieeieseesseenesseeseennas 11-36
DIMRO REZISETeuveeuiiiiietieiieiesteeie ettt ettt ettt ettt st e st et st esbeennesaees 11-37
Mode Register Mapping to MCF5407 A[31:0]ccoocivivivininiiieieieiecececeee 11-38
DMA Signal DIa@ramc.cccueeieriieieeieriieeieeiesieeee st esteeeeseesteeeesseesesseesseessesseenseenns 12-1
MCF5307/MCF5407 TM[2:0] Pin Remapping..........cccceeereemienienieneeienceneeieseenne 12-4
Dual-Address Transfer........cceiieriiirienieereeeee ettt 12-4
Single-Address TIaNSTEIS.cccceereririririrenireerr et 12-5
Destination Address Registers (DARN)c.oocieiiiiiiiiinieieceeees e 12-7
Source Address Registers (SARN) ...c..coouiiiiiriiriiiienieinieneeeteseeeeceeee e 12-7
Byte Count Registers (BCRIN)......ccccoeririririnininieniencsiesiesiesesiesieseesie e 12-8
DMA Control Registers (DCRN)eeveriiiriirieniieieeiesieeie ettt 12-8
DMA Status Registers (DSRIN)ccceevuiriiniiiiniiniiieneneeicnteseeie st sieenee 12-10
DMA Interrupt Vector Registers (DIVRN)c.cocoeeriririnininiiiiiricencecececee 12-11
DREQ Timing Constraints, Dual-Address DMA Transfer..........ccccocevevevenencnnenne. 12-15
Dual-Address, Peripheral-to-SDRAM, Lower-Priority DMA Transfer-................... 12-16
Single-Address DMA Transfer.........cocceeveveiininininininnesesesesiesesesieseese e 12-17
Timer BIOCK DIagramcccoeiiviiiiiiniiniieieniee ettt st 13-1
Timer Mode Registers (TMRO/TMRI) ...cocuoiiiiiiiiiiiiiiicecceceeieseceeeeseee 13-3
Timer Reference Registers (TRRO/TRR1) .c..coeviriririniniiiniiinirircneeeeeeeecee 13-4
Timer Capture Register (TCRO/TCR1) ...coouiiiiiiiiiiiieieeeeeeee e 13-5
Timer Counters (TCNO/TCNT).....vviiiiiiiecciieeeceee et eerree e erreeeerree e eraeeeeens 13-5
Timer Event Registers (TERO/TER)...c..ccccooviiiiiiiiiiiiiiiiicesiceeeneceeeeeeee 13-5
Simplified BIOCK DIagramcoceviiriiiiiinieniieiesceieeesi et 14-1
UART Mode Registers 1 (UMRIN)......cccoeviriiniiiinieniiiienieneeiescenieeie e sieenee 14-6
UART Mode Register 2 (UMR21)cceveriirerininiiniinienenieniesiesiesieseesiesie e e 14-7
Rx FIFO Threshold Register (RXLVL)....ccccoceiiiiiiiinieieeieseeiesteeeie e 14-8

MCF5407 User’s Manual (M) moToroLa

Figure
Number

14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-24
14-23
14-25
14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39
15-1
15-2
15-3
16-1
16-2
16-3
17-1
17-2

ILLUSTRATIONS

. Page
Title Number

Modem Control Register (MODCTL)cccveieriieiieiieiieieeeeie et 14-9
Tx FIFO Threshold Register (TXLVL)ccccooiiiiiiiiiienieieeeeeeseceeeee e 14-10
UART Status Register (USRN)ccevvieiiiiiiiiriiiinieneceneeseeiesteseeve e 14-10
UART Clock-Select Register (UCSRN).......cccceriiriiiieniieiieieseeie e 14-12
Receive Samples Available Register (RSMP).....cc.cooeviiniiiiniiiniiienieceeeeeeeen 14-13
Tx Space Available Register (TSPC)ccoviviiriiniiiinieieierececesecieeeeeeee e 14-13
UART Command Register (UCRN).......ccceoirierieiieieeieie et 14-14
UART Receiver Buffer for UARTO (URBO)........coovviiieiiieieieee et 14-16
UART Receiver Buffer for UART1 (URB1)....oooooiiieiiiieeeieeeceeeeeeeee e 14-16
UART Transmitter Buffer for UARTO (UTBO)oooivieiiieieeeeeeceeeeeeeeeeeees 14-16
UART Transmitter Buffer for UART1 (UTB1) ..cccovvviiieiiiiiieiieeceieeeceeee e 14-17
UART Input Port Change Register (UIPCRN).......c.cccoirieriininiieniniiiieneeiceeeniene 14-17
UART Auxiliary Control Register (UACRN)cc.ceceverererinerininenenceeeeeeeeees 14-18
UART Interrupt Status/Mask Registers (UISRN/UIMRDN)........cccceeverieniiinenienennne. 14-18
UART Divider Upper Register (UDUN)........coceevuerienienenieneenenieneeieseeseeeeneeens 14-19
UART Divider Lower Register (UDLN).......cccoecieriierieeieniieieeieseeee e 14-19
UART Interrupt Vector Register (UTVRN)cccooiiiiiiiiniiiiiieceeceeeee, 14-20
UART Input Port Register (UIPn)

UART Block Diagram Showing External and Internal Interface Signals................. 14-21
UART Output Port Data 1 Register (UOP1/UOPO)ccccecuerienieiinienieieeieeenee, 14-21
UART/RS-232 INtEITACE ...ccuverureiieiiriiesieeieetesieeie ettt 14-23
UARTI/CODEC INtEITACE.....c.ervereiriiriiriinienieniinieriesiesieeieeie et 14-23
UARTI/AC "7 INEETTACE ...ttt 14-23
Clocking Source DIagrami........c.cceevuerierierieriienieeientenieete ettt st saeesieenesaees 14-24
Transmitter and Receiver Functional Diagram..........ccccecceeevevirencnenencnencnenenne. 14-25
Transmitter Timing DIagramcccccecervieriiiiinienieeeeeee et 14-27
16-Bit CODEC Interface Timing (ISb First)cccceceriininiieniininiinieneciceeeneeeeen 14-27
8-Bit CODEC Interface Timing (Msb First)cceceeierieiiinieieieeieeeeeeeeeene 14-28
AC ‘97 INterface TIMING.....c.ceoverierieieriee ettt ettt s ee e 14-28
RECEIVET TIMINE...c.veetiiiieitieiiiteieee ettt sttt sttt st saees 14-30
AUOMAIC ECRO ..ottt 14-34
Local LOOP-BACK ...ooiiiiiiieiieeee et 14-34
Remote LOOP-BaCKcouiiiiiiiiiiieiieceetee s 14-35
Multidrop Mode Timing DIiagramcceceevevererenenenenenenenenenesesese e 14-36
UART Mode Programming FIOWChartcocoiiriiinienieiiiienieeecceecee, 14-39
Parallel Port Pin Assignment Register (PAR)ccccoceviiiiniiniiiiniiicenieceiceee 15-1
Port A Data Direction Register (PADDR)........ccccecerviririninininineneneeeeeseeeeeeee 15-2
Port A Data Register (PADAT)ooouiiieiieiietesteee ettt 15-3
Mechanical Diagram..........coceiieriiiirienieienieneeieet ettt sttt st saeesbeenee 16-9
MCF5407 Case Drawing (General VIEW)cocceererereneneneneneneneneseseseeeenes 16-10
Case Drawing (Details)......ccoueeuerieriiriienieniieieeiterte ettt sttt 16-11
MCF5407 Block Diagram with Signal Interfacesccccoceevvvvivininininininininnne 17-2
MCF5307 to MCF5407 TM[2:0] Pin Remappingcccceceeeverenenenencnencnenennes 17-18

@ MOTOROLA lllustrations XXV

Figure
Number

18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
18-24
18-25
18-26
18-27
18-28
18-29
18-30
18-31
18-32
18-33
18-34
19-1
19-2
19-3
19-4
19-5
20-1
20-2
20-3
20-4

XXVi

ILLUSTRATIONS

. Page
Title Number

Signal Relationship to CLKIN for Non-DRAM ACCESS.......ccccevurererererereneneeennes 18-2
Connections for External Memory Port Sizesccccooveverieniiieniinenienicnenieneene 18-4
Chip-Select Module Output Timing Diagramccccceeveeierierenienieieeieseeeeeeenee 18-4
Data Transfer State Transition Diagram..........cccceeeeierieiienienieienieneeiesceseeee e 18-6
Read Cycle FIOWCRhAIT.cc.cocuiiiiiiiiiiicieeieeeeeteeee et e st 18-7
Basic Read BUS CYCIe......coeviririiiiiriiniererereretest et 18-8
Write Cycle FIOWCRAItcc.iiiiiiiiieiieiieieeeeee ettt 18-9
Basic WIite BUS CYClec.eiuiiiiiiiieiieiieieseeeetcece ettt 18-9
Read Cycle with Fast TErminationcccceceeererereneneneneneneneneseseseseeseesiennes 18-10
Write Cycle with Fast Termination.............ccoceveerinieneenienieneee e 18-10
Back-to-Back Bus CyCIEs ...c..eoueriiiiiriiniiiinieneeieeteieee sttt 18-11
Line Read Burst (2-1-1-1), External Terminationcccceeeveeeieeeieecreeesreeeneennns 18-12
Line Read Burst (2-1-1-1), Internal Terminationccceecveeveeevueeeveeneeesneesineennns 18-13
Line Read Burst (3-2-2-2), External Terminationc.ccceceveeeeiiveeeeinveeeecnveeennnnenn 18-13
Line Read Burst-Inhibited, Fast, External Termination.............cccccoeeevuvveeeieeeeciunneens 18-14
Line Write Burst (2-1-1-1), Internal/External Termination..............cccevveeeeenveeeennnen.. 18-14
Line Write Burst (3-2-2-2) with One Wait State, Internal Termination.................... 18-15
Line Write Burst-Inhibited, Internal Terminationcccceeeveeeeiiieeiiieeeeeeeeeeneeens 18-15
Longword Read from an 8-Bit Port, External Termination.............ccecceeeevuereennennee. 18-16
Longword Read from an 8-Bit Port, Internal Termination.............cccceceecvevrieennnne. 18-16
Example of a Misaligned Longword Transfer (32-Bit Port)ccceceevevirercnennenne. 18-17
Example of a Misaligned Word Transfer (32-Bit PoOrt)ccccceeeverivvervinincncncnne. 18-17
Interrupt-Acknowledge Cycle FIOWChartc..coeeviiriinieieniininicniceceneceeee, 18-20
Basic No-Wait-State External Master ACCESSccevererererererenenineneeeeeeeeeeenes 18-22
External Master Burst Line Access to 32-Bit POrt.........ccoceeverviiniiieniieniiiicieenee, 18-24
MCF5407 Two-Wire Mode Bus Arbitration Interface..........coceeveeverieneecicnecnnnnee. 18-25
Two-Wire Bus Arbitration with Bus Request Asserted.........ccccecevveveverenencrennenne. 18-26
Two-Wire Implicit and Explicit Bus Mastership..........ccooceevervieninieniieniiienienenee, 18-27
MCF5407 Two-Wire Bus Arbitration Protocol State Diagram........c..cccceeevevvenneee. 18-28
Three-Wire Implicit and Explicit Bus Mastership........cc.ceceeveeerereneniencnencnenene. 18-30
Three-Wire Bus Arbitration.........ccceceeereririninininiiineeeeeeceeeeeeeeeeee e 18-31
Three-Wire Bus Arbitration Protocol State Diagramcceceeeeveriieneenieneenneenee. 18-32
Master ReSet TIMING........coceveririririnirienenenesesese et 18-34
Software Watchdog Reset Timingcceevueeiierieriirienieiteeseeieete et 18-35
JTAG Test Logic Block Diagramccccecerieririenieniniienienieeienieenee e seesieenee 19-2
JTAG TAP Controller State Machine............ceceeeverereneneneninenenenieniesiesieseseeseee 19-4
IDCODE REZISLETeeiuietieiiitieiieie ettt ettt ettt ettt st e bttt e bt eneesaeeneeenes 19-6
Disabling JTAG in JTAG MOdE.......cocueriiiiiriiniiiiinienieeieetesieee et 19-11
Disabling JTAG in Debug Mode............cccoiiiiniiiniiiiiiieicceeec e 19-11
Supply Voltage Sequencing and Separation Cautions..........c.ccecueveereerrieneeneerreeneene. 20-3
Example Circuit to Control Supply Sequencing.........cc.cccceeveeveevuenienensieneenenseeneenne 20-4
CLKIN-to-Core Clock Frequency Ranges..........cocceeverenerenineneneneneneneseneeneenne 20-4
CIOCK THMINE .ttt et ettt ettt e b et st e bt estesatesbeenbesaeebeenee 20-5

MCF5407 User’s Manual (M) moToroLA

Figure
Number

20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12
20-13
20-14
20-15
20-16
20-17
20-18
20-19
20-20
20-21
20-22
20-23
20-24
A-1
A-2
A-3
A-4
A-5
A-6
A-T7

ILLUSTRATIONS

. Page
Title Number
PSTCLK TIMING .c.veeveeteiterienienienienieniesiesie sttt sttt st sbe st sbe b b snesae b sbe e e 20-6
AC Timings—Normal Read and Write Bus Cyclesccocevieviniinennienienenieneene 20-8
SDRAM Read Cycle with EDGESEL Tied to Buffered CLKINcccccecveuenenne. 20-9
SDRAM Write Cycle with EDGESEL Tied to Buffered CLKINccccccceceeuenen. 20-10
SDRAM Read Cycle with EDGESEL Tied High.........ccccoooiininiiniiniiieniceeeee 20-11
SDRAM Write Cycle with EDGESEL Tied High........cccoceviininiiniiinicnicienene 20-12
SDRAM Read Cycle with EDGESEL Tied LOWcccccccvvivirininineninenencncneens 20-13
SDRAM Write Cycle with EDGESEL Tied LOWcccooceviiiniiniiienieeeienceeene 20-14
AC Output Timing—High Impedance............ccccceeirieniriinieninninenecceeneeeeen 20-14
RESEE TIMING ...veeetetieiieieetiee ettt ettt ettt et e et e st et e e e steenseeseesseenseeneesseensenneas 20-15
Real-Time Trace AC TiMINEccccererrierieriieiieierttete ettt eee sttt sttt e e ennes 20-16
BDM Serial Port AC TimiNgcc.ceveevverieniriiinienieeieneene ettt s siee s eanes 20-16
Timer Module AC TimMiNgcccverieiieieeieieeie ettt ee ettt sae et ese e seeeseeneas 20-17
1’C INput/OUtPUL TIMINGS ..couveeiieiieiieientieie ettt ettt st st e bt eeeseees 20-19
UARTO and UART1 Module AC Timing—UART Mode........cc.ccceveeverveneenennne 20-20
UART!1 in 8- and 16-bit CODEC MOdE.........cccceeriririneninineneneneneniesesesesieees 20-21
UARTTL i AC ‘97 MO ...ttt ettt 20-21
General-Purpose I/O TIMING.........ccociviriiiniiniiiiiiesceese e 20-22
DMA TIIMNNG .ttt be bbb bbb nnes 20-23
IEEE 1149.1 (JTAG) AC TN c.cveuertiietiieiinieiinieinieteteneeteneeeesieesieseeseseenessesesnene 20-25
MCF5307 to MCF5407 TM[2:0] Pin Remapping.........ccccceeeverienienenieneeienecneene. A-5
Simplified Block DIagramcecceceeeriririninininininenesesesesesiese e A-6
PLL MOGUIE......c..ciiiiiiiintietetetetestetest ettt ettt ettt st s A-7
Exception Stack Frame FOrmccccoocveiiiiiiiiiniiiiiienicceicscctcetcsece e A-11
Write Debug Module Register Command (WDMREG)........cccerteruereeeneeseeeeeneeenennnees A-12
WDMREG COmMMAnd SEQUENCE.ccueruteruirieriieniieienitenteetesitesieestesitesieesesaeesseensesaees A-13
PLL Power Supply Filter CirCUit.......c.cccovevierierieniinienienieeienitcnieeiesieenie e A-18

@ MOTOROLA lllustrations XXVii

ILLUSTRATIONS

Figure . Page
Number Title Number

Xxviii MCF5407 User’s Manual (M) moToroLA

9/1/00

Table
Number

1-1
1-2

22
23
2-4
25
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
221
2-22
3-1
32
33
4-1
42
4-3
4-4
4-5
4-6
4-7
4-8
4-9

TABLES

. Page
Title Number
USEI-LevVel REGISLETS. ..c..eevuiiiiriieriiiieeiiesieeie ettt ettt sttt et st saeeaee b e 1-15
SUpervisor-Level REZISIEIScoutiiiriiriiiierieieeienieete ettt st 1-16
CCR Field DESCIIPLIONSccueeuiereieieeiieriieieeientteiesteesteeeesseesseeseesseesesssesseensesseenseenns 2-10
MOVEC REZIStEr MAP ...cuviiiiiiiiiiiieeiieieete sttt ettt sttt sttt sbe e 2-11
Status Field DeSCTIPLONSeoveruiriierieniirienitenieeienieeste sttt ettt ere st eeesiee s eanes 2-11
Integer Data FOIMALS.cooiuiiiiiiiie et 2-13
ColdFire Effective Addressing MoOdes.........cocveviererienieiienienieeieeteseeie e seenee 2-15
Notational CONVENLIONSccuerueeritrierienierienieesteetenieestesitesreessesieesbeesesreenseesesaeenseenne 2-16
ColdFire ISA_B EXtension SUMMATIY.........ccccecerererererineneninenesiesesiesie s sieseeseene 2-19
User-Level Instruction Set SUMMATY........cccoecveriiiirienieienieneeestese et seeee 2-19
Supervisor-Level Instruction Set SUMMATYccccocvereriienieneriieniereneeneeree e 2-23
Misaligned Operand Referencescoceverererireninininenessesesesesese e 2-24
Move Byte and Word Execution Times..........ccceveereeriinienieieneeneeee e 2-25
Move Long EXecution TimeS........cecuereeriirienieriineenieeieneenieetesieesie et sie e 2-25
Miscellaneous Move EXecution Times.......c.ccecevererererineneninenenicnieniese e 2-26
One-Operand Instruction EXecution Timesccceecverieriirieneenienieneeieseeneeeeeseenee 2-27
Two-Operand Instruction Execution Times........cccceeverievierieninienienenieneenieeieneene 2-27
Miscellaneous Instruction Execution Times........ccceceverererereneneninenineneneeeniene 2-29
Branch Instruction EXecution Timescccecerierierienieiienieneeiestesieeie e eeesieenee 2-30
Bcece Instruction EXecution Times..........oveeviirieriiienienieieniesieeeesecreeie e sieenee 2-30
Exception Vector ASSIZNMENTS..........cocevuerireririrenienieneniesiesiesiesiesie st sse e e 2-32
Format Field ENCOINGcccuiiiiiiiiiinieiieieeecee e s 2-33
Fault Status ENCOINgS.cocueriiriiiiienieiiiienieesesese ettt st 2-33
MCFS5407 EXCEPHONS «..cvvevereiriirierierienieniesiesiesie et sie sttt sbe b sbe b sbesbe b saesaesbesvesaenne 2-34
MAC INStruCtion SUMIMATYceviertieienieenteetenttenteetesteesteetesatesteeteseeesbeesesaeenbeensesaeen 3-4
Two-Operand MAC Instruction Execution Timescccceceevvvieieiniininininieineenns 3-5
MAC Move Instruction EXecution Times.........ccccecevererereninenenenenenenesesiesieniennens 3-6
RAMBARD Field DESCIIPLIONcccuteiiriiiiieienienieeie sttt sttt 4-3
Examples of Typical RAMBAR Settingscocceveeviriienieneniieneenienieneeneeeiesieeneeeaees 4-6
Valid and Modified Bit SEtNEScccceereriririnininineneseresesesesese e 4-8
CACR Field DESCTIPLONSecueeruiiieriieniieieniiesie ettt ettt see st etesate et eeesaeeneeenee 4-21
ACRNDN Field DESCIIPLIONScoueiruiiieriieniieienieesieetesieete sttt sttt e e eae 4-24
Instruction Cache Line State Transitions..........cecceceeererererereneneneneneneseeeeeeene 4-27
Data Cache Line State Transitions..........cceceeierierenienierienieneeie et seesee e seenee 4-29
Data Cache Line State Transitions (Current State Invalid)cccceeevveeeeiieeeeininenn, 4-30
Data Cache Line State Transitions (Current State Valid).........cccoeevveeviieevieinieeereeenen. 4-31

@ MOTOROLA Tables XXiX

TABLES

Table . Page

Number Title Numbger

4-10 Data Cache Line State Transitions (Current State Modified).......c..cccevvveeeeivveeeninneennns 4-31
5-1 Debug Module SiNals........cc.eeceiierieeiieierieie ettt se e eeeas 5-2
5-2 PSTDDATA: Sequential Execution of Single-Cycle Instructionsccccceeevenuenee. 5-3
5-3 PSTDDATA: Data Operand Captured..........c..cocueveeruerieneenieniieneenenieneeneeeeesieenseennes 5-4
5-4 Processor Status ENCOAINGc.evieriieiiiiierieieeeee et 5-5
5-5 OXE Status POSEING ...c..eeuiiiiieiiiieiieteeie ettt sttt ettt st b e saeas 5-7
5-6 BDM/Breakpoint REZISIEIS.coueruieiiriiniieieriieieeiesiteste ettt eee e 5-9
5-7 AATR and AATRI Field DeSCriptions.coceeererirenineneninenenesienesiesie e 5-11
5-8 ABLR and ABLR1 Field DeSCIiption..........cccceverieniienienieniieieneenieeie e s 5-12
5-9 ABHR and ABHRI1 Field DeSCription.........cocceeereerienierienienienienieereneenieevesieeneeenne 5-12
5-10 BAAR Field DESCIIPHONSc..coververeiriiriiriinienienieniesiestesie sttt st sbe e sve e e 5-13
5-11 CSR Field DeSCTIPLONS.cccueiieiiiieniiesteeie sttt sttt sttt sttt st e e et saeeneeenee 5-14
5-12 DBRn Field DESCIIPLIONScoueeritiieriieiieienieerieeeesieete sttt sttt st see e 5-16
5-13 DBMRN Field DESCIIPHONS ...c..eoververiiriiriiriiriiniiniesiestesieeiesie sttt 5-16
5-14 Access Size and Operand Data Locationcccceeeereriienieniinienieieeeeneeee e 5-16
5-15 PBR, PBR1, PBR2, PBR3 Field DesScriptions........c..ccoceecuereeneriueneenienienieeneeneeneenne 5-17
5-16 PBMR Field DESCIIPHONS ...c..eoververviriiriiriinierienienieniestesie sttt st st i b sie e sre e e 5-17
5-17 TDR Field DESCIIPLIONSccveruieiiiieeiienieeiesitesie ettt ettt ettt e sttt st e et ensesaeenaeenee 5-19
5-18 XTDR Field DESCIIPLONSeouviruiriiriieniirieniiesientesieentesitesteestesiee st etesiee it easesaeenbeenne 5-20
5-19 Receive BDM Packet Field DeSCription............cccoceueuiricinicinicireieeeciceeccseceneneas 5-25
5-20 Transmit BDM Packet Field DesCriptioncccceecierieiienienieiienienieeieseeneeeeeseenne 5-26
5-21 BDM Command SUMMATYc..coouteierieniirienieenieneeneenienieesieessesieesseesesseesseesesueensesnne 5-26
5-22 BDM Field DESCIIPLIONSccveruerieriirieriiriiniinienienieeiestesie sttt sre e sve e e 5-27
5-23 Control REZIStEr IMAP......ccouiiiiiieiiiieeieie ettt ettt 5-42
5-24 Definition of DRc Encoding—Read..........cccocueiiiiiniiniiiiinieiiieniceeiesece e 5-44
5-25 PSTDDATA Nibble/CSR[BSTAT] Breakpoint ReSponse..........cccceceeeverererenennene 5-46
5-26 Exception Vector ASSIZNMENES.c.eeuerierierieriieiieeitenitetesieesteetesecesteetesieessessesseenne 5-47
5-27 PSTDDATA Specification for User-Mode InStructions............cceceeeeeeeeeieveeeeennne 5-50
5-28 PSTDDATA Specification for Supervisor-Mode InStructions..........c.ceceeeeerereenenne 5-54
6-1 SIM REZISLETS ..vevieutieiieitieieetest ettt ettt ettt e bt et e s bt et st e sbeesbesabesbeebesntesbeensesasesbeens 6-3
6-2 MBAR Field D@SCIIPLIONSeeuveriieiiiiiniieniieienitenieete sttt ettt eve e eeesieesbeesesaees 6-5
6-3 RSR Field DeSCIIPLONS. ...c..ecverviriiriiriiniiriesieniesiestestesiesi sttt sbe e 6-6
6-4 SYPCR Field DeSCIIPHONS ...cc.eevuieriieiiriieriieieniieieete sttt etesteesteetesbee et etesieensesnesbeens 6-8
6-5 PLLIPL SEUNES. ..cuvtettrttentietenieenieetesieenteeite st et sttt estesatesbe et sieesbeeabesatenbeeasesbeenseeane 6-10
6-6 MPARK Field DeSCIIPONS ...c..coververieriiriiniirienienienieniesiesiesie sttt sve e e 6-11
7-1 Divide Ratio ENCOAINGScevveiiiiieriieiiiiesieit ettt 7-2
7-2 PLLCR Field DeSCIIPIONS.cccverutirtieieriteniteieritenieete sttt sttt siresieenee s sieenaeeanes 7-3
7-3 PLL Module INput SIZNALS........cccereriririninininieriesesesesese e 7-4
7-4 PLL Module Output SIgNalscccoieiiirieniieienieieeie ettt sttt 7-4
8-1 I2C Interface Memory Map

8-2 I>C Address Register Field DeSCriptionsc.ccverveeierierieeieniesieeiesieeieseeseeesseseeenes 8-6
8-3 IFDR Field DESCIIPLIONScutitiiiieiieieeiiestteie ettt sttt ettt st see e sae e eanes 8-7
8-4 I>CR Field DESCIIPLIONS ...ttt sttt ettt st sbe e s be e 8-8
XXX MCF5407 User’s Manual (M) moToroLA

TABLES

Table . Page
Number Title Numbger
8-5 I2SR Field DESCIIPHONS ..c..eeuviriririieiieieritentteteeitente et site st et siee st eresiee b eeesieenbeeneesaees

9-1 Interrupt Controller REZISLETSccevereririririniriineneeeseeeeeeeeeee et

9-2 Interrupt Control REZISEISeviiruiiiiiiieniieieetesee ettt
9-3 ICRN Field DESCTIPLIONScocueiveriieiieiiniieniieienitenieete sttt ettt eaesaee b eeesaees
9-4 Interrupt Priority SCheme...........cccoiiiiiiiiiiiiiiiiccrcree s

9-5 AVR Field DeSCIIPIONS.cooutiiiriietieiisitenitete ettt ettt ettt ettt e e st e b eeesaeas
9-6 Autovector Register Bit ASSIZNMENTS.......ccvevuirierieriirienienieeeeneeneeteeieenre e
9-7 IPR and IMR Field DeSCriptions..........c.cccoorueirieiiinicuinieeieceeieeseee e

9-8 TRQPAR Field DESCIIPLIONSevuieriiiiiriientieieiiesiceie ettt ettt nee et s sae e
10-1 Chip-Select Module Signalscoceveerieiinieninienieeeiereese ettt sieeee

10-2 Byte Enables/Byte Write Enable Signal Settingscccceceverererenenenenenenenenene

10-3 Accesses by Matches in CSCRSs and DACRSoceevirienieninienieececee e

10-4 D7/AA, Automatic Acknowledge of Boot CSO.........ccoeevieriininiiniininieneenenieneene

10-5 D[6:5]/PS[1:0], Port Size of BOOt CSO0......uviiieeiiieeeee et

10-6 D3/BE_CONFIGO, BE[3:0] Boot Configurationccceeuevevreruerererecereneeenennnn.

10-7 Chip-Select REZISIEIS.....ccctiriiriiriiiieriierieeie ettt ettt sttt s sbee e

10-8 CSARN Field DEeSCIIPON «.....eevieeieieeeieiieieeiesie ettt ettt st te et e seeeee st esseenes

10-9 CSMRD Field DeSCIIPIONScovutiieriieiieiesiienieeeesiteste ettt ettt sttt see e
10-10 CSCRn Field DeSCIiPtiONS.....ccueeveriteriteieniienteeiesitenieetenieeste et sieesbeearesieesseeasesreenaeenne

11-1 DRAM Controller REZISELSc.eecueeieriieieeiesiieieeiiesie ettt eee e eee e seeenes

11-2 SDRAM Signal SUMMATYcccuevuieriiiiiiieniieieeieseeie ettt sttt e e eae

11-3 DCR Field Descriptions (Asynchronous Mode)...........ccceceveiviniiininininininieene

11-4 DACRO/DACRI Field DeSCIIPON «..c..covevverierieriiniiriinieniesiesiesicsiesiesiesiesie e

11-5 DMRO/DMRI1 Field DeSCriptions.........cceerverieriieiienienieeieseenieeeeseeenieeiesieeseessesieenne
11-6 Generic Address MultipleXing SChemecoceeveriiniiiiinienieicnceeieneceeeseee

11-7 DRAM Addressing for Byte-Wide MemOTies.........ccveeerierieeieniesieeieneeeeeeeeeneeennes

11-8 DRAM Addressing for 16-Bit Wide Memories..........ccceveevierieneeiienieneeienceneeenen

11-9 DRAM Addressing for 32-Bit Wide MemOTies..........cccceeiviririninieiiiiieeecenne,

11-10 SDRAM COMMANGS ...cuveeuririeiniieiinieniiete ettt ettt eeesreesreeresieesreenesaeesseennesnees

11-11 Synchronous DRAM Signal CONNECLIONSceeverueriierueriieniienienienieenieeeesieeneeseens

11-12 DCR Field Descriptions (Synchronous Mode)..........cccceceeivieinininininininineecne.

11-13 DACRO/DACRI1 Field Descriptions (Synchronous Mode)

11-14 DMRO/DMRI1 Field DeSCriptions........cccueruieierieniieieniienieeiesieenieetesieenieseesieeneesneens

11-15 MCF5407 to SDRAM Interface (8-Bit Port, 9-Column Address Lines).................. 11-24
11-16 MCF5407 to SDRAM Interface (8-Bit Port,10-Column Address Lines)................. 11-24
11-17 MCF5407 to SDRAM Interface (8-Bit Port,11-Column Address Lines)................. 11-24
11-18 MCF5407 to SDRAM Interface (8-Bit Port,12-Column Address Lines)................. 11-24
11-19 MCF5407 to SDRAM Interface (8-Bit Port,13-Column Address Lines)................. 11-25
11-20 MCF5407 to SDRAM Interface (16-Bit Port, 8-Column Address Lines)................ 11-25
11-21 MCF5407 to SDRAM Interface (16-Bit Port, 9-Column Address Lines)................ 11-25
11-22 MCF5407 to SDRAM Interface (16-Bit Port, 10-Column Address Lines).............. 11-25
11-23 MCF5407 to SDRAM Interface (16-Bit Port, 11-Column Address Lines).............. 11-25
11-24 MCF5407 to SDRAM Interface (16-Bit Port, 12-Column Address Lines).............. 11-26

@ MOTOROLA Tables XXXi

TABLES

Table . Page
Number Title Numbger
11-25 MCF5407 to SDRAM Interface (16-Bit Port, 13-Column-Address Lines) 11-26
11-26 MCF5407 to SDRAM Interface (32-Bit Port, 8-Column Address Lines)................ 11-26
11-27 MCF5407 to SDRAM Interface (32-Bit Port, 9-Column Address Lines)................ 11-26
11-28 MCF5407 to SDRAM Interface (32-Bit Port, 10-Column Address Lines).............. 11-26
11-29 MCF5407 to SDRAM Interface (32-Bit Port, 11-Column Address Lines).............. 11-27
11-30 MCF5407 to SDRAM Interface (32-Bit Port, 12-Column Address Lines).............. 11-27
11-31 SDRAM Hardware CONNECHIONS.......cc.eertireenierriirienieerienitenieenteeeesieenseeeesieenseeanesaees 11-27
11-32 SDRAM Example SPecifiCationscccceceeereriererenenenenenenienieniesiesieseeseesveseenees 11-34
11-33 SDRAM Hardware CONNECHIONS.......cc.eevuirterieeierienieeieeiesieenieeeesieesieeeesieenieensesneas 11-35
11-34 DCR Initialization ValUEs.........cccueruieiieriinirienieniieienieenie ettt siee s esne e 11-35
11-35 DACR Initialization ValUES.........ccceeeruiririeririeniinienienieniesiesiesiesie st siesee e seenees 11-36
11-36 DMRO Initialization ValUesccoeeviirieriieiienieniteie ettt st see e 11-37
11-37 Mode Register INitialiZationc..ccceeeerieiienieninienienieeieseesie et 11-38
12-1 DIMA SIZNAIS ..ottt ettt ettt ettt be et reense st eseenes 12-2
12-2 MCF5407 Signal Configurations for PP[4:2]/TM[2:0]//DACK[1:0]cccccvvevrvrmnne.. 12-3
12-3 Memory Map for DMA Controller Module RegiSters...........cceceeivivinininininienne 12-6
12-4 DCRn Field DESCIIPIONSccveeiieieeeieiieieeitesieeteettesteeeeseesae e st esesneesseeneesneenseenns 12-8
12-5 DSRn Field DESCIIPLONSeeveriieiirieniieieetesiteie ettt saees 12-10
13-1 General-Purpose Timer Module Memory Mapccoceeverieneenienieneesieneenenieneenne 13-3
13-2 TMRN Field DESCIIPIONSeeeuieiieieeiieiieieeiesieeee et et eee st ee e st eaeeneesaeensesneenseenes 13-4
13-3 TERN Field DeSCIIPtIONS.coiuiiiiiieriieiieiestteie sttt ettt sttt e s be e 13-6
13-4 Time-Out Values (in Seconds) —TRR[REF] = OxFFFF(162-MHz Processor Clock) 13-7
14-1 UART Module Programming Model.........ccccceririiiriinieiinieeeeseee e 14-4
14-2 UMBRInN Field DeSCIIPIONSc.cevviiieriieiieieniiesieetesiteie ettt sttt see e 14-6
14-3 UMR2n Field DESCIIPLONS ...c..cerueerieeiiriieniietenienieeteeitesie ettt et siresiee v eeeesieenseeane 14-7
14-4 RXLVL Field DESCIIPtIONS. ...c..coververiirieriiriirienienieniestesiesiesie e stesie e sieseessesiesiesiesbesnenne 14-8
14-5 Modem Control Register (MODCTL) Field Descriptions...........ccecveveevierieneeneeneenne 14-9
14-6 TXLVL Field DESCIIPLIONSc...coteriirieriienienienitenteetesieente et sieesreetesieesteearesneesseennes 14-10
14-7 USRN Field DESCIIPHONScoververiiriiriiriiriinieninieniesiesiesiesiese st 14-11
14-8 UCSRN Field DeSCIIPIONS.cc.certieiieiieniieieeiesiteie ettt sttt 14-12
14-9 RSMP Field DEeSCIIPLIONSeeuveruieiirieniiiientenieeienitenieete sttt v ere st sieesesaees 14-13
14-10 TSPC Field DeSCIIPIONS.cc.eevertertiriiriinienieniesiestentesiestesieste st ste st see e seesiesbesseseeseenees 14-13
14-11 UCRD Field DeSCIIPLIONScc.tiruirieniieiieiestiesie ettt stte st eee st e et seeeseeeeeenees 14-14
14-12 UIPCRD Field DESCIIPLONS ...cveeviruieniieiirienieenieeienieenieetesieenteeresieesseesesieenieesesaees 14-17
14-13 UACRN Field DeSCIIPONSccvevvertertiriirierienienientesteetesiesie sttt st seeseeseeseenees 14-18
14-14 UISRn/UIMRn Field DeSCIIPtIONScceeruieieriieniieieniienieeiesiceie et siee e 14-19
14-15 UIVRn Field DESCIIPLIONSccceevuteriieiiniieniieieniieniteiiesieesieetesieesiesitesieestesiee e esnesaeens 14-20
14-16 UIPn Field DeSCIIPtIONS.ccervertertiriirtinienientenientestestestesie sttt sie e see e e seennes 14-20
14-17 UOPI1/UOPO Field DeSCIIPONS ...c..eeveruieriieieriieiieiesieenieetesieenteeeesiee e seesieeneesaeens 14-21
14-18 UART MoOdUle SigNalscocueriiiviirieniieiinienieeie ettt sieeste e sieesie et s sieeanesaeen 14-22
14-19 UART Module Initialization SEqQUENCEccooueiruiiiiiriiiiiiiieiececeeeee e 14-38
15-1 Paralle]l Port Pin DeSCriPONScoceeieriieriiiienieieeiiesit ettt 15-2
15-2 PADDR Field DESCIIPLIONecueeveiiiriienieeienieerieetesie ettt sttt 15-2
XXXii MCF5407 User’s Manual (M) moToroLA

TABLES

Table

Number Title

15-3 Relationship between PADAT Register and Parallel Port Pin (PP)
16-1 Pins 1-52 (Left, TOP-t0-BOtOM)eecuieieriieiieiesiieie e
16-2 Pins 53-104 (Bottom, Left-to-Right)........cccoviriiiniiniiiiiiiniiieeceeene
16-3 Pins 105-156 (Right, Bottom-t0-TOp)cccceveruerienirienieneerenienieeeeneens
16-4 Pins 157-208 (Top, Right-to-Left)cccccevierieierieeeieeeeeeesee e
16-5 DIMENSIONS ..veviviriiriiriirierieeieeeett ettt s
17-1 MCF5407 Signal INAeX......cooveiiirieniiiiinieniieieneesieeiesee et
17-2 MCF5407 Alphabetical Signal IndeXcccceveverenerieneneneneneneneneneenne
17-3 Data Pin Configurationccoeceerierierienienieniesieeieete et
17-4 Bus Cycle Size Encoding.........cccocueveevierieniiienienieeienieneese e see e
17-5 Bus Cycle Transfer Type Encoding.........ccccecevevereneninenencnencneneneneenne
17-6 TM[2:0] Encodings for TT = 00 (Normal ACCESS).....cccvereereerreriueneereennnens
17-7 TM2 Encoding for DMA as Master (TT =01)....cccccoceevenieninnenieneeicnene
17-8 TM[1:0] Encoding for DMA as Master (TT =01) ..ccccecvvcievierieieeieeenene
17-9 TM[2:0] Encodings for TT = 10 (Emulator ACCess)cecvereervercvereeruennnns
17-10 TM[2:0] Encodings for TT = 11 (Interrupt Level)coceveevienienenccneene
17-11 Data Pin Configurationceceeierieeienienieeieseesieeeeseeseeseeeseeeeesneeseeenes
17-12 D7 Selection of CSO Automatic Acknowledgeccoeeeeveriienienenceneenne
17-13 D6 and D5 Selection of CSO POrt Sizeccceevuevievieriienienienieneeneeieneene
17-14 D3/BE_CONFIG, BE[3:0] Boot Configurationccccceecverrresereeennnnne
17-15 D4/ADDR_CONFIG, Address Pin Assignment...........ccccceveeveneenenceeneenne
18-1 ColdFire Bus Signal SUMMATYccccercieriemeriienienenieneeneeiesceseeeee e
18-2 Bus Cycle Size Encoding..........cecevererereneneneninenenesesesiesiesiesesee e
18-3 Accesses by Matches in CSCRs and DACRS........ccccovvievienincienieneeiencene
18-4 BUS CYClE StALES ..c.veeuviiiiiriieiieieriteieetesteste ettt ettt sie e
18-5 Allowable Line Access Patternsccccecevererereninenieneneneneneseseseseenne
18-6 MCF5407 Arbitration Protocol Statesccceeceveenerienienienenieneeeeens
18-7 ColdFire Bus Arbitration Signal SUmMmary..........cccceccerveeneenerieeneenenieenene
18-8 Cycles for Basic No-Wait-State External Master ACCeSss.........cceevvreruennene
18-9 Cycles for External Master Burst Line Access to 32-Bit Port...........c.c......
18-10 MCF5407 Two-Wire Bus Arbitration Protocol Transition Conditions
18-11 Three-Wire Bus Arbitration Protocol Transition Conditions
18-12 Data Pin Configurationceceeierieiierienienienieeie et
19-1 JTAG Pin DESCIIPLIONS ...c..eevveriiriieniieiiniienieeienitesieeeesitesie e site s eeesieenieens
19-2 JTAG INSLIUCHONS ...ttt sbe e sre e
19-3 IDCODE Bit ASSIZNMENLS.....cccuiriieriieieriieniieieetenteenteetesieeseeeneesieesseeeesaeens
19-4 Boundary-Scan Bit Definitions..........ccccecereeneriienienenienieneeieneeseeeeeeens
20-1 Absolute Maximum Ratingscccceceverererinienininineneneneseseseseeseeseee
20-2 Operating TeMPETATUIES.c..cecveeierriertieiesierieetesite st eteseeesteeeesseesseensesneens
20-3 DC Electrical SpecifiCationsccovevuerierieneriieniieneeienieneeeeseesreeneeseens
20-4 Divide Ratio ENCOAINGS ...cc.evvevverieriiriniininienerieresenesesesienie e
20-5 Clock Timing SpecifiCationcceeevueeierienieienieneete et
20-6 Input AC Timing SpecifiCation..........ccceecverieneriienienenieneeneereseesie e

@ MOTOROLA Tables

Page
Number

XXXiii

TABLES

Table . Page

Number Title Numbger

20-7 Output AC Timing SPeCifiCationcoeevuerieririenieniieieneenteeeeseesre et sieeee 20-6
20-8 Reset Timing SPeCifiCation...........ecvecierieriieiiieieie ettt 20-15
20-9 Debug AC Timing SpecifiCationccoccevieiiirieniieienieneetestese e 20-16
20-10 Timer Module AC Timing SpecifiCation..........cccerverirreriienienenieneeieneeneeseeneens 20-17
20-11 I’C Input Timing Specifications between SCL and SDA..........cceoveienieiinieenee. 20-18
20-12 I°C Output Timing Specifications between SCL and SDAcccevieniiiinienenee. 20-18
20-13 UART Module AC Timing SpecifiCationscccceceereevereeneenenieneeneeneeneenneneens 20-19
20-14 General-Purpose I/O Port AC Timing Specifications...........ceccevvecienieneesieneenennnnns 20-22
20-15 DMA AC Timing SPeCifiCatiOnsccoceevuerieriierierieniieiiesienieestesite et eeesieeseesaeens 20-23
20-16 IEEE 1149.1 JTAG) AC Timing Specificationsccccocueveeverieneeneenseeneenennens 20-24
A-1 Differences between MCF5307 and MCFS5407cccocvvivinininenineneneneneseeeneee A-1
A-2 MOVEC CPU Space Register Mapccecerieriirienieiinienieerie ettt A-4
A-3 TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT =01) ...c..ccccecvenneee. A-4
A-4 TMO Encoding for MCF5307 Internal DMA as Master (TT =01) ...cccccceveveveeveneenee. A-5
A-5 Divide Ratio ENCOAINGScovveiiirieniiiiiiiesieeitete ettt A-7
A-6 D[7:0] MUIIPIEXING c..veeuveitereereniienieeierteste ettt sttt site sttt st sbe et sate bt esseeaeesbeenbeeaee A-8
A-7 D7/AA, Automatic Acknowledge of Boot CSO........cccecueeieniecienieieieeieeeee e A-9
A-8 DJ[6:5]/PS[1:0], Port Size 0f BOOt CSO.....ccuvveiierieierieeeetee et A-9
A-9 D4/ADDR_CONFIG, Address Pin ASSIgNMent.........ccccecuereenierieneenieneeneenieneeneennes A-9
A-10 D3/BE_CONFIG, BE[3:0] Boot Configurationc.ceeceeeueeieneesieneeneeeseeeeeneeenns A-9
A-11 Definition of DRC Encoding— WTIIteccceecierieriiiienieieeienceieee e A-13
A-12 Debug C Exception Vector ASSINMENLSccceceeirieiririniiiiieieeeeee e A-16
A-13 Version 4 Debug C Processor Status Encodingsccccceeeeerienieiienieneeieseenieenns A-17
B-1 SIIM REEISLEIS.eeveeuiieiieitieie ettt ettt ettt sttt st e bt e et et e bt enbesatesbeenbesatesbeenbesanesbeens B-1
B-2 Interrupt Controller REGISIETSevueeviiriiniiiiiiieriieieeieseete ettt B-1
B-3 Chip-Select REISIEIS....c.eoveruiriiriirieriirieeierieriest ettt sbe b B-2
B-4 DRAM Controller REZISETSccueriiriirieniieieiieriieie ettt B-3
B-5 General-Purpose Timer ReGISIETScc.evverieriiiiiniiiienieriteieeieecee et B-4
B-6 UARTO CONtrol REZISIEIS.eeveieieiieieeiieriieie et ie et e st te et ee et eaesneesseeneeeneas B-4
B-7 UART] CONtrol REZISIEIS......eeveiiieiieiiiiieniieie ettt sttt b B-6
B-8 Paralle]l Port MEMOTY Map.......cccoeeriiiiiniieniiiienieeieetesieeste ettt B-7
B-9 IC Interface MEMOTY MaAP...ueiiiiiiiiiiiieitceeee ettt s B-8
B-10 DMA Controller REGISIETScc.eeiuirieriiiiiriieniieiesitenieete sttt sttt st B-8
XXXIV MCF5407 User’s Manual (M) moToroLA

About This Book

The primary objective of this user’s manual is to define the functionality of the MCF5407
processors for use by software and hardware developers.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.motorola.com/coldfire.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MCF5407. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of software
and hardware, and basic details of the ColdFire architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” includes general descriptions of the modules and features
incorporated in the MCF5407, focussing in particular on new features defined by the
Version 4 (V4) programming model, such as the Harvard memory architecture
implementation, new instructions, and new registers.

* Part [is intended for system designers who need to understand the operation of the
MCF5407 ColdFire core and its multiply/accumulate (MAC) execution unit. It
describes the programming and exception models, Harvard memory
implementation, and debug module.

— Chapter 2, “ColdFire Core,” provides an overview of the microprocessor core of
the MCF5407. The chapter begins with a description of enhancements from the
V3 ColdFire core, and then fully describes the V4 programming model as it is
implemented on the MCF5407. It also includes a full description of exception
handling, data formats, an instruction set summary, and a table of instruction
timings.

(M) moToroLa AboutThis Book XXXV

3
4

y
A

nization

XXXVi

— Chapter 3, “Hardware Multiply/Accumulate (MAC) Unit,” describes the
MCF5407 multiply/accumulate unit, which executes integer multiply,
multiply-accumulate, and miscellaneous register instructions. The MAC is
integrated into the operand execution pipeline (OEP).

— Chapter 4, “Local Memory.” This chapter describes the MCF5407
implementation of the ColdFire V4 local memory specification. It consists of the
two following major sections.

— Section 4.2, “SRAM Overview,” describes the MCF5407 on-chip static RAM
(SRAM) implementation. It covers general operations, configuration, and
initialization. It also provides information and examples showing how to
minimize power consumption when using the SRAM.

— Section 4.7, “Cache Overview,” describes the MCF5407 cache
implementation, including organization, configuration, and coherency. It
describes cache operations and how the cache interacts with other memory
structures.

— Chapter 5, “Debug Support,” describes the Revision C enhanced hardware debug
support in the MCF5407. This revision of the ColdFire debug architecture
encompasses earlier revisions.

Part II, “System Integration Module (SIM),” describes the system integration
module, which provides overall control of the bus and serves as the interface
between the ColdFire core processor complex and internal peripheral devices. It
includes a general description of the SIM and individual chapters that describe
components of the SIM, such as the phase-lock loop (PLL) timing source, interrupt
controller for peripherals, configuration and operation of chip selects, and the
SDRAM controller.

— Chapter 6, “SIM Overview,” describes the SIM programming model, bus
arbitration, and system-protection functions for the MCF5407.

— Chapter 7, “Phase-Locked Loop (PLL),” describes configuration and operation
of the PLL module. It describes in detail the registers and signals that support the
PLL implementation.

— Chapter 8, “I2C Module,” describes the MCF5407 1’C module, including 1’C
protocol, clock synchronization, and the registers in the 1’C programing model.
It also provides extensive programming examples.

— Chapter 9, “Interrupt Controller,” describes operation of the interrupt controller
portion of the SIM. Includes descriptions of the registers in the interrupt
controller memory map and the interrupt priority scheme.

— Chapter 10, “Chip-Select Module,” describes the MCF5407 chip-select
implementation, including the operation and programming model, which
includes the chip-select address, mask, and control registers.

— Chapter 11, “Synchronous/Asynchronous DRAM Controller Module,”
describes configuration and operation of the synchronous/asynchronous DRAM

MCF5407 User’s Manual (M) moToroLa

Organization

controller component of the SIM. It begins with a general description and brief
glossary, and includes a description of signals involved in DRAM operations.
The remainder of the chapter is divided between descriptions of asynchronous
and synchronous operations.

e Part III, “Peripheral Module,” describes the operation and configuration of the
MCF5407 DMA, timer, UART, and parallel port modules, and describes how they
interface with the system integration unit, described in Part II.

— Chapter 12, “DMA Controller Module,” provides an overview of the DMA
controller module and describes in detail its signals and registers. The latter
sections of this chapter describe operations, features, and supported data transfer
modes in detail, showing timing diagrams for various operations.

— Chapter 13, “Timer Module,” describes configuration and operation of the two
general-purpose timer modules, timer O and timer 1. It includes programming
examples.

— Chapter 14, “UART Modules,” describes the use of the universal
asynchronous/synchronous receiver/transmitters (UARTs) implemented on the
MCF5407 and includes programming examples. Particular attention is given to
the UART1 implementation of a synchronous interface that provides a controller
for an 8- or 16-bit CODEC interface and an audio CODEC ‘97 (AC *97) digital
interface.

— Chapter 15, “Parallel Port (General-Purpose 1/0),” describes the operation and
programming model of the parallel port pin assignment, direction-control, and
data registers. It includes a code example for setting up the parallel port.

e Part IV, “Hardware Interface,” provides a pinout and both electrical and functional
descriptions of the MCF5407 signals. It also describes how these signals interact to
support the variety of bus operations shown in timing diagrams.

— Chapter 16, “Mechanical Data,” provides a functional pin listing and package
diagram for the MCF5407.

— Chapter 17, “Signal Descriptions,” provides an alphabetical listing of MCF5407
signals. This chapter describes the MCF5407 signals. In particular, it shows
which are inputs or outputs, how they are multiplexed, which signals require
pull-up resistors, and the state of each signal at reset.

— Chapter 18, “Bus Operation,” describes data transfers, error conditions, bus
arbitration, and reset operations. It describes transfers initiated by the MCF5407
and by an external bus master, and includes detailed timing diagrams showing
the interaction of signals in supported bus operations. Note that Chapter 11,
“Synchronous/Asynchronous DRAM Controller Module,” describes DRAM
cycles.

— Chapter 19, “IEEE 1149.1 Test Access Port JTAG),” describes configuration
and operation of the MCF5407 JTAG test implementation. It describes the use of
JTAG instructions and how to disable JTAG functionality.

(M) moToroLa AboutThis Book XXXV

3
4

y
A

jested Reading

— Chapter 20, “Electrical Specifications,” describes AC and DC electrical
specifications and thermal characteristics for the MCF5407. Because additional
speeds may have become available since the publication of this book, consult
Motorola’s ColdFire web page, http://www.motorola.com/coldfire, to confirm
that this is the latest information.

This manual includes the following two appendixes:

* Appendix A, “Migrating from the ColdFire MCF5307 to the MCF5407,” highlights
the differences between the MCF5307B and MCF5407. Users of the MCF5307 and
MCF5307A should use this document in conjunction with the MCF5307 User's
Manual Mask Set Addendum. For additional information, see the MCF5407
Integrated ColdFire Microprocessor Product Brief.

* Appendix B, “List of Memory Maps,” lists the entire address-map for MCF5407
memory-mapped registers.

This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the ColdFire architecture.

General Information

The following documentation provides useful information about the ColdFire architecture
and computer architecture in general:

ColdFire Documentation

The ColdFire documentation is available from the sources listed on the back cover of this
manual. Document order numbers are included in parentheses for ease in ordering.

* (ColdFire Programmers Reference Manual, R1.0 (MCF5200PRM/AD)

* User’s manuals—These books provide details about individual ColdFire
implementations and are intended to be used in conjunction with The ColdFire
Programmers Reference Manual. These include the following:

— ColdFire MCF5102 User’s Manual IMCF5102UM/AD)
— ColdFire MCF5202 User’s Manual (MCF5202UM/AD)
— ColdFire MCF5204 User’s Manual (MCF5204UM/AD)
— ColdFire MCF5206 User’s Manual (MCF5206EUM/AD)
— ColdFire MCF5206E User’s Manual (MCF5206EUM/AD)
— ColdFire MCF5307 User’s Manual (MCF5307UM/AD)
* ColdFire Programmers Reference Manual, R1.0 (MCF5200PRM/AD)

Xxxviii MCF5407 User’s Manual (M) moToroLA

Conventions

» Using Microprocessors and Microcomputers: The Motorola Family, William C.
Wray, Ross Bannatyne, Joseph D. Greenfield

Additional literature on ColdFire implementations is being released as new processors
become available. For a current list of ColdFire documentation, refer to the World Wide
Web at http://www.motorola.com/ColdFire/.

Conventions

This document uses the following notational conventions:

MNEMONICS

mnemonics

italics

0x0
0b0

REGI[FIELD]

nibble
byte

word

longword

X

n

-

&
|

In text, instruction mnemonics are shown in uppercase.
In code and tables, instruction mnemonics are shown in lowercase.

Italics indicate variable command parameters.
Book titles in text are set in italics.

Prefix to denote hexadecimal number
Prefix to denote binary number

Abbreviations for registers are shown in uppercase. Specific bits,
fields, or ranges appear in brackets. For example, RAMBAR[BA]
identifies the base address field in the RAM base address register.

A 4-bit data unit

An 8-bit data unit

A 16-bit data unit

A 32-bit data unit

In some contexts, such as signal encodings, x indicates a don’t care.
Used to express an undefined numerical value

NOT logical operator

AND logical operator

OR logical operator

Acronyms and Abbreviations

Table i lists acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
ALU Arithmetic logic unit
AVEC Autovector
(M) moToroLA AboutThis Book XXXIX

nyms and Abbreviations

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
BDM Background debug mode
BIST Built-in self test
BSDL Boundary-scan description language
CODEC Code/decode
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing
EA Effective address
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose 1/0
] Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IFP Instruction fetch pipeline
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LIFO Last-in, first-out
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
NOP No operation
OEP Operand execution pipeline
PC Program counter
PCLK Processor clock
PLL Phase-locked loop
PLRU Pseudo least recently used

x|

MCF5407 User’s Manual

@ MOTOROLA

Terminology and Notational Conventions

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
POR Power-on reset
PQFP Plastic quad flat pack
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit
UART Universal asynchronous/synchronous receiver transmitter

Terminology and Notational Conventions

Table ii shows notational conventions used throughout this document.

Table ii Notational Conventions

Instruction ‘ Operand Syntax

Opcode Wildcard

cc ‘ Logical condition (example: NE for not equal)
Register Specifications

An Any address register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively

Dn Any data register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively

Rc Any control register (example VBR is the vector base register)

Rm MAC registers (ACC, MAC, MASK)

Rn Any address or data register

Rw Destination register w (used for MAC instructions only)
Ry,Rx Any source and destination registers, respectively

Xi index register i (can be an address or data register: Ai, Di)

(M) moToroLA AboutThis Book

xli

1inology and Notational Conventions

Table ii Notational Conventions (Continued)

Instruction Operand Syntax
Register Names
ACC MAC accumulator register
CCR Condition code register (lower byte of SR)
MACSR MAC status register
MASK MAC mask register
PC Program counter
SR Status register
Port Name
PSTDDATA Processor status/debug data port
Miscellaneous Operands
#<data> Immediate data following the 16-bit operation word of the instruction
<ea> Effective address
<ea>y,<ea>x | Source and destination effective addresses, respectively
<label> Assembly language program label
<list> List of registers for MOVEM instruction (example: D3-D0)
<shift> Shift operation: shift left (<<), shift right (>>)
<size> Operand data size: byte (B), word (W), longword (L)
bc Both instruction and data caches
dc Data cache
ic Instruction cache
<vector> Identifies the 4-bit vector number for trap instructions
<> identifies an indirect data address referencing memory
<XXX> identifies an absolute address referencing memory
dn Signal displacement value, n bits wide (example: d16 is a 16-bit displacement)
SF Scale factor (x1, x2, x4 for indexed addressing mode, <<1n>> for MAC operations)
Operations
+ Arithmetic addition or postincrement indicator
- Arithmetic subtraction or predecrement indicator
X Arithmetic multiplication

xlii

MCF5407 User’s Manual

@ MOTOROLA

Terminology and Notational Conventions

Table ii Notational Conventions (Continued)

Instruction Operand Syntax
/ Arithmetic division
~ Invert; operand is logically complemented
& Logical AND
| Logical OR
A Logical exclusive OR
<< Shift left (example: DO << 3 is shift DO left 3 bits)
>> Shift right (example: DO >> 3 is shift DO right 3 bits)
- Source operand is moved to destination operand

Two operands are exchanged

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion

If <condition>

Test the condition. If true, the operations after ‘then’ are performed. If the condition is false and the

then optional ‘else’ clause is present, the operations after ‘else’ are performed. If the condition is false
<operations> | and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
else as an example.
<operations>
Subfields and Qualifiers
{3 Optional operation
0 Identifies an indirect address
dn Displacement value, n-bits wide (example: dyg is a 16-bit displacement)
Address Calculated effective address (pointer)
Bit Bit selection (example: Bit 3 of DO)
Isb Least significant bit (example: Isb of DO)
LSB Least significant byte
LSW Least significant word
msb Most significant bit
MSB Most significant byte
MSW Most significant word
Condition Code Register Bit Names
(¢} Carry
N Negative
Vv Overflow
X Extend
z Zero

@ MOTOROLA

AboutThis Book xliii

1inology and Notational Conventions

xliv MCF5407 User’s Manual (M) moToroLA

Chapter 1
Overview

This chapter is an overview of the MCF5407 ColdFire® processor. It includes general
descriptions of the modules and features incorporated in the MCF5407, focusing in
particular on new features defined by the Version 4 (V4) programming model, such as the
Harvard memory architecture implementation, new instructions, and new registers.

1.1

Features

The MCF5407 integrated microprocessor combines a V4 ColdFire processor core with the
following components, as shown in Figure 1-1:

Harvard architecture memory system with 16-Kbyte instruction cache and 8-Kbyte
data cache

Two, 2-Kbyte on-chip SRAMs

Integer/fractional multiply-accumulate (MAC) unit

Divide unit

System debug interface

DRAM controller for synchronous and asynchronous DRAM
Four-channel DMA controller

Two general-purpose timers

Two UARTS, one that supports synchronous operations

I2C™ interface

Parallel I/O interface
System integration module (SIM)

Designed for embedded control applications, the MCF5407 delivers 233 Dhrystone MIPS
at 162 MHz while minimizing system costs.

(M) moToroLA Chapter 1. Overview 1-1

ures

(to on-chip

V4 COLDFIRE PROCESSOR COMPLEX

Instruction Unit

'

: JAG | Instruction Fetch
Branch Logic [C1 Pipeline (IFP)
8-Entry 1C2
Branch IED
————— Cache 1
. : LIFO Return
= 12sEny FIFo Buffer Stack
H Prediction
—— Table
Operand Execution
CCR ‘ Pipeline (OEP)
DS General-
AG |= y\ Purpose Registers
OCH A0-A7 DO0O-D7
—l0oCc2— 3 0 3 0
[DIV | EX |[MAC]
Debug — DA
Module I -

Local Memory

SRAM Controller
[RAMBARG| [RAMBART| |

2-Kbyte 2-Kbyte
SRAMO SRAM1

CLKIN
Local Memory Harvard Cache Controller Local Memory
peripherals) Instruction Bus CACR Data Bus
T |L_ACR2 ACRO
| | ACR3 | ACR1 |
CLKIN —] Il 16-Kbyte || 8-Kbyte |l
PLL PCLK I Instruction | Dat)é I:
RSTI—| Xn | RSTO Cache
L ——— 1 —=—=—1
A
A Y
o 4-Entry
Store
Buffer
+ — DMA
SYSTEM INTEGRATION MODULE (SIM) —
PLL Control System Control Base Address Bus Master Park Parallel Port] ChFaonur:els
PLL RSR SWIVR MBAR MPARK PLL
—/ L] [] L] —// — Software
SYPCR SWSR | Watchdog
DRAM Controller Chip-Select Module External Interrupt Controller {12C Module
Bus Interface
DRAM Control
DCR 8 8 8 10ICRs IRQPAR [{Two UARTSs
—— CSARs CSCRs CSMRs IPR =
Addr/Cntrl Mask VR Two
DACRO/A DMRO/1 R — General-
i 1 ; — Purpose
I Timers
% 8 ¢ 32-Bit Address Bus % 4
DRAM Controller a7 ¥ 32-Bit Data Bus feTat
CS[7:0] Control Signals IRQ[1,3,5,7]

Outputs

Figure 1-1. MCF5407 Block Diagram

MCF5407 User’s Manual

@ MOTOROLA

Features

Features common to many embedded applications, such as DMAs, various DRAM
controller interfaces, and on-chip memories, are integrated using advanced process
technologies.

The MCF5407 extends the legacy of Motorola’s 68K family by providing a compatible path
for 68K and ColdFire customers in which development tools and customer code can be
leveraged. In fact, customers moving from 68K to ColdFire can use code translation and
emulation tools that facilitate modifying 68K assembly code to the ColdFire architecture.
The package, pinout, and integration mix of the MCF5407 create an especially simple
upgrade for current MCF5307 designs with over triple the system performance.

Based on the concept of variable-length RISC technology, the ColdFire family combines
the architectural simplicity of conventional 32-bit RISC with a memory-saving,
variable-length instruction set. In defining the ColdFire architecture for embedded
processing applications, a 68K-code compatible core combines performance advantages of
a RISC architecture with the optimum code density of a streamlined, variable-length
M68000 instruction set.

By using a variable-length instruction set architecture, embedded system designers using
ColdFire RISC processors enjoy significant advantages over conventional fixed-length
RISC architectures. The denser binary code for ColdFire processors consumes less memory
than many fixed-length instruction set RISC processors available. This improved code
density means more efficient system memory use for a given application and allows use of
slower, less costly memory to help achieve a target performance level.

The MCF5407 is the first standard product to implement the Version 4 ColdFire
microprocessor core. The V4 microarchitecture implements a number of advanced
techniques, including a Harvard memory architecture, branch cache acceleration logic, and
limited superscalar support (dual-instruction issue), which contribute to the 233 Dhrystone
MIPS performance level. Increasing the internal speed of the core also allows higher
performance while providing the system designer with an easy-to-use lower speed system
interface. The processor complex frequency is an integer multiple, 3 to 6 times, of the
external bus frequency. The core clock can be stopped to support a low-power mode.

Serial communication channels are provided by an I’C interface module and two
programmable full-duplex UARTS, one of which provides synchronous communications
for soft-modem applications. Four channels of DMA allow for fast data transfer using a
programmable burst mode independent of processor execution. The two 16-bit
general-purpose multimode timers provide separate input and output signals. For system
protection, the processor includes a programmable 16-bit software watchdog timer. In
addition, common system functions such as chip selects, interrupt control, bus arbitration,
and an IEEE 1149.1 JTAG module are included.A sophisticated debug interface supports
background-debug mode plus real-time trace and debug with an expanded set of on-chip
breakpoint registers. This interface is present in all ColdFire standard products and allows
common emulator support across the entire family of microprocessors.

(M) moToroLA Chapter 1. Overview 1-3

A 4
4\

1-4

‘5407 Features

1.2 MCF5407 Features

The following list summarizes MCF5407 features:

ColdFire processor core
— Variable-length RISC, clock-multiplied Version 4 microprocessor core

— Implementation of Revision B of the ColdFire instruction set architecture (ISA),
which leverages the 68K programming model

— Two independent decoupled pipelines: four-stage instruction fetch pipeline (IFP)
and five-stage operand execution pipeline (OEP)

— Ten-instruction FIFO buffer provides decoupling between the pipelines

— Limited superscalar design achieves performance levels close to dual-issue
performance

— Programmable two-level branch acceleration mechanism with an 8-entry branch
cache plus a 128-entry prediction table for increased performance

— 32-bit internal address bus supporting 4 Gbytes of linear address space
— 32-bit data bus

— 16 user-accessible, 32-bit-wide, general-purpose registers

— Supervisor/user modes for system protection

— Vector base register to relocate exception-vector table

— Optimized for high-level language constructs

Multiply and accumulate unit (MAC)

— High-speed, complex arithmetic processing for DSP applications

— Tightly coupled to the OEP

— Three-stage execute pipeline with one clock issue rate for 16 x 16 operations
— 16 x 16 and 32 x 32 multiplies support, all with 32-bit accumulate

— Signed or unsigned integer support, plus signed fractional operands
Hardware integer divide unit

— Unsigned and signed integer divide support

— Tightly coupled to the OEP

— 32/16 and 32/32 operation support producing quotient and/or remainder results
16-Kbyte instruction cache, 8-Kbyte data cache

— Four-way set-associative organization

— Operates at higher processor core frequency

— Provides pipelined, single-cycle access to critical code and data

— Data cache supports write-through and copyback modes

— Four-entry, 32-bit store buffer to improve performance of operand writes

MCF5407 User’s Manual (M) moToroLa

MCF5407 Features

* Two, 2-Kbyte SRAMs
— Programmable location anywhere within 4-Gbyte linear address space
— Higher core-frequency operation
— Pipelined, single-cycle access to critical code or data
— Each block mappable to either the instruction or data operand bus
* DMA controller

— Four fully programmable channels: two support external requests and external
acknowledges

— Dual-address and single-address transfer support with 8-, 16-, and 32-bit data
capability
— Source/destination address pointers that can increment or remain constant
— 24-bit transfer counter per channel
— Operand packing and unpacking supported
— Auto-alignment transfers supported for efficient block movement
— Bursting and cycle steal support
— Two-bus-clock internal access
— Automatic DMA transfers from on-chip UARTSs using internal interrupts
* DRAM controller

— Synchronous DRAM (SDRAM), extended-data-out (EDO) DRAM, and fast
page mode support

— Up to 512 Mbytes of DRAM

— Programmable timer provides CAS-before-RAS refresh for asynchronous
DRAMs

— Support for two separate memory blocks
e Two UARTSs

— One UART offers synchronous mode with expanded buffers for soft modem
support

— Full-duplex operation
— Programmable clock
— Modem control signals available (CTS, RTS)
— Processor-interrupt capability
* Dual 16-bit general-purpose multiple-mode timers
— 8-bit prescaler
— Timer input and output pins
— Processor-interrupt capability
— Up to 18.5-nS resolution at 54 MHz

(M) moToroLA Chapter 1. Overview 1-5

‘5407 Features

e I12C module

— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and
keypads

— Fully compatible with industry-standard 12C bus

— Master or slave modes support multiple masters

— Automatic interrupt generation with programmable level
* System interface module (SIM)

— Chip selects provide direct interface to 8-, 16-, and 32-bit SRAM, ROM,
FLASH, and memory-mapped I/O devices

— Eight fully programmable chip selects, each with a base address register
— Programmable wait states and port sizes per chip select
— User-programmable processor clock/input clock frequency ratio
— Programmable interrupt controller
— Low interrupt latency
— Four external interrupt request inputs
— Programmable autovector generator
— Software watchdog timer
* 16-bit general-purpose /O interface
e IEEE 1149.1 test (JTAG) module
* System debug support
— Real-time trace for determining dynamic execution path while in emulator mode
— Background debug mode (BDM) for debug features while halted

— Real-time debug support, including 13 user-visible hardware breakpoint
registers supporting 8 separate breakpoints

— Supports servicing of critical, real-time interrupt requests while the BDM is in
emulator mode

— Supports comprehensive emulator functions through trace and breakpoint logic
* On-chip PLL

— Accepts various clock input (CLKIN) frequencies between 25 and 54 MHz

— Supports core frequencies between 100 and 162 MHz

— Supports low-power mode
* Product offerings

— 233 Dhrystone MIPS at 162 MHz

— Implemented in 0.22 u, quad-layer-metal process technology with 1.8-V
operation (3.3-V compliant I/O pads)

— 208-pin plastic QFP package
— 0°-70° C operating temperature

MCF5407 User’s Manual (M) moToroLa

ColdFire Module Description

1.2.1 Process

The MCF5407 is manufactured in a 0.22-y CMOS process with quad-layer-metal routing
technology. This process combines the high performance and low power needed for
embedded system applications. Inputs are 3.3-V tolerant; outputs are CMOS or open-drain
CMOS with outputs operating from VDD + 0.5 V to GND - 0.5 V, with guaranteed
TTL-level specifications.

1.3 ColdFire Module Description

The following sections provide overviews of the various modules incorporated in the
MCF5407.

1.3.1 ColdFire Core

The Version 4 ColdFire core consists of two independent and decoupled pipelines to
maximize performance—the instruction fetch pipeline (IFP) and the operand execution
pipeline (OEP).

1.3.1.1 Instruction Fetch Pipeline (IFP)

The four-stage instruction fetch pipeline (IFP) is designed to prefetch instructions for the
operand execution pipeline (OEP). Because the fetch and execution pipelines are decoupled
by a ten-instruction FIFO buffer, the fetch mechanism can prefetch instructions in advance
of their use by the OEP, thereby minimizing the time stalled waiting for instructions. To
maximize the performance of conditional branch instructions, the Version 4 IFP
implements a sophisticated two-level acceleration mechanism.

The first level is an 8-entry, direct-mapped branch cache with a 2-bit prediction state
(strongly/weakly, taken/not-taken) for each entry. The branch cache implements instruction
folding techniques. These allow conditional branch instructions that are predicted correctly
as taken to execute in zero cycles.

For those conditional branches with no information in the branch cache, a second-level,
direct-mapped prediction table containing 128 entries is accessed. Again, each entry uses
the same 2-bit prediction state definition as the branch cache. This branch prediction state
is then used to predict the direction of prefetched conditional branch instructions.

Other change-of-flow instructions, including unconditional branches, jumps, and
subroutine calls, use a similar mechanism where the IFP calculates the target address. The
performance of subroutine return instructions is improved through the use of a four-entry,
LIFO return stack.

In all cases, these mechanisms allow the IFP to redirect the fetch stream down the path
predicted to be taken well in advance of the actual instruction execution. The result is
significantly improved performance.

(M) moToroLA Chapter 1. Overview 1-7

IFire Module Description

1.3.1.2 Operand Execution Pipeline (OEP)

The prefetched instruction stream is gated from the FIFO buffer into the five-stage OEP.
The OEP consists of two, traditional two-stage RISC compute engines with a register file
access feeding an arithmetic/logic unit (ALU). The compute engine located at the top of the
OEP is typically used for operand memory address calculations (the address ALU), while
the compute engine located at the bottom of the pipeline is used for instruction execution
(the execution ALU). The resulting structure provides 3.9 Gbytes/S data operand
bandwidth at 162 MHz to the two compute engines and supports single-cycle execution
speeds for most instructions, including all load, store, and most embedded-load operations.
In response to users and developers’ comments, the V4 design supports execution of the
ColdFire Revision B instruction set, which adds a small number of new instructions to
improve performance and code density.

The OEP also implements two advanced performance features. It dynamically determines
the appropriate location of instruction execution (either in the address ALU or the execution
ALU) based on the pipeline state. The address compute engine, in conjunction with register
renaming resources, can be used to execute a number of heavily-used opcodes and forward
the results to subsequent instructions without any pipeline stalls. Additionally, the OEP
implements instruction folding techniques involving MOVE instructions so that two
instructions can be issued in a single machine cycle. The resulting microarchitecture
approaches the performance of a full superscalar implementation, but at a much lower
silicon cost.

1.3.1.3 MAC Module

The MAC unit provides signal processing capabilities for the MCF5407 in a variety of
applications including digital audio and servo control. Integrated as an execution unit in the
processor’s OEP, the MAC unit implements a three-stage arithmetic pipeline optimized for
16 x 16 multiplies. Both 16- and 32-bit input operands are supported by this design in
addition to a full set of extensions for signed and unsigned integers, plus signed, fixed-point
fractional input operands.

1.3.1.4 Integer Divide Module

Integrated into the OEP, the divide module performs operations using signed and unsigned
integers. The module supports word and longword divides producing quotients and/or
remainders.

1.3.2 Harvard Architecture

A Harvard memory architecture implements separate instruction and data buses to the
processor-local memories, removing conflicts between instruction fetches and operand
accesses.

1-8 MCF5407 User’s Manual (M) moToroLa

ColdFire Module Description

1.3.2.1 16-Kbyte Instruction Cache/8-Kbyte Data Cache

The MCF5407 Harvard architecture includes a 16-Kbyte instruction cache and an 8-Kbyte
data cache. These four-way, set-associative caches provide pipelined, single-cycle access
on cached instructions and operands.

As with all ColdFire caches, the cache controllers implement a non-lockup, streaming
design. The use of processor-local memories decouples performance from external
memory speeds and increases available bandwidth for external devices or the on-chip
4-channel DMA.

Both caches implement line-fill buffers to optimize 16-byte line burst accesses.
Additionally, the data cache supports copyback, write-through, or cache-inhibited modes.
A 4-entry, 32-bit buffer is used for cache line push operations and can be configured for
deferred write buffering in write-through or cache-inhibited modes.

The INTOUCH instruction can be used to prefetch instructions that, when used with the
cache locking feature, cannot be displaced from the instruction cache by instruction cache
misses. This function may be desirable in systems where deterministic real-time
performance is critical.

1.3.2.2 Internal 2-Kbyte SRAMs

Two 2-Kbyte on-chip SRAM modules are also connected to the Harvard memory
architecture and provide pipelined, single-cycle access to memory regions mapped to these
devices. Each memory can be independently mapped to any 0-modulo-2K location in the
4-Gbyte address space and can be configured either for instruction or data accesses.
Time-critical functions can be mapped onto the instruction memory bus, while the system
stack or heavily-referenced data operands can be mapped onto the data bus.

1.3.3 DRAM Controller

The MCF5407 DRAM controller provides a direct interface for up to two blocks of DRAM.
The controller supports 8-, 16-, or 32-bit memory widths and can easily interface to PC-100
DIMMs. A unique addressing scheme allows for increases in system memory size without
rerouting address lines and rewiring boards. The controller operates in normal mode or in
page mode and supports SDRAMs and EDO DRAMs.

1.3.4 DMA Controller

The MCF5407 provides four fully programmable DMA channels for quick data transfer.
Dual- and single-address modes support bursting and cycle steal. Data transfers are 32 bits
long with packing and unpacking supported along with an auto-alignment option for
efficient block transfers. Automatic block transfers from on-chip serial UARTSs are also
supported through the DMA channels.

(M) moToroLA Chapter 1. Overview 1-9

IFire Module Description

1.3.5 UART Modules

The MCF5407 contains two UARTS, which function independently. One UART has been
enhanced to provide synchronous operation and a CODEC interface for soft modem
support. Either UART can be clocked by the system bus clock, eliminating the need for an
external crystal. Each UART module interfaces directly to the CPU, as shown in Figure 1-2.

UART

l«—— CTS
Internal Channel

i Serial —» RTS
Control Logic Communications
hannel l«—— RxD

—» TxD

System Integration

Module (SIM) Interrupt Control Progé?cr)grgmable grLKlN
Interrupt Logic . D
Controller Generation External clock (TIN)

Figure 1-2. UART Module Block Diagram

Each UART module consists of the following major functional areas:

* Serial communication channel
* 16-bit divider for clock generation
e Internal channel control logic
* Interrupt control logic
UART1 is enhanced to provide a CODEC interface for soft modem support. UART1 can be
programmed to function like UARTO or in one of following modem modes:
* An 8-bit CODEC interface
* A 16-bit CODEC interface
* An audio CODEC ’97 (AC97) digital interface controller
Each UART contains an programmable clock-rate generator. Data formats can be 5, 6, 7,
or 8 bits with even, odd, or no parity, and up to 2 stop bits in 1/16 increments. The UARTSs
include the following transmit and receive FIFO buffers:
* UARTO has a 4-byte FIFO receive buffer and a 2-byte FIFO transmit buffer.
* In UARTI, the Tx and Rx FIFOs can hold the following:
— 32 1-byte samples when programmed as a UART or as an 8-bit CODEC interface
— 16 2-byte samples when programmed as a 16-bit CODEC interface
— 16 20-bit samples when programmed as a Digital AC *97 Controller

The UART modules also provide several error-detection and maskable-interrupt
capabilities. Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines.

CLKIN provides the time base through a programmable prescaler. The UART time scale
can also be sourced from a timer input. Full-duplex, auto-echo loopback, local loopback,

1-10 MCF5407 User’s Manual (M) moToroLa

ColdFire Module Description

and remote loopback modes allow testing of UART connections. The programmable
UARTS can interrupt the CPU on various normal or error-condition events.

1.3.6 Timer Module

The timer module includes two general-purpose timers, each of which contains a
free-running 16-bit timer for use in any of three modes. One mode captures the timer value
with an external event. Another mode triggers an external signal or interrupts the CPU when
the timer reaches a set value, while a third mode counts external events.

The timer unit has an 8-bit prescaler that allows programming of the clock input frequency,
which is derived from the system bus cycle or an external clock input pin (TIN). The
programmable timer-output pin generates either an active-low pulse or toggles the output.

1.3.7 12C Module

The I°C interface is a two-wire, bidirectional serial bus used for quick data exchanges
between devices. The I°C minimizes the interconnection between devices in the end system
and is best suited for applications that need occasional bursts of rapid communication over
short distances among several devices. The I’C can operate in master, slave, or
multiple-master modes.

1.3.8 System Interface

The MCF5407 processor provides a direct interface to 8-, 16-, and 32-bit FLASH, SRAM,
ROM, and peripheral devices through the use of fully programmable chip selects and write
enables. Support for burst ROMs is also included. Through the on-chip PLL, users can
input a slower clock (25 to 54 MHz) that is internally multiplied to create the faster
processor clock (100 to 162 MHz).

1.3.8.1 External Bus Interface

The bus interface controller transfers information between the ColdFire core or DMA and
memory, peripherals, or other devices on the external bus. The external bus interface
provides up to 32 bits of address bus space, a 32-bit data bus, and all associated control
signals. This interface implements an extended synchronous protocol that supports bursting
operations.

Simple two-wire request/acknowledge bus arbitration between the MCF5407 processor
and another bus master, such as an external DMA device, is glueless with arbitration logic
internal to the MCF5407 processor. Multiple-master arbitration is also available with some
simple external arbitration logic.

1.3.8.2 Chip Selects

Eight fully programmable chip select outputs support the use of external memory and
peripheral circuits with user-defined wait-state insertion. These signals interface to 8-, 16-,

(M) moToroLA Chapter 1. Overview 1-11

IFire Module Description

or 32-bit ports. The base address, access permissions, and internal bus transfer terminations
are programmable with configuration registers for each chip select. CSO also provides
global chip select functionality of boot ROM upon reset for initializing the MCF5407.

1.3.8.3 16-Bit Parallel Port Interface

A 16-bit general-purpose programmable parallel port serves as either an input or an output
on a pin-by-pin basis.

1.3.8.4 Interrupt Controller

The interrupt controller provides user-programmable control of ten internal peripheral
interrupts and implements four external fixed interrupt-request pins. Each internal interrupt
can be programmed to any one of seven interrupt levels and four priority levels within each
of these levels. Additionally, the external interrupt request pins can be mapped to levels 1,
3,5, and 7 or levels 2, 4, 6, and 7. Autovector capability is available for both internal and
external interrupts.

1.3.8.5 JTAG

To help with system diagnostics and manufacturing testing, the MCF5407 processor
includes dedicated user-accessible test logic that complies with the IEEE 1149.1a standard
for boundary-scan testability, often referred to as the Joint Test Action Group, or JTAG. For
more information, refer to the IEEE 1149.1a standard.

1.3.9 System Debug Interface

The ColdFire processor core debug interface is provided to support system debugging in
conjunction with low-cost debug and emulator development tools. Through a standard
debug interface, users can access real-time trace and debug information. This allows the
processor and system to be debugged at full speed without the need for costly in-circuit
emulators. The debug unit in the MCF5407 is a compatible upgrade to the MCF52xx and
MCF53xx debug modules with added breakpoint registers and support for I/O interrupt
request servicing while in emulator mode.

The on-chip breakpoint resources include a total of 13 programmable registers—two sets
of address registers (each with two 32-bit registers), two sets of data registers (each with a
32-bit data register plus a 32-bit data mask register), one 32-bit PC register plus a 32-bit PC
mask register and three additional 32-bit PC registers. These registers can be accessed
through the dedicated debug serial communication channel or from the processor’s
supervisor mode programming model. The breakpoint registers can be configured to
generate triggers by combining the address, data, and PC conditions in a variety of single
or dual-level definitions. The trigger event can be programmed to generate a processor halt
or initiate a debug interrupt exception.

The MCF5407’s new interrupt servicing options during emulator mode allow real-time
critical interrupt service routines to be serviced while processing a debug interrupt event,
thereby ensuring that the system continues to operate even during debugging.

1-12 MCF5407 User’s Manual (M) moToroLa

Programming Model, Addressing Modes, and Instruction Set

To support program trace, the Version 4 debug module has combined the processor status
and debug data outputs into a single 8-bit bus (PSTDDATA[7:0]). This bus and the
PSTCLK output provide execution status, captured operand data, and branch target
addresses defining processor activity at one-half the CPU’s clock rate.

1.3.10 PLL Module
The MCF5407 PLL module is shown in Figure 1-3.

CLKIN (to on-chip peripherals)
BCLKO

CLKIN ' PCLK (to core)

DIVIDE[2:0] — | PLL Debug+l;/IoduIe

RSTI —»» —» RSTO

PSTCLK (= PCLK/2)
Figure 1-3. PLL Module

The PLL module’s three modes of operation are described as follows.

¢ Reset mode—When RSTI is asserted, the PLL enters reset mode. At reset, the PLL
asserts RSTO from the MCF5407. The core:bus frequency ratio and other MCF5407
configuration information are sampled during reset.

* Normal mode—In normal mode, the input frequency programmed at reset is
clock-multiplied to provide the processor clock (PCLK).

* Reduced-power mode —In reduced-power mode, the PCLK is disabled by executing
a sequence that includes programming a control bit in the system configuration
register (SCR) and then executing the STOP instruction. Register contents are
retained in reduced-power mode, so the system can be reenabled quickly when an
unmasked interrupt or reset is detected.

1.4 Programming Model, Addressing Modes, and
Instruction Set

The ColdFire programming model has two privilege levels—supervisor and user. The S bit

in the status register (SR) indicates the privilege level. The processor identifies a logical

address that differentiates between supervisor and user modes by accessing either the
supervisor or user address space.

(M) moToroLA Chapter 1. Overview 1-13

A 4
4

k jramming Model, Addressing Modes, and Instruction Set

User mode— When the processor is in user mode (SR[S] = 0), only a subset of
registers can be accessed, and privileged instructions cannot be executed. Typically,
most application processing occurs in user mode. User mode is usually entered by
executing a return from exception instruction (RTE, assuming the value of SR[S]
saved on the stack is 0) or a MOVE, SR instruction (assuming SR[S] is 0).

Supervisor mode —This mode protects system resources from uncontrolled access
by users. In supervisor mode, complete access is provided to all registers and the
entire ColdFire instruction set. Typically, system programmers use the supervisor
programming model to implement operating system functions and provide I/O
control. The supervisor programming model provides access to the same registers as
the user model, plus additional registers for configuring on-chip system resources,
as described in Section 1.4.3, “Supervisor Registers.”

Exceptions (including interrupts) are handled in supervisor mode.

MCF5407 User’s Manual (M) moToroLa

Programming Model, Addressing Modes, and Instruction Set

1.4.1 Programming Model

Figure 1-4 shows the MCF5407 programming model.

User Registers

|

|

Supervisor Registers

|

31 0
DO Data registers
D1
D2
D3
D4
D5
D6
D7

31 0
AO Address registers
A1
A2
A3
A4
A5
A6
A7 Stack pointer
PC Program counter
CCR Condition code register

31 0
MACSR MAC status register
ACC MAC accumulator
MASK MAC mask register

15
31 8 [T (CCR |SR Status register
I Must be zeros VBR Vector base register

CACR Cache control register
ACRO Access control register 0 (data)
ACR1 Access control register 1 (data)
ACR2 Access control register 2 (instruction)
ACR3 Access control register 3 (instruction)
RAMBARO RAM 0 base address register
RAMBAR1 RAM 1 base address register
MBAR Module base address register

Figure 1-4. ColdFire MCF5407 Programming Model

1.4.2 User Registers

The user programming model is shown in Figure 1-4 and summarized in Table 1-1.

Table 1-1. User-Level Registers

Register

Description

Data registers
(D0-D7)

These 32-bit registers are for bit, byte, word, and longword operands. They can also be used as
index registers.

Address registers
(A0-A7)

These 32-bit registers serve as software stack pointers, index registers, or base address
registers. The base address registers can be used for word and longword operations. A7
functions as a hardware stack pointer during stacking for subroutine calls and exception handling.

@ MOTOROLA

Chapter 1. Overview 1-15

h -

jramming Model, Addressing Modes, and Instruction Set

Table 1-1. User-Level Registers (Continued)

Register

Description

Program counter
(PC)

Contains the address of the instruction currently being executed by the MCF5407 processor

Condition code

The CCR is the lower byte of the SR. It contains indicator flags that reflect the result of a previous

register (CCR) operation and are used for conditional instruction execution.

MAC status Defines the operating configuration of the MAC unit and contains indicator flags from the results
register (MACSR) | of MAC instructions.

Accumulator General-purpose register used to accumulate the results of MAC operations

(ACC)

Mask register General-purpose register provides an optional address mask for MAC instructions that fetch
(MASK) operands from memory. It is useful in the implementation of circular queues in operand memory.

1.4.3 Supervisor Registers

Table 1-2 summarizes the MCF5407 supervisor-level registers.

Table 1-2. Supervisor-Level Registers

Register

Description

Status register (SR)

The upper byte of the SR provides interrupt information in addition to a variety of mode indicators
signaling the operating state of the ColdFire processor. The lower byte of the SR is the CCR, as
shown in Figure 1-4.

Vector base register
(VBR)

Defines the upper 12 bits of the base address of the exception vector table used during exception
processing. The low-order 20 bits are forced to zero, locating the vector table on 0-modulo-1
Mbyte address.

Cache configuration
register (CACR)

Defines the operating modes of the Version 4 cache memories. Control fields configuring the
instruction, data, and branch cache are provided by this register, along with the default attributes
for the 4-Gbyte address space.

Access control
registers (ACRO/1,
ACR2/3)

Define address ranges and attributes associated with various memory regions within the 4-Gbyte
address space. Each ACR defines the location of a given memory region and assigns attributes
such as write-protection and cache mode (copyback, write-through, cacheability). ACRO and
ACR1 support data memory; ACR2 and ACR3 support instruction memory. Additionally, CACR
fields assign default attributes to the instruction and data memory spaces.

RAM base address
registers (RAMBARO,
RAMBAR1)

Provide the logical base address for the two 2-Kbyte SRAM modules and define attributes and
access types allowed for the corresponding SRAM.

Module base address
register (MBAR)

Defines the logical base address for the memory-mapped space containing the control registers
for the on-chip peripherals.

1.4.4 Instruction Set

The Version 4 ColdFire core implements Revision B of the instruction set, which adds
opcodes to enhance support for byte- and word-sized operands and position-independent
code. The ColdFire instruction set supports high-level languages and is optimized for those
instructions most commonly generated by compilers in embedded applications. Table 2-8
provides an alphabetized listing of the ColdFire instruction set opcodes, supported

MCF5407 User’s Manual (M) moToroLA

Programming Model, Addressing Modes, and Instruction Set

operation sizes, and assembler syntax. For two-operand instructions, the first operand is
generally the source operand and the second is the destination.

Because the ColdFire architecture provides an upgrade path for 68K customers, its
instruction set supports most of the common 68K opcodes. A majority of the instructions
are binary compatible or optimized 68K opcodes. This feature, when coupled with the code
conversion tools from third-party developers, generally minimizes software porting issues
for customers with 68K applications.

The following list summarizes new and enhanced instructions of Revision B ISA:

¢ New instructions:
— INTOUCH loads blocks of instructions to be locked in the instruction cache.
— MOV3Q.L moves 3-bit immediate data to destination location.

— MVS.{B,W} sign-extends the source operand and moves it to destination
register.

— MVZ.{B,W} zero-fills the source operand and moves it to destination register.
— SATS.L updates bit 31 of destination register depending on CCR overflow bit.
— TAS.B tests and set byte operand being addressed.

* Enhancements to existing Revision A instructions:
— Longword support for branch instructions (Bcc, BRA, BSR)
— Byte and word support for compare instructions (CMP, CMPI)

— Byte and longword support for MOVE.x where the source is of type #<data>and
the destination is of type d16(Ax); that is, move.b #<data>, d16(Ax)

(M) moToroLA Chapter 1. Overview 1-17

h -

jramming Model, Addressing Modes, and Instruction Set

1-18 MCF5407 User’s Manual

@ MOTOROLA

Part |
MCF5407 Processor Core

Intended Audience

PartI is intended for system designers who need a general understanding of the
functionality supported by the MCF5407. It also describes the operation of the MCF5407
ColdFire core and its multiply/accumulate (MAC) execution unit. It describes the
programming and exception models, Harvard memory implementation, and debug module.

Contents

Chapter 2, “ColdFire Core,” provides an overview of the microprocessor core of the
MCF5407. The chapter begins with a description of enhancements from the V3
ColdFire core, and then fully describes the V4 programming model as it is
implemented on the MCF5407. It also includes a full description of exception
handling, data formats, an instruction set summary, and a table of instruction
timings.

Chapter 3, “Hardware Multiply/Accumulate (MAC) Unit,” describes the MCF5407
multiply/accumulate unit, which executes integer multiply, multiply-accumulate,
and miscellaneous register instructions. The MAC is integrated into the operand
execution pipeline (OEP).

Chapter 4, “Local Memory.” This chapter describes the MCF5407 implementation
of the ColdFire V4 local memory specification. It consists of the two following
major sections.

— Section 4.2, “SRAM Overview,” describes the MCF5407 on-chip static RAM
(SRAM) implementation. It covers general operations, configuration, and
initialization. It also provides information and examples showing how to
minimize power consumption when using the SRAM.

— Section 4.7, “Cache Overview,” describes the MCF5407 cache implementation,
including organization, configuration, and coherency. It describes cache
operations and how the cache interacts with other memory structures.

(M) moToroLA Part I. MCF5407 Processor Core I-xix

* Chapter 5, “Debug Support,” describes the Revision C enhanced hardware debug
support in the MCF5407. This revision of the ColdFire debug architecture
encompasses earlier revisions.

Suggested Reading

The following literature may be helpful with respect to the topics in Part I:
* (ColdFire Programmers Reference Manual, R1.0 (MCF5200PRM/AD)

» Using Microprocessors and Microcomputers: The Motorola Family, William C.
Wray, Ross Bannatyne, Joseph D. Greenfield

Acronyms and Abbreviations

Table I-i contains acronyms and abbreviations are used in Part I.

Table I-i. Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
ALU Arithmetic logic unit
BDM Background debug mode
BIST Built-in self test
BSDL Boundary-scan description language
CODEC Code/decode
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing
EA Effective address
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose 1/0
1’c Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IFP Instruction fetch pipeline
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LIFO Last-in, first-out

I-xx MCF5407 User’s Manual (M) moToroLa

Table I-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
NOP No operation
OEP Operand execution pipeline
PC Program counter
PCLK Processor clock
PLL Phase-locked loop
PLRU Pseudo least recently used
POR Power-on reset
PQFP Plastic quad flat pack
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit
UART Universal asynchronous/synchronous receiver transmitter

@ MOTOROLA

Part . MCF5407 Processor Core

l-xxi

g |

I-xxii

MCF5407 User’s Manual

@ MOTOROLA

Chapter 2
ColdFire Core

This chapter provides an overview of the microprocessor core of the MCF5407. The
chapter begins with a description of enhancements from the Version 3 (V3) ColdFire core,
and then fully describes the V4 programming model as it is implemented on the MCF5407.
It also includes a full description of exception handling, data formats, an instruction set
summary, and a table of instruction timings.

2.1 Features and Enhancements

The MCF5407 is the first standard product to contain a Version 4 ColdFire microprocessor
core. To create this next-generation, high-performance core, many advanced
microarchitectural techniques were implemented. Most notable are a Harvard memory
architecture, branch cache acceleration logic, and limited superscalar dual-instruction issue
capabilities, which together provide 233 (Dhrystone 2.1) MIPS performance at 162 MHz.

The MCF5407 core design emphasizes performance and backward compatibility, and
represents the next step on the ColdFire performance roadmap.
The following list summarizes MCF5407 features:

e Variable-length RISC, clock-multiplied Version 4 microprocessor core

* Revision B of the ColdFire instruction set architecture provides new instructions to
improve performance and code density

* Two independent, decoupled pipelines —four-stage instruction fetch pipeline (IFP)
and five-stage operand execution pipeline (OEP) for increased performance of
conditional branch instructions

e Ten-instruction FIFO buffer provides decoupling between the pipelines
e Limited superscalar design approaches dual-issue performance

* Sophisticated two-level branch acceleration mechanism with a branch cache plus a
prediction table for increased performance of conditional Bce instructions

* 32-bit internal address bus supporting 4 Gbytes of linear address space
* 32-bit data bus
* 16 user-accessible, 32-bit-wide, general-purpose registers

* Supervisor/user modes for system protection

(M) moToroLA Chapter 2. ColdFire Core 21

3
4

y
A

ures and Enhancements

* Vector base register to relocate exception-vector table

* Optimized for high-level language constructs

2.1.1 Clock-Multiplied Microprocessor Core

The MCF5407 incorporates a clock-multiplying phase-locked loop (PLL). Increasing the
internal speed of the core also allows higher performance while providing the system
designer with an easy-to-use lower speed system interface.

The frequency of the processor complex is an integer multiple of the external bus speed.
Chapter 20, “Electrical Specifications,” lists the supported clock ratios.

The processor, instruction and data caches, integrated SRAMs, and misalignment module
operate at the higher speed clock (PCLK); other system integrated modules operate at the
speed of the input clock (CLKIN). When combined with the enhanced pipeline structure of
the Version 4 ColdFire core, the processor and its local memories provide a high level of
performance for today’s demanding embedded applications.

PCLK can be disabled to minimize dissipation when a low-power mode is entered. This is
described in Section 7.2.3, “Reduced-Power Mode.”

2.1.2 Enhanced Pipelines

The IFP prefetches instructions. The OEP decodes instructions, fetches required operands,
then executes the specified function. The two independent, decoupled pipeline structures
maximize performance while minimizing core size. Pipeline stages are shown in Figure 2-1
and are summarized as follows:
* Four-stage IFP (plus optional instruction buffer stage)
— Instruction address generation (IAG) calculates the next prefetch address.

— Instruction fetch cycle 1 (IC1) initiates prefetch on the processor’s local
instruction bus.

— Instruction fetch cycle 2 (IC2) completes prefetch on the processor’s instruction
local bus.

— Instruction early decode (IED) generates time-critical decode signals needed for
the OEP.

— Instruction buffer (IB) optional stage uses FIFO queue to minimize effects of
fetch latency.

* Five-stage OEP with two optional processor bus write cycles.
— Decode stage (DS/secDS) decodes and selects for two sequential instructions.
— Operand address generation (OAG) generates the address for the data operand.
— Operand fetch cycle 1 and 2 (OC1 and OC?2) fetch data operands.

— Execute (EX) performs prescribed operations on previously fetched data
operands.

2-2 MCF5407 User’s Manual (M) moToroLa

Features and Enhancements

— Write data available (DA) makes data available for operand write operations
only.

— Store data (ST) updates memory element for operand write operations only.

Instruction Fetch
Pipeline

IAG

A

YYVY

Branch IC1 Instruction _
Cache Memory B 7

IC2 <

Branch
Accel.| |ED

Internal
Operand Exegcution Bus
ipeline -

Y
1™ DS |secDS

OAG

Y

Data
OC1 (Operand) |«
Memory

Y

0OC2

A
A

Misalignment
EX Module

DA

l Y Y

| Debug | [DDATA

‘ l \/
DSCLK DSI DSO PSTDDATA PSTCLK
Figure 2-1. ColdFire Enhanced Pipeline

(M) moToroLA Chapter 2. ColdFire Core 2-3

ures and Enhancements

2.1.2.1 Instruction Fetch Pipeline (IFP)

Because the fetch and execution pipelines are decoupled by a ten-instruction FIFO buffer,
the IFP can prefetch instructions before the OEP needs them, minimizing stalls.

2.1.2.1.1 Branch Acceleration

To maximize the performance of conditional branch instructions, the IFP implements a
sophisticated two-level acceleration mechanism. The first level is an 8-entry, direct-mapped
branch cache with 2 bits for indicating four prediction states (strongly/weakly
taken/not-taken) for each entry. The branch cache also provides the association between
instruction addresses and the corresponding target address. In the event of a branch cache
hit, if the branch is predicted as taken, the branch cache sources the target address from the
IC1 stage back into the IAG to redirect the prefetch stream to the new location.

The branch cache implements instruction folding, so conditional branch instructions
correctly predicted as taken can execute in zero cycles. For conditional branches with no
information in the branch cache, a second-level, direct-mapped prediction table is accessed.
Each of its 128 entries uses the same 2-bit prediction mechanism as the branch cache.

If a branch is predicted as taken, branch acceleration logic in the IED stage generates the
target address. Other change-of-flow instructions, including unconditional branches,
jumps, and subroutine calls, use a similar mechanism where the IFP calculates the target
address. The performance of subroutine return instruction (RTS) is improved through the
use of a four-entry, LIFO hardware return stack. In all cases, these mechanisms allow the
IFP to redirect the fetch stream down the predicted path well ahead of instruction execution.

2.1.2.2 Operand Execution Pipeline (OEP)

The two instruction registers in the decode stage (DS) of the OEP are loaded from the FIFO
instruction buffer or are bypassed directly from the instruction early decode (IED). The
OEP consists of two, traditional two-stage RISC compute engines with a dual-ported
register file access feeding an arithmetic logic unit (ALU).

The compute engine at the top of the OEP (the address ALU) is used typically for operand
address calculations; the execution ALU at the bottom is used for instruction execution. The
resulting structure provides 4 Gbytes/S operand bandwidth (at 162 MHz) to the two
compute engines and supports single-cycle execution speeds for most instructions,
including all load and store operations and most embedded-load operations. The V4 OEP
supports the ColdFire Revision B instruction set, which adds a few new instructions to
improve performance and code density.

The OEP also implements the following advanced performance features:

e Stalls are minimized by dynamically basing the choice between the address ALU or
execution ALU for instruction execution on the pipeline state.

* The address ALU and register renaming resources together can execute heavily used
opcodes and forward results to subsequent instructions with no pipeline stalls.

2-4 MCF5407 User’s Manual (M) moToroLa

Features and Enhancements

* Instruction folding involving MOVE instructions allows two instructions to be
issued in one cycle. The resulting microarchitecture approaches full superscalar
performance at a much lower silicon cost.

2.1.2.2.1 lllegal Opcode Handling

To aid in conversion from M68000 code, every 16-bit operation word is decoded to ensure
that each instruction is valid. If the processor attempts execution of an illegal or
unsupported instruction, an illegal instruction exception (vector 4) is taken.

2.1.2.2.2 Hardware Multiply/Accumulate (MAC) Unit

The MAC is an optional unit in Version 4 that provides hardware support for a limited set
of digital signal processing (DSP) operations used in embedded code, while supporting the
integer multiply instructions in the ColdFire microprocessor family. The MAC features a
three-stage execution pipeline, optimized for 16 x 16 multiplies. It is tightly coupled to the
OEP, which can issue a 16 x 16 multiply with a 32-bit accumulation plus fetch a 32-bit
operand in a single cycle. A 32 x 32 multiply with a 32-bit accumulation requires three
cycles before the next instruction can be issued.

Figure 2-2 shows basic functionality of the MAC. A full set of instructions are provided for
signed and unsigned integers plus signed, fixed-point fractional input operands.

l OperandY ‘ l Operand X ‘

Shift 0,1,-1

Accumulator

\
Figure 2-2. ColdFire Multiply-Accumulate Functionality Diagram

The MAC provides functionality in the following three related areas, which are described

in detail in Chapter 3, “Hardware Multiply/Accumulate (MAC) Unit.”

* Signed and unsigned integer multiplies
* Multiply-accumulate operations with signed and unsigned fractional operands

* Miscellaneous register operations

(M) moToroLA Chapter 2. ColdFire Core 25

ures and Enhancements

2.1.2.2.3 Hardware Divide Unit

The hardware divide unit performs the following integer division operations:
e 32-bit operand/16-bit operand producing a 16-bit quotient and a 16-bit remainder
e 32-bit operand/32-bit operand producing a 32-bit quotient
* 32-bit operand/32-bit operand producing a 32-bit remainder

2.1.2.3 Harvard Memory Architecture

A Harvard memory architecture supports the increased bandwidth requirements of the V4
processor pipelines by providing separate configuration, access control, and protection
resources for data (operand) and instruction memory. The MCF5407 has separate
instruction and data buses to processor-local memories, eliminating conflicts between
instruction fetches and operand accesses.

2.1.3 Debug Module Enhancements

The ColdFire processor core debug interface supports system integration in conjunction
with low-cost development tools. Real-time trace and debug information can be accessed
through a standard interface, which allows the processor and system to be debugged at full
speed without costly in-circuit emulators. The MCF5407 debug unit is a compatible
upgrade to MCF52xx and MCF53xx debug modules with added breakpoint registers and
support for I/O interrupt request servicing while in emulator mode.
On-chip breakpoint resources include the following:

* Configuration/status register (CSR)

* Background debug mode (BDM) address attributes register (BAAR)

* Bus attributes and mask registers (AATR and AATR1)

* Breakpoint registers. These can be used to define triggers combining address, data,
and PC conditions in single- or dual-level definitions. They include the following:

— Four PC breakpoint registers (PBR, PBR1, PBR2, and PBR3)
— PC breakpoint mask register (PBMR)

— Two pairs of data operand address breakpoint registers (ABHR/ABLR and
ABLR1/ABHR1)

— Data breakpoint registers (DBR and DBR1)
— Data breakpoint mask registers (DBMR and DBMR1)

» Trigger event registers. These can be programmed to generate a processor halt or
initiate a debug interrupt exception. They include the following:

— Trigger definition register (TDR)
— Extended trigger definition register (XTDR)

2-6 MCF5407 User’s Manual (M) moToroLa

Programming Model

These registers can be accessed through the dedicated debug serial communication channel,
or from the processor’s supervisor programming model, using the WDEBUG instruction.

The MCF5407’s new interrupt servicing options during emulator mode allow real-time
critical interrupt service routines to be serviced while processing a debug interrupt event,
thereby ensuring that the system continues to operate even during debugging.

To support program trace, the Version 4 debug module combines the processor status and
debug data outputs into a single 8-bit bus, PSTDDATA[7:0]. This bus along with the
PSTCLK output provide execution status, captured operand data, and branch target
addresses defining processor activity at one-half the CPU’s clock rate.

The enhancements of the Revision C debug specification are fully backward-compatible
with the A and B revisions. For more information, see Chapter 5, “Debug Support.”

2.2 Programming Model

The MCF5407 programming model consists of three instruction and register groups —user,
MAC (also user-mode), and supervisor, shown in Figure 2-2. User mode programs are
restricted to user and MAC instructions and programming models. Supervisor-mode
system software can reference all user-mode and MAC instructions and registers and
additional supervisor instructions and control registers. The user or supervisor
programming model is selected based on SR[S]. The following sections describe the
registers in the user, MAC, and supervisor programming models.

(M) moToroLA Chapter 2. ColdFire Core 2-7

k jramming Model

31

31

User Registers

31

MACSR

ACC

|

MASK

|

31

15
8 [[(CCR] | SR

I Must be zeros VBR

CACR

ACRO

ACR1

ACR2

ACR3

Supervisor Registers

|

MBAR

RAMBARO
RAMBAR1

Data registers

Address registers

Stack pointer
Program counter
Condition code register

MAC status register
MAC accumulator
MAC mask register

Status register

Vector base register

Cache control register

Access control register 0 (data)
Access control register 1 (data)
Access control register 2 (instruction)
Access control register 3 (instruction)
RAM 0 base address register

RAM 1 base address register
Module base address register

Figure 2-3. ColdFire Programming Model

2.2.1 User Programming Model

As Figure 2-3 shows, the user programming model consists of the following registers:
* 16 general-purpose 32-bit registers, DO-D7 and A0-A7

* 32-bit program counter

» 8-bit condition code register

2.2.1.1 Data Registers (D0-D7)

Registers DO-D7 are used as data registers for bit, byte (8-bit), word (16-bit), and longword

(32-bit) operations. They may also be used as index registers.

2-8

MCF5407 User’s Manual

@ MOTOROLA

Programming Model

2.2.1.2 Address Registers (A0-A6)

The address registers (AO—A6) can be used as software stack pointers, index registers, or
base address registers and may be used for word and longword operations.

2.2.1.3 Stack Pointer (A7, SP)

The processor core supports a single hardware stack pointer (A7) used during stacking for
subroutine calls, returns, and exception handling. The stack pointer is implicitly referenced
by certain operations and can be explicitly referenced by any instruction specifying an
address register. The initial value of A7 is loaded from the reset exception vector, address
0x0000. The same register is used for user and supervisor modes, and may be used for word
and longword operations.

A subroutine call saves the program counter (PC) on the stack and the return restores the
PC from the stack. The PC and the status register (SR) are saved on the stack during
exception and interrupt processing. The return from exception instruction restores SR and
PC values from the stack.

2.2.1.4 Program Counter (PC)

The PC holds the address of the executing instruction. For sequential instructions, the
processor automatically increments PC. When program flow changes, the PC is updated
with the target instruction. For some instructions, the PC specifies the base address for
PC-relative operand addressing modes.

2.2.1.5 Condition Code Register (CCR)

The CCR, Figure 2-4, occupies SR[7-0], as shown in Figure 2-3. CCR[4-0] are indicator
flags based on results generated by arithmetic operations.

7 6 5 4 3 2 1 0
Field — ‘ X ‘ N ‘ 4 ‘ Vv ‘ C
Reset Undefined
RIW R | rw | rw [rw | Rw [RW

Figure 2-4. Condition Code Register (CCR)
Table 2-1 describes the CCR fields.

(M) moToroLA Chapter 2. ColdFire Core 2-9

jramming Model

Table 2-1. CCR Field Descriptions

Bits | Name Description
7-5 — Reserved, should be cleared.
4 X Extend condition code bit. Assigned the value of the carry bit for arithmetic operations; otherwise not
affected or set to a specified result. Also used as an input operand for multiple-precision arithmetic.
3 N Negative condition code bit. Set if the msb of the result is set; otherwise cleared.
2 Z Zero condition code bit. Set if the result equals zero; otherwise cleared.
1 \Y Overflow condition code bit. Set if an arithmetic overflow occurs, implying that the result cannot be

represented in the operand size; otherwise cleared.

0 C Carry condition code bit. Set if a carry-out of the data operand msb occurs for an addition or if a
borrow occurs in a subtraction; otherwise cleared.

2.2.1.6 MAC Programming Model

Figure 2-3 shows the registers in the MAC portion of the user programming model. These
registers are described as follows:

* Accumulator (ACC)—This 32-bit, read/write, general-purpose register is used to
accumulate the results of MAC operations.

* Mask register (MASK)—This 16-bit general-purpose register provides an optional
address mask for MAC instructions that fetch operands from memory. It is useful in
the implementation of circular queues in operand memory.

* MAC status register (MACSR)—This 8-bit register defines configuration of the
MAC unit and contains indicator flags affected by MAC instructions. Unless noted
otherwise, MACSR indicator flag settings are based on the final result, that is, the
result of the final operation involving the product and accumulator.

2.2.2 Supervisor Programming Model

The MCF5407 supervisor programming model is shown in Figure 2-3. Typically, system
programmers use the supervisor programming model to implement operating system
functions and provide memory and I/O control. The supervisor programming model
provides access to the user registers and additional supervisor registers, which include the
upper byte of the status register (SR), the vector base register (VBR), and registers for
configuring attributes of the address space connected to the Version 4 processor core. Most
supervisor-level registers are accessed by using the MOVEC instruction with the control
register definitions in Table 2-2.

2-10 MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 2-2. MOVEC Register Map

Rc[11-0] Register Definition

0x002 Cache control register (CACR)
0x004 Access control register 0 (ACRO0)

0x005 Access control register 1 (ACR1)

0x006 Access control register 2 (ACR2)

0x007 Access control register 3 (ACR3)

0x801 Vector base register (VBR)

0xC04 RAM base address register 0 (RAMBARO)
0xCO05 RAM base address register 1 (RAMBAR1)
0xCOF Module base address register (MBAR)

2.2.2.1 Status Register (SR)

The SR stores the processor status, the interrupt priority mask, and other control bits.
Supervisor software can read or write the entire SR; user software can read or write only
SR[7-0], described in Section 2.2.1.5, “Condition Code Register (CCR).” The control bits
indicate processor states—trace mode (T), supervisor or user mode (S), and master or
interrupt state (M). SR is set to 0x27xx after reset.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
System byte Condition code register (CCR)

Field| T — S M — | —_ X N Z \'% C

Reset| 0 0 1 0 0 111 000 — — — — —

RW|RW| R |RW|RW]| R R/W R R/W | RW | RW | R/W | R/W

Figure 2-5. Status Register (SR)

Table 2-3 describes SR fields.
Table 2-3. Status Field Descriptions

Bits | Name Description
15 T Trace enable. When T is set, the processor performs a trace exception after every instruction.
13 S Supervisor/user state. Indicates whether the processor is in supervisor or user mode
0 User mode

1 Supervisor mode

12 M Master/interrupt state. Cleared by an interrupt exception. It can be set by software during execution
of the RTE or move to SR instructions so the OS can emulate an interrupt stack pointer.

10-8 || Interrupt priority mask. Defines the current interrupt priority. Interrupt requests are inhibited for all
priority levels less than or equal to the current priority, except the edge-sensitive level-7 request,
which cannot be masked.

7-0 CCR | Condition code register. See Table 2-1.

(M) moToroLA Chapter 2. ColdFire Core 2-11

h -

jramming Model

2.2.2.2 Vector Base Register (VBR)

The VBR holds the base address of the exception vector table in memory. The displacement
of an exception vector is added to the value in this register to access the vector table.
VBR[19-0] are not implemented and are assumed to be zero, forcing the vector table to be
aligned on a 0-modulo-1-Mbyte boundary.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field| Exception vector table base address —

Reset 0000_0000_0000_0000_0000_0000_0000_0000

R/W| Written from a BDM serial command or from the CPU using the MOVEC instruction. VBR can be read from
the debug module only. The upper 12 bits are returned, the low-order 20 bits are undefined.

Rc[11-0] 0x801

Figure 2-6. Vector Base Register (VBR)
2.2.2.3 Cache Control Register (CACR)

The CACR controls operation of both the instruction and data cache memory. It includes
bits for enabling, freezing, and invalidating cache contents. It also includes bits for defining
the default cache mode and write-protect fields. See Section 4.10.1, “Cache Control
Register (CACR).”

2.2.2.4 Access Control Registers (ACR0-ACR3)

The access control registers (ACRO-ACR3) define attributes for four user-defined memory
regions. ACRO and ACRI1 control data memory space and ACR2 and ACR3 control
instruction memory space. Attributes include definition of cache mode, write protect and
buffer write enables. See Section 4.10.2, “Access Control Registers (ACR0-ACR3).”

2.2.2.5 RAM Base Address Registers (RAMBARO and RAMBAR1)

The RAMBAR registers determine the base address location of the internal SRAM
modules and indicate the types of references mapped to each. Each RAMBAR includes a
base address, write-protect bit, address space mask bits, and an enable. The RAM base
address must be aligned on a 0-module-2-Kbyte boundary. See Section 4.4.1, “SRAM Base
Address Registers (RAMBARO/RAMBART1).”

2.2.2.6 Module Base Address Register (MBAR)

The module base address register (MBAR) defines the logical base address for the
memory-mapped space containing the control registers for the on-chip peripherals. See
Section 6.2.2, “Module Base Address Register (MBAR).”

2-12 MCF5407 User’s Manual (M) moToroLa

Integer Data Formats

2.3 Integer Data Formats

Table 2-4 lists the integer operand data formats. Integer operands can reside in registers,
memory, or instructions. The operand size for each instruction is either explicitly encoded
in the instruction or implicitly defined by the instruction operation.

Table 2-4. Integer Data Formats

Operand Data Format Size
Bit 1 bit
Byte integer 8 bits
Word integer 16 bits
Longword integer 32 bits

2.4 Organization of Data in Registers

The following sections describe data organization within the data, address, and control
registers.

2.4.1 Organization of Integer Data Formats in Registers

Figure 2-7 shows the integer format for data registers. Each integer data register is 32 bits
wide. Byte and word operands occupy the lower 8- and 16-bit portions of integer data
registers, respectively. Longword operands occupy the entire 32 bits of integer data
registers. A data register that is either a source or destination operand only uses or changes
the appropriate lower 8 or 16 bits in byte or word operations, respectively. The remaining
high-order portion does not change. The least significant bit (Isb) of all integer sizes is zero,
the most-significant bit (msb) of a longword integer is 31, the msb of a word integer is 15,
and the msb of a byte integer is 7.

31 30 1 _©
’msb‘ ‘ Isb ‘ Bit (0 < bit number < 31)
31 7 0
’ Not used ‘msb‘ Low order byte ‘ Isb ‘ Byte (8 bits)
31 15 0
’ Not used ‘msb‘ Lower order word ‘ Isb ‘ Word (16 bits)
31 0
’msb‘ Longword ‘ Isb ‘ Longword (32 bits)

Figure 2-7. Organization of Integer Data Formats in Data Registers

The instruction set encodings do not allow the use of address registers for byte-sized
operands. When an address register is a source operand, either the low-order word or the
entire longword operand is used, depending on the operation size. Word-length source

(M) moToroLA Chapter 2. ColdFire Core 2-13

nization of Data in Registers

operands are sign-extended to 32 bits and then used in the operation with anaddress register
destination. When an address register is a destination, the entire register is affected,
regardless of the operation size. Figure 2-8 shows integer formats for address registers.

31 16 15 0
’ Sign-Extended 16-Bit Address Operand ‘

31 0
’ Full 32-Bit Address Operand ‘

Figure 2-8. Organization of Integer Data Formats in Address Registers

The size of control registers varies according to function. Some have undefined bits
reserved for future definition by Motorola. Those particular bits read as zeros and must be
written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, regardless of privilege mode.

2.4.2 Organization of Integer Data Formats in Memory

All ColdFire processors use a big-endian addressing scheme. The byte-addressable
organization of memory allows lower addresses to correspond to higher order bytes. The
address N of a longword data item corresponds to the address of the high-order word. The
lower order word is located at address N + 2. The address N of a word data item corresponds
to the address of the high-order byte. The lower order byte is located at address N + 1. This
organization is shown in Figure 2-9.

31 23 15 7 0
Longword 0x0000_0000

Word 0x0000_0000 Word 0x0000_0002
Byte 0x0000_0000 ‘ Byte 0x0000_0001 Byte 0x0000_0002 ‘ Byte 0x0000_0003
Longword 0x0000_0004

Word 0x0000_0004 Word 0x0000_0006

Byte 0x0000_0004 ‘ Byte 0x0000_0005 Byte 0x0000_0006 ‘ Byte 0x0000_0007

Longword OxFFFF_FFFC
Word OxFFFF_FFFC Word OxFFFF_FFFE
Byte OxFFFF_FFFC Byte OxFFFF_FFFD Byte OxFFFF_FFFE Byte OxFFFF_FFFF

Figure 2-9. Memory Operand Addressing

2-14 MCF5407 User’s Manual (M) moToroLa

Addressing Mode Summary

2.5 Addressing Mode Summary

Addressing modes are categorized by how they are used. Data addressing modes refer to
data operands. Memory addressing modes refer to memory operands. Alterable addressing
modes refer to alterable (writable) data operands. Control addressing modes refer to
memory operands without an associated size.

These categories sometimes combine to form more restrictive categories. Two combined
classifications are alterable memory (both alterable and memory) and data alterable (both
alterable and data). Twelve of the most commonly used effective addressing modes from
the M68000 Family are available on ColdFire microprocessors. Table 2-5 summarizes
these modes and their categories.

Table 2-5. ColdFire Effective Addressing Modes

Category
Addressing Modes Syntax ':I:)?: 'I:lie?&
e e Data Memory Control Alterable
Register direct
Data Dn 000 reg. no. X — — X
Address An 001 reg. no. — — — X
Register indirect
Address (An) 010 reg. no. X X X X
Address with (An)+ 011 reg. no. X X — X
Postincrement —(An) 100 reg. no. X X — X
Address with (d1e, An) 101 reg. no. X X X
Predecrement
Address with
Displacement
Address register indirect with
scaled index (dg, An, 110 reg. no. X X X X
8-bit displacement Xi*SF)
Program counter indirect
with displacement (d1e, PC) 111 010 X X X —
Program counter indirect
with scaled index (dg, PC, 111 011 X X X —
8-bit displacement Xi*SF)
Absolute data addressing
Short (xxx).W 111 000 X X X —
Long (xxx).L 111 001 X X X —
Immediate H<XXX> 111 100 X X — -

2.6 Instruction Set Summary

The ColdFire instruction set is a simplified version of the M68000 instruction set. The
removed instructions include BCD, bit field, logical rotate, decrement and branch, and
integer multiply with a 64-bit result. Nine new MAC instructions have been added.

Table 2-6 lists notational conventions used throughout this manual.

(M) moToroLA Chapter 2. ColdFire Core 2-15

‘uction Set Summary

Table 2-6. Notational Conventions

Instruction ‘ Operand Syntax
Opcode Wildcard
cc ‘ Logical condition (example: NE for not equal)
Register Specifications
An Any address register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively
Dn Any data register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively
Rc Any control register (example VBR is the vector base register)
Rm MAC registers (ACC, MAC, MASK)
Rn Any address or data register
Rw Destination register w (used for MAC instructions only)
Ry,Rx Any source and destination registers, respectively
Xi index register i (can be an address or data register: Ai, Di)
Register Names
ACC MAC accumulator register
CCR Condition code register (lower byte of SR)
MACSR MAC status register
MASK MAC mask register
PC Program counter
SR Status register
Port Name
PSTDDATA Processor status/debug data port
Miscellaneous Operands
#<data> Immediate data following the 16-bit operation word of the instruction
<ea> Effective address
<ea>y,<ea>x | Source and destination effective addresses, respectively
<label> Assembly language program label
<list> List of registers for MOVEM instruction (example: D3-D0)
<shift> Shift operation: shift left (<<), shift right (>>)
<size> Operand data size: byte (B), word (W), longword (L)
bc Both instruction and data caches
dc Data cache
ic Instruction cache
<vector> Identifies the 4-bit vector number for trap instructions
<> identifies an indirect data address referencing memory
2-16 MCF5407 User’s Manual @ MOTOROLA

Instruction Set Summary

Table 2-6. Notational Conventions (Continued)

Instruction Operand Syntax
<XXX> identifies an absolute address referencing memory
dn Signal displacement value, n bits wide (example: d16 is a 16-bit displacement)
SF Scale factor (x1, x2, x4 for indexed addressing mode, <<1n>> for MAC operations)
Operations
+ Arithmetic addition or postincrement indicator
- Arithmetic subtraction or predecrement indicator
X Arithmetic multiplication
/ Arithmetic division
~ Invert; operand is logically complemented
& Logical AND
| Logical OR
A Logical exclusive OR
<< Shift left (example: DO << 3 is shift DO left 3 bits)
>> Shift right (example: DO >> 3 is shift DO right 3 bits)
- Source operand is moved to destination operand

Two operands are exchanged

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion

If <condition>

Test the condition. If the condition is true, the operations in the then clause are performed. If the

then condition is false and the optional else clause is present, the operations in the else clause are
<operations> | performed. If the condition is false and the else clause is omitted, the instruction performs no
else operation. Refer to the Bcc instruction description as an example.
<operations>
Subfields and Qualifiers
{3 Optional operation
() Identifies an indirect address
dn Displacement value, n-bits wide (example: dyg is a 16-bit displacement)
Address Calculated effective address (pointer)
Bit Bit selection (example: Bit 3 of DO)
Isb Least significant bit (example: Isb of DO)
LSB Least significant byte
LSW Least significant word
msb Most significant bit
MSB Most significant byte
MSW Most significant word

@ MOTOROLA

Chapter 2. ColdFire Core 2-17

‘uction Set Summary

Table 2-6. Notational Conventions (Continued)

Instruction Operand Syntax

Condition Code Register Bit Names

(¢} Carry

N Negative
\ Overflow
X Extend
z Zero

2.6.1 Additions to the Instruction Set Architecture

The original ColdFire instruction set architecture (ISA) was derived from the M68000
Family opcodes based on extensive analysis of embedded application code. After the initial
ColdFire compilers were created, developers identified ISA additions that would enhance
both code density and overall performance. Additionally, as users implemented
ColdFire-based designs into a wide range of embedded systems, they identified frequently
used instruction sequences that could be improved by the creation of new instructions. This
observation was especially prevalent in development environments that made use of
substantial amounts of assembly language code.

The original ISA definition minimized the support for instructions referencing byte and
word operands. Full support for the MOVE.B and MOVEC.W instructions was provided,
but clr (clear) and tst (test) are the only other opcodes supporting these data types. Based
on input from compiler writers and system users, a set of instruction enhancements was
proposed that address the two following areas:

* Enhanced support for byte and word-sized operands through new move operations

* Enhanced support for position-independent code

The following list summarizes new and enhanced instructions of Revision_B ISA:
e New instructions:
— INTOUCH loads blocks of instructions to be locked in the instruction cache
— MOV3Q.L moves 3-bit immediate data to the destination location

— MVS.{B,W} sign-extends the source operand and moves it to the destination
register

— MVZ.{B,W} zero-fills the source operand and moves it to the destination
register

— SATS.L updates the destination register depending on CCR[V] and bit 31 of the
register

— TAS.B performs an indivisible read-modify-write cycle to test and set the
addressed memory byte.

2-18 MCF5407 User’s Manual (M) moToroLa

k Instruction Set Summary

* Enhancements to existing Revision_A instructions:
— Longword support for branch instructions (Bcc, BRA, BSR)
— Byte and word support for compare instructions (CMP, CMPI)
— Word support for the compare address register instruction (CMPA)
— Byte and longword support for MOVE.x ,where the source is immediate data and
the destination is specified by d16(Ax); that is, MOVE.{B,W} #<data>, d16(Ax)

Table 2-7 shows the syntax for the new and enhanced instructions, which are fully
described in Section 2.9, “ColdFire Instruction Set Architecture Enhancements.”

Table 2-7. ColdFire ISA_B Extension Summary

1

Instruction Mnemonic Source | Destination 68K
Branch Always bra.l <label> Yes
Branch Conditionally bee.l <label> Yes
Branch to Subroutine bsr.l <label> Yes
Compare cmp.{b,w,l} <eas>y Dx Yes
Compare Address cmpa.w <ea>y Ax Yes
Compare Immediate cmpi.{b,w} #<data> Dx Yes
Instruction Fetch Touch intouch <Ay>
Move 3-Bit Data Quick mov3q.| #<data> <ea>Xx
Move Data Source to Destination move.{b,w} #<data> d16(Ax) Yes
Move with Sign Extend mvs.{b,w} <eas>y Dx
Move with Zero-Fill mvz.{b,w} <ea>y Dx
Signed Saturate sats.| Dx
Test and Set an Operand tas.b <ea>x Yes

1" Operand sizes in this column reflect only newly supported operand sizes for existing instructions

(Bcc, BRA, BSR, CMP, CMPA, CMPI, and MOVE)

Some proposed opcodes were formerly present in the M68000 family, while other opcodes
are new functions.

2.6.2 Instruction Set Summary

Table 2-8 lists implemented user-level instructions by opcode.

Table 2-8. User-Level Instruction Set Summary

Instruction Operand Syntax Operand Size Operation

ADD Dy,<ea>x L Source + destination — destination
<ea>y,Dx L

ADDA <ea>y,Ax L Source + destination — destination

(M) moToroLA Chapter 2. ColdFire Core 2-19

'

k ‘uction Set Summary

Table 2-8. User-Level Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
ADDI #<data>,Dx L Immediate data + destination — destination
ADDQ #<data>,<ea>x L Immediate data + destination — destination
ADDX Dy,Dx L Source + destination + X — destination
AND Dy,<ea>x L Source & destination — destination
<ea>y,Dx L
ANDI #<data>,Dx L Immediate data & destination — destination
ASL Dy,Dx L X/C <~ (Dx << Dy) < 0
#<data>,Dx L X/C < (Dx << #<data>) <= 0
ASR Dy,Dx L MSB — (Dx >> Dy) — X/C
#<data>,Dx L MSB — (Dx >> #<data>) — X/C
Bce <label> .B,.W,.L If condition true, then PC + 2 + d,, = PC
BCHG Dy,<ea>x .B,.L ~(<bit number> of destination) — Z,
#<data>,<ea-1>x .B,.L Bit of destination
BCLR Dy,<ea>x B,.L ~(<bit number> of destination) — Z;
#<data>,<ea-1>x .B,.L 0 — bit of destination
BRA <label> .B,.\W,.L PC+2+d,—PC
BSET Dy,<ea>x B,.L ~(<bit number> of destination) — Z;
#<data>,<ea-1>x .B,.L 1— bit of destination
BSR <label> .B,.\W,.L SP — 4 — SP; next sequential PC— (SP); PC + 2 + d, = PC
BTST Dy,<ea>x B,.L ~(<bit number> of destination) — Z
#<data>,<ea-1>x .B,.L
CLR <ea>y,Dx B, W,.L 0 — destination
CMP <ea>y,Ax B, W,.L Destination — source
CMPA <ea>y,Dx W,.L Destination — source
CMPI <ea>y,Dx B, W,.L Destination — immediate data
DIVS <ea-1>y,Dx W Dx /<ea>y — Dx {16-bit remainder; 16-bit quotient}
<ea>y,Dx L Dx /<ea>y — Dx {32-bit quotient}
Signed operation
DIVU <ea-1>y,Dx W Dx /<ea>y — Dx {16-bit remainder; 16-bit quotient}
Dy,<ea>x L Dx /<ea>y — Dx {32-bit quotient}
Unsigned operation
EOR Dy,<ea>x L Source A destination — destination
EORI #<data>,Dx L Immediate data ” destination — destination
EXT #<data>,Dx B—-=W Sign-extended destination — destination
W —.L
EXTB Dx B—.L Sign-extended destination — destination
HALT? None Unsized Enter halted state
JMP <ea-3>y Unsized Address of <ea> — PC
JSR <ea-3>y Unsized SP — 4 — SP; next sequential PC — (SP); <ea> — PC
LEA <ea-3>y,Ax L <ea> — AXx

2-20 MCF5407 User’s Manual (M) moToroLa

Instruction Set Summary

Table 2-8. User-Level Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
LINK Ax,#<d16> AW SP -4 — SP; Ax — (SP); SP — Ax; SP + d16 — SP
LSL Dy,Dx L X/C «<— (Dx << Dy) < 0
#<data>,Dx L X/C < (Dx << #<data>) <~ 0
LSR Dy,Dx L 0 — (Dx >> Dy) — X/C
#<data>,Dx L 0 — (Dx >> #<data>) — X/C
MAC Ry,RxSF L+(Wx.W)—.L ACC + (Ry x Rx){<< 1 1>>1} = ACC
L+(Lx.L)—.L ACC + (Ry x Rx){<< 1 | >> 1} = ACC; (<ea>y{&MASK}) —
Rw
MACL Ry,RxSF,<ea-1>y,Rw | .L + (W x.W) — L, .L | ACC + (Ry x Rx){<< 1 |>> 1} - ACC
L+(Lx.L)y—.L .L |ACC+ (RyxRx){<<1I|>>1} = ACC; (<ea-1>y{&MASK})
— Rw
MOV3Q #<data>,<ea>x L 3-bit immediate—destination
MOVE <ea>y,<ea>X .B,.W,.L <ea>y — <ea>Xx
MOVE from | MASK,Rx L Rm — Rx
MAC ACC,Rx
MACSR,Rx
MACSR,CCR L MACSR — CCR
MOVE to Ry,ACC L Ry — Rm
MAC Ry,MACSR
Ry,MASK
#<data>,ACC L #<data> — Rm
#<data>,MACSR
#<data>,MASK
MOVE from | CCR,Dx A CCR — Dx
CCR
MOVEto | Dy,CCR B Dy — CCR
CCR #<data>,CCR #<data> - CCR
MOVEA <ea>y,Ax W,.L—> L Source — destination
MOVEM #<list>,<ea-2>x L Listed registers — destination
<ea-2>y,#<list> L Source — listed registers
MOVEQ #<data>,Dx B—.L Sign-extended immediate data — destination
MSAC Ry,RxSF L-(Wx.W)—.L ACC - (Ry x Rx){<< 11>> 1} = ACC
L-(Lx.L)—.L
MSACL Ry,RxSF,<ea-1>y,Rw | .L-(Wx.W)— .L,.L | ACC - (Ry x Rx){<<1|>> 1} - ACC;
L-(Lx.l)y—.L .L |(<ea-1>y{&MASK}) — Rw
MULS <ea>y,Dx WX.W-—= L Source x destination — destination
LXL—-.L Signed operation
MULU <ea>y,Dx WX.W-— L Source x destination — destination
LX.L—.L Unsigned operation
MVS <ea>y,Dx B,.W Sign-extended source — destination
Mvz <ea-1>y,Dx .B,.W Zero-filled source — destination
NEG Dx L 0 — destination — destination
NEGX Dx L 0 — destination — X — destination

@ MOTOROLA

Chapter 2. ColdFire Core

2-21

'

k ‘uction Set Summary

Table 2-8. User-Level Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
NOP none Unsized Synchronize pipelines; PC + 2 — PC
NOT Dx L ~ Destination — destination
OR <ea>y,Dx L Source | destination — destination
Dy,<ea>x
ORI #<data>,Dx L Immediate data | destination — destination
PEA <ea-3>y L SP — 4 — SP; Address of <ea> — (SP)
PULSE none Unsized Set PST= 0x4
REMS <ea-1>,Dx L Dx/<ea>y — Dw {32-bit remainder}
Signed operation
REMU <ea-1>,Dx L Dx/<ea>y — Dw {32-bit remainder}
Unsigned operation
RTS none Unsized (SP) - PC; SP +4 — SP
SATS Dx L If CCR.V=1,
then if Dx[31] =0
then 0x80000000 — Dx
else Ox7FFFFFFF— Dx
else Dx is unchanged
Scc Dx B If condition true, then 1s — destination;
Else Os — destination
SuUB <ea>y,Dx L Destination — source — destination
Dy,<ea>x L
SUBA <ea>y,Ax L Destination — source — destination
SuUBI #<data>,Dx L Destination — immediate data — destination
sSuUBQ #<data>,<ea>x L Destination — immediate data — destination
SUBX Dy,Dx L Destination — source — X — destination
SWAP Dx A MSW of Dx <—— LSW of Dx
TAS <ea>x B Set CCR; 1— Bit 7 of <ea>x
TRAP #<vector> Unsized SP -4 — SP;PC — (SP);
SP -2 — SP;SR — (SP);
SP - 2 — SP; format — (SP);
Vector address — PC
TRAPF None Unsized PC+2—PC
#<data> A PC+4 —-PC
L PC +6 — PC
TST <ea>y .B,.\W,.L Set condition codes
UNLK Ax Unsized Ax —SP; (SP) — Ax; SP + 4 — SP
WDDATA <ea>y .B,.W,.L <ea>y —DDATA port

1

execution by setting CSR[UHE].

By default the HALT instruction is a supervisor-level instruction; however, it can be configured to allow user-mode

Table 2-9 describes supervisor-level instructions.

2-22

MCF5407 User’s Manual

@ MOTOROLA

Execution Timings

Table 2-9. Supervisor-Level Instruction Set Summary

Instruction Operand Syntax | Operand Size Operation
CPUSHL (An) Unsized Invalidate instruction cache line
Push and invalidate data cache line
Push data cache line and invalidate (I,D)-cache lines
HALT! none Unsized Enter halted state
INTOUCH (Ay) Unsized Touch instruction space at address Ay
MOVE from SR | SR, Dx W SR — Dx
MOVE to SR Dy,SR W Source — SR
#<data>,SR
MOVEC Ry,Rc L Ry — Rc
Rc Register Definition
0x002 Cache control register (CACR)
0x004 Access control register 0 (ACRO)
0x005 Access control register 1 (ACR1)
0x006 Access control register 2 (ACR2)
0x007 Access control register 3 (ACR3)
0x801 Vector base register (VBR)
0xC04 RAM base address register 0 (RAMBARO)
0xC05 RAM base address register 1 (RAMBART)
RTE None Unsized (SP+2) — SR; SP+4 — SP; (SP) — PC; SP + formatfield — SP
STOP #<data> AW Immediate data — SR; enter stopped state
WDEBUG <ea-2>y L <ea-2>y — debug module

1

2.7 Execution Timings

The HALT instruction can be configured to allow user-mode execution by setting CSR[UHE].

The timing data presented in this section assumes the following:

* Execution times are shown for individual instructions without assumptions
regarding the OEP’s ability to dispatch multiple instructions at a time. For sequences
where instruction pairs are issued, the execution time of the two instructions is
defined by the execution time of the first instruction; that is, the second instruction

effectively executes in zero cycles.

* The OEP is loaded with the opword and all required extension words at the
beginning of each instruction execution. This implies that the OEP spends no time
waiting for the IFP to supply opwords and/or extension words.

* The OEP experiences no sequence-related pipeline stalls. For the MCF5407, the
most common example of such a stall occurs when a register is modified in the EX
compute engine and a subsequent instruction generating an address uses the
previously modified register. The second instruction stalls in the OEP until the
register is updated by the previous instruction. For example:

muls.l #<data>,d0

move.l

@ MOTOROLA

(a0,d0.1%4),d1

Chapter 2. ColdFire Core

2-23

sution Timings

In this sequence, the second instruction is held for three cycles stalling for the
multiply instruction to update dO. If consecutive instructions update a register and
use that register as a base of index value with a scale factor of 1 (Xi.1*1) in an address
calculation, a two-cycle pipeline stall occurs. Using the destination register as an
index register with any other scale factor (Xi.1*2, Xi.1*¥4) causes a three-cycle stall.

Some instructions are optimized to ensure against causing such stalls on subsequent
instructions. The destination register on the following instructions is always
available for subsequent instructions:

lea <ea>y,Ax

move.l #<data>,Rx

mov.w #<data>,Ax
moveq #<data>,Dx

clr.1 Dx

mov3qg.l #<data>,Rx
<op> (Ay)+,Rx
<op> -(Ay) ,Rx
<op> Ry, (Ax)+

<op> Ry, - (&%)

Note that the address register results from postincrement and predecrement modes
are available to subsequent instructions without stalls.

The OEP can complete all memory accesses without memory causing any stall
conditions. Thus, timing details in this section assume an infinite zero-wait state
memory attached to the core.

Operand data accesses are assumed to be aligned on the same byte boundary as the
operand size:

— 16-bit operands aligned on 0-modulo-2 addresses
— 32-bit operands aligned on 0-modulo-4 addresses

Operands not meeting these guidelines are misaligned. Table 2-10 shows how the
core decomposes a misaligned operand reference into a series of aligned accesses.

Table 2-10. Misaligned Operand References

Additional C(R/W) 1
A[1:0] Size Bus Operations
Read Write
x1 Word Byte, Byte 2(1/0) 1(0/1)
x1 Long Byte, Word, Byte 3(2/0) 2(0/2)
10 Long Word, Word 2(1/0) 1(0/1)

1

2-24

Each timing entry is presented as C(R/W), described as follows:

C is the number of processor clock cycles, including all applicable operand fetches and writes, as well as all
internal core cycles required to complete the instruction execution.

R/W is the number of operand reads (r) and writes (w) required by the instruction. An operation performing a
read-modify write function is denoted as (1/1).

MCF5407 User’s Manual (M) moToroLa

Execution Timings

2.7.1 MOVE Instruction Execution Timing

Execution timing for the MOVE.{B,W,L} instructions are shown in the next tables.
Table 2-13 shows the timing for the other generic move operations.

NOTE:

For all tables in this section, the execution time of any
instruction using the PC-relative effective addressing modes is
equivalent to the time using comparable An-relative mode.

ET with {<ea>
ET with {<ea>

(dl6,PC)} equals ET with {<ea> = (d16,An)}
(d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

The nomenclature “(xxx).wl” refers to both forms of absolute
addressing, (xxx).w and (xxx).1.

Table 2-11 lists execution times for MOVE.{B,W} instructions.
Table 2-11. Move Byte and Word Execution Times

Destination
Source
Rx (Ax) (Ax)+ -(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(111) 2(11) 2(11) 2(111) 3(1/1) 2(111)
(Ay)+ 1(1/0) 2(11) 2(11) 2(11) 2(111) 3(1/11) 2(111)
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(111) 2(1/1) 3(1/11) 2(1/1)
(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,Ay,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
(XXX).W 1(1/0) 2(1/1) 2(11) 2(111) — — —
(oxx).| 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(11) 2(11) 2(11) 2(111) — —
(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/11) 3(1/1) — — —
#<xxx> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) — —

Table 2-12 lists timings for MOVE.L.
Table 2-12. Move Long Execution Times

Destination
Source
Rx (AXx) (AXx)+ -(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 1(1/0) 2(1/1) 2(11) 2(1/1) 2(11) 3(1/1) 2(1/1)

(M) moToroLA Chapter 2. ColdFire Core 2-25

sution Timings

Table 2-12. Move Long Execution Times (Continued)

Destination
Source
Rx (Ax) (AX)+ -(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(111) 3(1/1) 2(1/1)
(d16,Ay) 1(1/0) 2(1/1) 2(111) 2(1/1) 2(111) — —
(d8,Ay,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(11) — — —
(xxx).w 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(xxx).1 1(1/0) 2(111) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(1/11) 2(111) 2(111) 2(111) — —
(d8,PC,Xi*SF) 2(1/0) 3(11) 3(1/1) 3(11) — — —
H<xxx> 1(0/0) 1(0/1) 1(0/1) 1(0/1) — — —

Table 2-13 gives execution times for MOVE.L instructions accessing program-visible
registers of the MAC unit, along with other MOVE.L timings. Execution times for moving
contents of the ACC or MACSR into a destination location represent the best-case scenario
when the store instruction is executed and no load, MAC, or MSAC instructions are in the
MAC execution pipeline. In general, these store operations require only one cycle for
execution, but if they are preceded immediately by a load, MAC, or MSAC instruction, the
MAC pipeline depth is exposed and execution time is 3 cycles.

Table 2-13. Miscellaneous Move Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,AnXi*SF) | (xxx).wl | #<xxx>

move.| <ea>,ACC 1(0/0) — — — — — — 1(0/0)
move.| <ea>,MACSR | 6(0/0) — — — — — — 6(0/0)
move.| <ea>,MASK 5(0/0) — — — — — — 5(0/0)
move.| ACC,Rx 1(0/0) — — — — — — —
move.| MACSR,CCR | 1(0/0) — — — — — — —
move.| MACSR,Rx 1(0/0) — — — — — — —
move.| MASK,Rx 1(0/0) — — — — — — —
moveq #imm,Dx — — — — — — — 1(0/0)
mov3q #imm,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —

mvs <ea>,Dx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

mvz <ea>,Dx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

2.7.2 Execution Timings—One-Operand Instructions

Table 2-14 shows standard timings for single-operand instructions.

2-26

MCF5407 User’s Manual

@ MOTOROLA

Execution Timings

Table 2-14. One-Operand Instruction Execution Times

Effective Address
Opcode | <ea>
Rn (An) (An)+ -(An) (d16,An) | (d8,An,Xi*SF) | (xxx).wl #xxxX
clrb <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clrw <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clrl <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
ext.w Dx 1(0/0) — — — — — — —
ext.l Dx 1(0/0) — — — — — — —
extb.| Dx 1(0/0) — — — — — — —
neg.| Dx 1(0/0) — — — — — — —
negx.| Dx 1(0/0) — — — — — — —
not.| Dx 1(0/0) — — — — — — —
sats.| Dx 1(0/0) — — — — — — —
scc Dx 1(0/0) — — — — — — —
swap Dx 1(0/0) — — — — — — —
tas <ea> | 1(111) 1(1/1) 1(11) | 1(11) 1(11) 2(1/1) 1(11) —
tst.b <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.w <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.l <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

2.7.3 Execution Timings—Two-Operand Instructions

Table 2-15 shows standard timings for two-operand instructions.

Table 2-15. Two-Operand Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,AnXi*SF) | (xxx).wl | #<xxx>
add.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
add.| Dy,<ea> — 1(1/1) | 1(1/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
addi.l #imm,Dx 1(0/0) — — — — — — —
addq.| #imm,<ea> | 1(0/0) | 1(1/1) | 1(14) | 11/1) | 1(1/1) 2(111) 1(1/1) —
addx.| Dy,Dx 1(0/0) — — — — — — —
and.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
and.| Dy,<ea> — 1(14) | 131y | 1014) | 1(11) 2(1/1) 1(1/1) —
andi.l #imm,Dx 1(0/0) — — — — — — —
asl.| <ea>,Dx 1(0/0) — — — — — — 1(0/0)
asr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
bchg Dy,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(11) 3(1/1) 2(1/1) —

(M) moToroLA Chapter 2. ColdFire Core 2-27

sution Timings

Table 2-15. Two-Operand Instruction Execution Times (Continued)

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
bchg #imm,<ea> 2(0/0) | 2(1/1) | 2(111) | 2(1/1) 2(1/1) — — —
belr Dy,<ea> 200/0) | 2(1/1) | 2(11) | 2(1/1) | 2(111) 3(11) 2(1/1) —
belr #imm,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(11) — — —
bset Dy,<ea> 2(0/0) | 2(1/1) | 2(111) | 2(1/1) 2(1/1) 3(11) 2(1/1) —
bset #imm,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(1/1) — — —
btst Dy,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(11) 3(1/1) 2(1/1) —
btst #imm,<ea> 1(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(1/1) — — 1(0/0)
cmp.b <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.w <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmpi.b #imm,Dx 1(0/0) — — — — — — —
cmpi.w #imm,Dx 1(0/0) — — — — — — —
cmpi.l #imm,Dx 1(0/0) — — — — — — —
divs.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) 20(0/0)
divu.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) 20(0/0)
divs.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
divu.l <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
eor. Dy,<ea> 1(0/0) | 1(1/1) | 1(11) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
eori.l #imm,Dx 1(0/0) — — — — — — —
lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
Isl.I <ea>,Dx 1(0/0) — — — — — — 1(0/0)
Isr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
mac.w Ry,Rx 1(0/0) — — — — — — —
mac.| Ry,Rx 3(0/0) — — — — — — —
msac.w Ry,Rx 1(0/0) — — — — — — —
msac.| Ry,Rx 3(0/0) — — — — — — —
mac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
mac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
msac.w | Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
msac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
muls.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
mulu.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
muls.| <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
mulu.l <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
or.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

2-28 MCF5407 User’s Manual (M) moToroLa

Execution Timings

Table 2-15. Two-Operand Instruction Execution Times (Continued)

Effective Address
Opcode <ea>

Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl #<xxx>

or.l Dy,<ea> — 1(1/1) | 1(111) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

or.l #imm,Dx 1(0/0) — — — — — — —

rems.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —

remu.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
sub.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

sub.l Dy,<ea> — 1(1/1) | 1(171) | 1(11) 1(1/1) 2(1/1) 1(1/1) —

subi.l #imm,Dx 1(0/0) — — — — — — —

subq.l #imm,<ea> | 1(0/0) | 1(1/1) | 1(14) | 1(1/1) | 1(1/1) 2(111) 1(1/1) —

subx.| Dy,Dx 1(0/0) — — — — — — —

2.7.4 Miscellaneous Instruction Execution Times

Table 2-16 lists timings for miscellaneous instructions.

Table 2-16. Miscellaneous Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
cpushl (Ax) — 9(0/1) — — — — — —
intouch (Ay) — 19(1/0)
link.w Ay, #imm 2(0/1) — — — — — — —
move.w CCR,Dx 1(0/0) — — — — — — —
move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)
move.w SR,Dx 1(0/0) — — — — — — —
move.w <ea>,SR 4(0/0) — — — — — — 4(0/0)
movec Ry,Rc 20(0/1) — — — — — — —
movem.I 1| <ea> &list — n(n/0) — — n(n/0) — — —
movem.I ' | &list,<ea> — n(0/n) — — n(0/n) — — —
nop 6(0/0) — — — — — — —
pea <ea> — 1(0/1) — — 1(0/1) 2(0/1) 1(0/1) —
pulse 1(0/0) — — — — — — —
stop #imm — — — — — — — 6(0/0)2
trap #imm — — — — — — — 18(1/2)
trapf 1(0/0) — — — — — — —
trapf.w 1(0/0) — — — — — — —
trapf.l 1(0/0) — — — — — — —

(M) moToroLA Chapter 2. ColdFire Core 2-29

sution Timings

Table 2-16. Miscellaneous Instruction Execution Times (Continued)

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
unlk Ax 1(1/0) — — — — — —
wddata. <ea> — 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
{b,w, I}
wdebug.| <ea> — 15(2/0) — 15(2/0) — — —

1

n is the number of registers moved by the MOVEM opcode

2 The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

2.7.5 Branch Instruction Execution Times

Table 2-17 shows general branch instruction timing.

Table 2-17. Branch Instruction Execution Times

Effective Address
Opcode | <ea>
Rn (An) (An)+ -(An) (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>

bra — — — — 1(0/1)" — — —
bsr — — — — 1(0/1)" — — —
jmp <ea> — 5(0/0) — — 5(0/0) 6(0/0) 1(0/0)" —
jsr <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)? —
rte — — 15(2/0) — — — — —
rts — — 2(1/0)? — — — — —

9(1/0)3

8(1/0)*

1

Assumes branch acceleration.
2 |f predicted correctly by the hardware return stack.

3 |f mispredicted by the hardware return stack.
4 If not predicted by the hardware return stack.

Table 2-18 shows timing for Bece instructions.

Table 2-18. Bcc Instruction Execution Times

Branch Cache Correctly | Prediction Table Correctly

Predicted

Opcode Predicts Taken Predicts Taken Correctly as Predicted Incorrectly
Not Taken
bce 0(0/0) 1(0/0) 1(0/0) 8(0/0)
2-30 MCF5407 User’s Manual (M) moToroLA

Exception Processing Overview

2.8 Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. Differences
from previous M68000 Family processors include the following:

* A simplified exception vector table
* Reduced relocation capabilities using the vector base register
* A single exception stack frame format

* Use of a single, self-aligning system stack pointer

ColdFire processors use an instruction restart exception model but require more software
support to recover from certain access errors. See Table 2-19 for details.

Exception processing can be defined as the time from the detection of the fault condition
until the fetch of the first handler instruction has been initiated. It is comprised of the
following four major steps:

1. The processor makes an internal copy of the SR and then enters supervisor mode by
setting SR[S] and disabling trace mode by clearing SR[T]. The occurrence of an
interrupt exception also forces SR[M] to be cleared and the interrupt priority mask
to be set to the level of the current interrupt request.

2. The processor determines the exception vector number. For all faults except
interrupts, the processor performs this calculation based on the exception type. For
interrupts, the processor performs an interrupt-acknowledge (IACK) bus cycle to
obtain the vector number from a peripheral device. The IACK cycle is mapped to a
special acknowledge address space with the interrupt level encoded in the address.

3. The processor saves the current context by creating an exception stack frame on the
system stack. ColdFire processors support a single stack pointer in the A7 address
register; therefore, there is no notion of separate supervisor and user stack pointers.
As aresult, the exception stack frame is created at a 0-modulo-4 address on the top
of the current system stack. Additionally, the processor uses a simplified
fixed-length stack frame for all exceptions. The exception type determines whether
the program counter in the exception stack frame defines the address of the faulting
instruction (fault) or of the next instruction to be executed (next).

4. The processor acquires the address of the first instruction of the exception handler.
The exception vector table is aligned on a 1-Mbyte boundary. This instruction
address is obtained by fetching a value from the table at the address defined in the
vector base register. The index into the exception table is calculated as
4 x vector_number. When the index value is generated, the vector table contents
determine the address of the first instruction of the desired handler. After the fetch
of the first opcode of the handler is initiated, exception processing terminates and
normal instruction processing continues in the handler.

ColdFire processors support a 1024-byte vector table aligned on any 1-Mbyte address
boundary; see Table 2-19. The table contains 256 exception vectors where the first 64 are

(M) moToroLA Chapter 2. ColdFire Core 2-31

V¥ ¢
i

»ption Processing Overview

defined by Motorola; the remaining 192 are user-defined interrupt vectors.

Table 2-19. Exception Vector Assignments

Vector Numbers | Vector Offset (Hex) | Stacked Program Counter ! Assignment
0 000 — Initial stack pointer
1 004 — Initial program counter
2 008 Fault Access error
3 00C Fault Address error
4 010 Fault lllegal instruction
5 014 Fault Divide by zero
6-7 018-01C — Reserved
8 020 Fault Privilege violation
9 024 Next Trace
10 028 Fault Unimplemented line-a opcode
11 02C Fault Unimplemented line-f opcode
12 030 Next Non-PC breakpoint debug interrupt
13 034 Next PC breakpoint debug interrupt
14 038 Fault Format error
15 03C Next Uninitialized interrupt
16-23 040-05C — Reserved
24 060 Next Spurious interrupt
25-31 064-07C Next Level 1-7 autovectored interrupts
32-47 080-0BC Next Trap #0-15 instructions
48-60 0C0-0F0 - Reserved
61 OF4 Fault Unsupported instruction
62-63 0F8-0FC — Reserved
64—-255 100-3FC Next User-defined interrupts

1

The term ‘fault’ refers to the PC of the instruction that caused the exception. The term ‘next’ refers to the PC

of the instruction that immediately follows the instruction that caused the fault.

ColdFire processors inhibit sampling for interrupts during the first instruction of all
exception handlers. This allows any handler to effectively disable interrupts, if necessary,

by raising the interrupt mask level contained in the status register.

2.8.1 Exception Stack Frame Definition

The exception stack frame is shown in Figure 2-1. The first longword of the exception stack
frame contains the 16-bit format/vector word (F/V) and the 16-bit status register. The

second longword contains the 32-bit program counter address.

2-32

MCF5407 User’s Manual

@ MOTOROLA

Exception Processing Overview

31 28 27 26 25 18 17 16 15 0
A7— Format ‘ FS[3-2] ‘ Vector[7-0] ‘ FS[1—0]‘ Status Register
+ 0x04 Program Counter [31-0]

Figure 2-1. Exception Stack Frame Form

The 16-bit format/vector word contains three unique fields:

* Format field—This 4-bit field at the top of the system stack is always written with a
value of {4,5,6,7} by the processor indicating a 2-longword frame format. See
Table 2-20. This field records any longword misalignment of the stack pointer that
may have existed when the exception occurred.

Table 2-20. Format Field Encoding

Original A7 at Time of A7 at First Instruction of Format Field Bits
Exception, Bits 1-0 Handler 31-28
00 Original A[7-8] 0100
01 Original A[7-9] 0101
10 Original A[7-10] 0110
11 Original A[7-11] 0111

e Fault status field—The 4-bit field, FS[3-0], at the top of the system stack is defined
for access and address errors along with interrupted debug service routines. See

Table 2-21.
Table 2-21. Fault Status Encodings
FS[3-0] Definition
0000 Not an access or address error nor an interrupted debug service routine
0001 Reserved
0010 Interrupt during a debug service routine
0011 Reserved
0100 Error on instruction fetch

0101-011x Reserved

1000 Error on operand write

1001 Attempted write to write-protected space
101x Reserved

1100 Error on operand read

1101-111x Reserved

* Vector number—This 8-bit field, vector[7-0], defines the exception type. It is
calculated by the processor for internal faults and is supplied by the peripheral for
interrupts. See Table 2-19.

(M) moToroLA Chapter 2. ColdFire Core 2-33

»ption Processing Overview

2.8.2 Processor Exceptions

Table 2-22 describes MCF5407 exceptions.
Table 2-22. MCF5407 Exceptions

Exception Description

Access Error | Access errors are reported only in conjunction with an attempted store to write-protected memory.
Thus, access errors associated with instruction fetch or operand read accesses are not possible.
The Version 4 processor, unlike the Version 2 and 3 processors, updates the condition code register
if a write-protect error occurs during a CLR or MOV3Q operation to memory.

Address Caused by an attempted execution transferring control to an odd instruction address (that is, if bit 0 of
Error the target address is set), an attempted use of a word-sized index register (Xi.w) or a scale factor of
8 on an indexed effective addressing mode, or attempted execution of an instruction with a full-format
indexed addressing mode.

If an address error occurs on a JSR instruction, the Version 4 processor first pushes the return
address onto the stack and then calculates the target address. On Version 2 and 3 processors, these
functions are reversed.

If an address error occurs on an RTS instruction, the Version 4 processor preserves the original
return PC and writes the exception stack frame above this value. On Version 2 and 3 processors, the
faulting return PC is overwritten by the address error stack frame.

llegal On Version 2 ColdFire implementations, only some illegal opcodes were decoded and generated an
Instruction illegal instruction exception. Version 3 and Version 4 processors decode the full 16-bit opcode and
generate this exception if execution of an unsupported instruction is attempted. Additionally,
attempting to execute an illegal line A or line F opcode generates unique exception types: vectors 10
and 11, respectively.

ColdFire processors do not provide illegal instruction detection on extension words of any instruction,
including MOVEC. Attempting to execute an instruction with an illegal extension word causes
undefined results.

Divide by Attempted division by zero causes an exception (vector 5, offset = 0x014) except when the PC points
Zero to the faulting instruction (DIVU, DIVS, REMU, REMS).

Privilege Caused by attempted execution of a supervisor mode instruction while in user mode. The ColdFire
Violation Programmer’s Reference Manual lists supervisor- and user-mode instructions.

Trace ColdFire processors provide instruction-by-instruction tracing. While the processor is in trace mode
Exception (SRI[T] = 1), instruction completion signals a trace exception. This allows a debugger to monitor

program execution.

The only exception to this definition is the STOP instruction. If the processor is in trace mode, the
instruction before the STOP executes and then generates a trace exception. In the exception stack
frame, the PC points to the STOP opcode. When the trace handler is exited, the STOP instruction is
executed, loading the SR with the immediate operand from the instruction. The processor then
generates a trace exception. The PC in the exception stack frame points to the instruction after
STOP, and the SR reflects the just-loaded value.

If the processor is not in trace mode and executes a STOP instruction where the immediate operand
sets the trace bit in the SR, hardware loads the SR and generates a trace exception. The PC in the
exception stack frame points to the instruction after STOP, and the SR reflects the just-loaded value.
Because ColdFire processors do not support hardware stacking of multiple exceptions, it is the
responsibility of the operating system to check for trace mode after processing other exception types.
As an example, consider a TRAP instruction executing in trace mode. The processor initiates the
TRAP exception and passes control to the corresponding handler. If the system requires that a trace
exception be processed, the TRAP exception handler must check for this condition (SR[15] in the
exception stack frame asserted) and pass control to the trace handler before returning from the
original exception.

2-34 MCF5407 User’s Manual (M) moToroLa

Exception Processing Overview

Table 2-22. MCF5407 Exceptions (Continued)

Exception Description
Debug Caused by a hardware breakpoint register trigger. Rather than generating an IACK cycle, the
Interrupt processor internally calculates the vector number (12 or 13, depending on the type of breakpoint

trigger). Additionally, the M bit and the interrupt priority mask fields of the SR are unaffected by the
interrupt. See Section 2.2.2.1, “Status Register (SR)”

The debug interrupt exception vector is expanded from Version 3 such that PC breakpoints are
distinguishable from other triggers. The two unique entries occur when a PC breakpoint generates
the 0x034 vector. In case of a two-level trigger, the last breakpoint event determines the vector.
The changes are described in more detail in Chapter 5, “Debug Support.”

RTE and When an RTE instruction executes, the processor first examines the 4-bit format field to validate the

Format Error | frame type. For a ColdFire processor, any attempted execution of an RTE where the format is not

Exceptions equal to {4,5,6,7} generates a format error. The exception stack frame for the format error is created

without disturbing the original exception frame and the stacked PC points to RTE.The selection of the

format value provides limited debug support for porting code from M68000 applications. On M68000

Family processors, the SR was at the top of the stack. Bit 30 of the longword addressed by the

system stack pointer is typically zero; so, attempting an RTE using this old format generates a format

error on a ColdFire processor.

If the format field defines a valid type, the processor does the following:

1 Reloads the SR operand.

2 Fetches the second longword operand.

3 Adjusts the stack pointer by adding the format value to the auto-incremented address after the first
longword fetch.

4 Transfers control to the instruction address defined by the second longword operand in the stack

frame.
TRAP Executing TRAP always forces an exception and is useful for implementing system calls. The trap
instruction may be used to change from user to supervisor mode.
Interrupt Interrupt exception processing, with interrupt recognition and vector fetching, includes uninitialized
Exception and spurious interrupts as well as those where the requesting device supplies the 8-bit interrupt

vector. Autovectoring may optionally be configured through the system interface module (SIM). See
Section 9.2.2, “Autovector Register (AVR).”

Reset Asserting the reset input signal (RSTI) causes a reset exception. Reset has the highest exception
Exception priority; it provides for system initialization and recovery from catastrophic failure. When assertion of
RSTI is recognized, current processing is aborted and cannot be recovered. The reset exception
places the processor in supervisor mode by setting SR[S] and disables tracing by clearing SR[T].
This exception also clears SR[M] and sets the processor’s interrupt priority mask in the SR to the
highest level (level 7). Next, the VBR is initialized to 0x0000_0000. Configuration registers controlling
the operation of all processor-local memories are invalidated, disabling the memories.

Note: Other implementation-specific supervisor registers are also affected. Refer to each of the
modules in this manual for details on these registers.

After RSTl is negated, the processor waits 16 cycles before beginning the actual reset exception
process. During this time, certain events are sampled, including the assertion of the debug
breakpoint signal. If the processor is not halted, it initiates the reset exception by performing two
longword read bus cycles. The longword at address 0 is loaded into the stack pointer and the
longword at address 4 is loaded into the PC. After the initial instruction is fetched from memory,
program execution begins at the address in the PC. If an access error or address error occurs before
the first instruction executes, the processor enters the fault-on-fault halted state.

Unsupported | If the MCF5407 attempts to execute a valid instruction but the required optional hardware module is
Instruction not present in the OEP, a non-supported instruction exception is generated (vector 0x61). Control is
Exception then passed to an exception handler that can then process the opcode as required by the system.

If a ColdFire processor encounters any type of fault during the exception processing of
another fault, the processor immediately halts execution with the catastrophic fault-on-fault
condition. A reset is required to force the processor to exit this halted state.

(M) moToroLA Chapter 2. ColdFire Core 2-35

IFire Instruction Set Architecture Enhancements

2.9 ColdFire Instruction Set Architecture
Enhancements

This section describes the new opcodes implemented as part of the Revision B
enhancements to the basic ColdFire ISA. In some cases, the opcodes represent minor

enhancements to existing ColdFire functions, while in other cases, the functionality is new
and not covered in the existing ISA.

2-36 MCF5407 User’s Manual (M) moToroLa

ColdFire Instruction Set Architecture Enhancements

BCC Branch Conditionally BCC

Operation: If Condition True
Then PC + d, — PC

Assembler Syntax: Bcc <label>
Attributes: Size = byte, word, long

Description: If the condition is true, execution continues at (PC) + displacement. PC holds
the address of the instruction word for the Bcc instruction, plus two. The displacement is a
two’s-complement integer that represents the relative distance in bytes from the current PC
to the destination PC. If the 8-bit displacement field is 0, a 16-bit displacement (the word
after the instruction) is used. If the 8-bit displacement field is OxFF, the 32-bit displacement
(longword after the instruction) is used. Condition code specifies one of the following tests:

Code Condition Code Condition Code | Condition Code Condition
CC(HI) Carry clear GT Greater than LT Less than VvC Overflow clear
CS(LO) Carry set HI High Ml Minus VS Overflow set

EQ Equal LE Less or equal NE Not equal
GE Greater or equal LS Low or same PL Plus

Condition Codes: Not affected

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Instruction | © ‘ 1 ‘ 1 ‘ 0 ‘ Condition 8-bit displacement
Format: 16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = OxFF

Instruction Fields:
e Condition field—Binary code for one of the conditions listed in the table.

» 8-bitdisplacement field—Two’s complement integer specifying the number of bytes
between the branch and the next instruction to be executed if the condition is met.

* 16-bit displacement field— Used when the 8-bit displacement contains 0x00.
» 32-bit displacement field— Used when the 8-bit displacement contains OxFF.

NOTE:

A branch to the next immediate instruction uses 16-bit
displacement because the 8-bit displacement field is 0x00.

Bcc V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported b, .w b, .w, .|

(M) moToroLA Chapter 2. ColdFire Core 2-37

IFire Instruction Set Architecture Enhancements

B RA Branch Always B RA

Operation: PC + d, — PC
Assembler Syntax: BRA <label>
Attributes: Size = byte, word, long

Description: Program execution continues at location (PC) + displacement. The PC
contains the address of the instruction word of the BRA instruction, plus two. The
displacement is a two’s complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruction
word is 0, a 16-bit displacement (the word immediately following the instruction) is used.
If the 8-bit displacement field in the instruction word is all ones (0xFF), the 32-bit
displacement (longword immediately following the instruction) is used.

Condition codes: Not affected

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction 0 ‘ 1 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 8-bit displacement
Format: 16-bit displacement if 8-bit displacement = 0x00
32-bit displacement if 8-bit displacement = OxFF

Instruction Fields:
* 8-bitdisplacement field—Two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
e 16-bit displacement field— Used for displacement when the 8-bit displacement
contains 0x00.

* 32-bit displacement field — Used for displacement when the 8-bit displacement
contains OxFF.

NOTE:

A branch to the next immediate instruction automatically uses
the 16-bit displacement format because the 8-bit displacement
field contains 0x00 (zero offset).

BRA V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported b, .w b, .w, .|

2-38 MCF5407 User’s Manual (M) moToroLa

ColdFire Instruction Set Architecture Enhancements

BSR Branch to Subroutine BSR

Operation: SP — 4 — SP; PC — (SP); PC + d, — PC
Assembler Syntax: BSR <label>
Attributes: Size = byte, word, long

Description: Pushes the word address of the instruction immediately following the BSR
instruction onto the system stack. The PC contains the address of the instruction word, plus
two. Program execution then continues at location (PC) + displacement. The displacement
is a two’s complement integer that represents the relative distance in bytes from the current
PC to the destination PC. If the 8-bit displacement field in the instruction word is 0, a 16-bit
displacement (the word immediately following the instruction) is used. If the 8-bit
displacement field in the instruction word is all ones (OxFF), the 32-bit displacement
(longword immediately following the instruction) is used.

Condition Codes: Not affected

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction| © ‘ 1 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 1 ‘ 8-bit displacement
Format: 16-bit displacement if 8-bit displacement = 0x00
32-bit displacement if 8-bit displacement = OxFF

Instruction Fields:
* 8-bitdisplacement field—Two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
e 16-bit displacement field— Used for displacement when the 8-bit displacement
contains 0x00.

e 32-bit displacement field — Used for displacement when the 8-bit displacement
contains OxFF.

NOTE:

A branch to the next immediate instruction automatically uses
the 16-bit displacement format because the 8-bit displacement
field contains 0x00 (zero offset).

BSR V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported b, .w b, .w, .|

(M) moToroLA Chapter 2. ColdFire Core 2-39

IFire Instruction Set Architecture Enhancements

CMP

Operation:

CMP

Compare

Destination — Source — cc
Assembler Syntax: CMP <ea>y, Dx

Attributes: Size = byte, word, long

Description: Subtracts the source operand from the destination operand in the data register
and sets condition codes according to the result; the data register is unchanged. The
operation size may be a byte, word, or longword.

CMPA is used when the destination is an address register; CMPI is used when the source
is immediate data. Most assemblers automatically make this distinction.

Condition Codes:

Not affected

Set if the result is negative; cleared otherwise
Set if the result is zero; cleared otherwise
Set if an overflow occurs; cleared otherwise
Set if a borrow occurs; cleared otherwise

O<NZzX

10 9 8 7 6 5 4 3 2 1 0
REGISTER OPMODE EFFECTIVE ADDRESS
MODE REGISTER

Instruction | 1 0 | 1 1
Format:

Instruction Fields:
» Register field—specifies the destination register.
e Opmode field:

Word
001

Byte Operation

000

Long
010

Dx - <ea>y

» Effective address field specifies the source operand; use addressing modes in the

following table:
Addressing Mode Mode Register Addressing Mode | Mode Register
Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay

Ay (word/longword operand only) | 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
- (Ay) 100 reg. number:Ay (d16,PC) 111 010
(d1s,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011

CMP V2,V3 Core V4 Core

Opcode present Yes Yes
Operand sizes supported A b, .w, .|

2-40

MCF5407 User’s Manual

@ MOTOROLA

ColdFire Instruction Set Architecture Enhancements

CMPA CMPA

Operation:

Compare Address
Destination — Source — cc
Assembler Syntax: CMPA <ea>y, Ax
Attributes: Size = word, long

Description: Operates similarly to CMP, but is used when the destination register is an
address register rather than a data register. The operation size can be word or longword.

Word-length source operands are sign-extended to 32 bits for comparison.

Condition Codes:

O<NZzZX

Not affected

Set if the result is negative; cleared otherwise
Set if the result is zero; cleared otherwise
Set if an overflow occurs; cleared otherwise
Set if a borrow occurs; cleared otherwise

1 10 9 8

7 6 5

4 3

2 1 0

Instruction | 1
Format:

REGISTER

OPMODE

EFFECTIVE ADDRESS

MODE

REGISTER

Instruction Fields:

* Register field— Specifies the destination register.
* Opmode field:

Byte

Word Long

Operation

011 111

Ax - <ea>y

» Effective address field specifies the source operand; use addressing modes in the
following table:

Addressing Mode Mode Register Addressing Mode | Mode Register
Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay
Ay (word/longword operand only) | 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
— (Ay) 100 reg. number:Ay (d16,PC) 111 010
(d1g,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011
CMPA V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported A w,

@ MOTOROLA

Chapter 2. ColdFire Core

2-41

IFire Instruction Set Architecture Enhancements

CMPI

Operation:

Compare Immediate

Destination — Immediate Data — cc

Assembler Syntax: CMPI #<data>, Dx

Attributes:

Size = byte, word, long

CMPI

Description: Operates similarly to CMP, but is used when the source operand is immediate
data. The size of the operation may be specified as byte, word, or longword. The size of the
immediate data matches the operation size.

Condition Codes:

Not affected

Set if the result is negative; cleared otherwise

Instruction
Format:

Set if the result is zero; cleared otherwise
Set if an overflow occurs; cleared otherwise
Set if a borrow occurs; cleared otherwise

O<NZzZX

15 14 13 12 11 10 9 8 7 6 5 4

3 2 1 0

olofoJo[1[1]o]o] szE [o]o

‘ 0 ‘ REGISTER

UPPER WORD

LOWER WORD

Instruction Fields:

Register field—Destination data register.
Size field:

Byte

Word

Long

Operation

00

01

10

Dx - #<data>

Note that if size = byte, the immediate is contained in bits [7:0]
of the single extension word. If size = word, the immediate is
contained in bits[15:0] of the single extension word. If
size = long, the immediate is contained in the two extension

words.

CMPI V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported A b, .w, .l

2-42

MCF5407 User’s Manual

@ MOTOROLA

ColdFire Instruction Set Architecture Enhancements

INTOUCH Instruction Fetch Touch INTOUCH

Operation: If Supervisor State
then Instruction Fetch Touch @ <Ay>
else TRAP

Assembler Syntax INTOUCH <Ay>
Attributes: Unsized

Description: Generates an instruction fetch reference at address (Ay). If the referenced
address space is a cacheable region, this instruction can be used to prefetch a 16-byte packet
into the processor’s instruction cache. If the referenced instruction address is a
non-cacheable space, the instruction effectively performs no operation.

The INTOUCH instruction can be used to prefetch, and with the later setting of CACR[11],
lock specific memory lines in the processor’s instruction cache. This function may be
desirable in systems where deterministic real-time performance is critical.

Condition Codes: Not affected.
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Instruction | 1 1 1 1 o | 1 o|lo|o | o] 1 0| 1 REGISTER
Format:

Instruction Fields:
» Register field— Specifies the destination address register number.

INTOUCH V2,V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — —

(M) moToroLA Chapter 2. ColdFire Core 2-43

IFire Instruction Set Architecture Enhancements

M OVE Move Data from Source to Destination M OVE

Operation: Source — Destination

Assembler Syntax: MOVE <ea>y, <ea>x

Attributes: Size = byte, word, long

Description: Moves the data at the source to the destination location and sets the condition
codes according to the data. The size of the operation may be specified as byte, word, or
longword.

Condition Codes:

X N z \Y C X Not affected

l — [* [* [0 [0] N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

15 14 13 12 1N 10 9 8 7 6 5 4 3 2 1 0
Instruction | © | © SIZE DESTINATION SOURCE
Format: REGISTER MODE MODE REGISTER

Instruction fields:

Size field— Specifies the size of the operand to be moved:

01— byte operation
11— word operation
10— long operation

Destination effective address field — Specifies destination location; the table below
lists possible data alterable addressing modes. The restrictions on combinations of
source and destination addressing modes are listed in the table at the bottom of the
next page.

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dx 000 reg. number:Dx (dg,Ax,Xi) 110 reg. number:Ax
Ax — — (xxx).W 111 000
(Ax) 010 reg. number:Ax (xxx).L 111 001
(Ax) + 011 reg. number:Ax #<data> — —
— (Ax) 100 reg. number:Ax (d46,PC) — —
(d16,AX) 101 reg. number:Ax (dg,PC,Xi) — —

2-44

Source effective address field— Specifies source operand; the table below lists
possible addressing modes. The ColdFire MOVE instruction has restrictions on
combinations of source and destination addressing modes. The table at the end of
this instruction description outlines the restrictions.

MCF5407 User’s Manual (M) moToroLA

ColdFire Instruction Set Architecture Enhancements

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

— (Ay) 100 reg. number:Ay (d46,PC) 111 010

(d1g,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011

NOTE:

Most assemblers use MOVEA when the destination is an

address register.

Use MOVEQ to move an immediate 8-bit value to a data
register. Use MOV3Q to move a 3-bit immediate value to any
effective destination address.

Not all combinations of source/destination addressing modes
are possible. The table below shows the possible combinations.

Source Addressing Mode

Destination Addressing Mode

Dy, Ay, (Ay), (Ay)+,-(Ay)

All possible

(d1e, Ay), (d16, PC)

All possible except (dg, Ax, Xi), (xxx).W, (xxx).L

(d8, Ay, Xi), (d8, PC, Xi), (xxx).W, (xxx).L, #<xxx> All possible except (dg, Ax, Xi), (xxx).W, (xxx).L

Note: The combination of #<xxx>,d16(Ax) addressing modes can be used only on move byte and move word
opcodes. Refer to the previous tables for valid source and destination addressing modes.

MOVE V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported b, .w, .| b, .w, .|
except including
move.x #<data>, d16(Ax) move.{b,w} #<data>, d16(Ax)

@ MOTOROLA

Chapter 2. ColdFire Core

2-45

IFire Instruction Set Architecture Enhancements

M OV EA Move Address from Source to Destination M OV EA

Operation: Source — Destination
Assembler Syntax: MOVEA <ea>y, Ax
Attributes: Size = word, long

Description: Moves the address at the source to the destination location and sets the
condition codes according to the data. The size of the operation may be specified as word
or longword.

Condition Codes: Not affected

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Instruction| © | 0 | SIzE DESTINATION SOURCE

Format: REGISTER MODE MODE REGISTER

Instruction fields:
» Size field—specifies the size of the operand to be moved:

11—word operation
10—longword operation

* Destination effective address field — Specifies the destination location; the table
below lists possible addressing modes.

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dx — — (dg,Ax,Xi) — —
Ax 001 reg. number: Ax (xxx).W — —
(AXx) — — (xxx).L — —
(Ax) + — — #<data> — —
- (Ax) — — (d16,PC) — —
(d16,AX) — — (dg,PC,Xi) — —

* Source effective address field— Specifies the source operand; the table below lists
possible modes.

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
— (Ay) 100 reg. number:Ay (d46,PC) 111 010
(d1g,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011
MOVEA V2,V3 Core V4 Core
Opcode present Yes Yes
Operand sizes supported No differences

2-46 MCF5407 User’s Manual (M) moToroLa

ColdFire Instruction Set Architecture Enhancements

MOV3Q MOV3Q

Operation:

Move 3-Bit Data Quick

Immediate Data — Destination
Assembler Syntax MOV3Q #<data>,<ea>x
Attributes: Size = long

Description: Move the immediate data to the operand at the destination location. The data
range is from -1 to 7, excluding 0. The immediate data is zero-filled to a long operand and
all 32 bits are transferred to the destination location.

Condition Codes:

X N z \Y C X Not affected
l — [* [* [0 [0] N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared
Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Format: REGISTER

Instruction Fields:

* Data field—3 bits of data having a range {-1,1-7} where a data value of O represents
-1.

» Effective Address field— Specifies the destination operand; use only data addressing
modes listed in the following table:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dx 000 reg. number:Dx (dg,Ax,Xi) 110 reg. number:Ax
Ax 001 reg. number:Ax (xxx).W 111 000
(AXx) 010 reg. number:Ax (xxx).L 111 001

(AX) + 011 reg. number:Ax #<data> — —

— (Ax) 100 reg. number:Ax (d46,PC) — —

(d16,AX) 101 reg. number:Ax (dg,PC,Xi) — —

Mov3Q V2,V3 Core V4 Core
Opcode present No Yes

Operand sizes supported

@ MOTOROLA

Chapter 2. ColdFire Core

2-47

IFire Instruction Set Architecture Enhancements

MVS

Operation:

MVS

Move with Sign Extend
(Source with sign extension) — Destination
Assembler Syntax: MVS <ea>y,Dx
Attributes: Size = byte, word

Description: Sign-extend the source operand and move to the destination register. For the
byte operation, bit 7 of the source is copied to bits 31-8 of the destination. For the word
operation, bit 15 of the source is copied to bits 31-16 of the destination.

Condition Codes:
Not affected

O<NZzZX

Set if the result is negative; cleared otherwise
Set if the result is zero; cleared otherwise
Always cleared

Always cleared

11 10 9 8 7 6 5 4 3 2 1 0

REGISTER

Siz

EFFECTIVE ADDRESS

Instruction | 0 | 1 1 1
Format:

MODE REGISTER

Instruction Fields:

» Size field—specifies the size of the operation
0 byte operation
1 word operation
* Register field—specifies a data register as the destination.

» Effective address field—specifies the source operand; use only data addressing
modes from the following table:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
— (Ay) 100 reg. number:Ay (d46,PC) 111 010
(d1g,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011
MVS V2,V3 Core V4 Core
Opcode present No Yes
Operand sizes supported — b, .w

2-48

MCF5407 User’s Manual

@ MOTOROLA

ColdFire Instruction Set Architecture Enhancements

MVZ Move with Zero-Fill MVZ

Operation: (Source with zero fill) — Destination
Assembler Syntax MVZ <ea>y,Dx

Attributes: Size = byte, word

Description—Zero-fill the source operand and move to the destination register. For the byte
operation, the source operand is moved to bits 7-0 of the destination and bits 31-8 are filled
with zeros. For the word operation, the source operand is moved to bits 15-0 of the
destination and bits 31-16 are filled with zeros.

Condition Codes:

X N z \Y C X Not affected
l — [0 [* [0 [0] N Always cleared
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction| © | 1 | 1 | 1 REGISTER 1] 1 |siz EFFECTIVE ADDRESS
E
Format: MODE REGISTER

Instruction Fields:
* Size field—Specifies the size of the operation
0 byte operation
1 word operation
* Register field—Specifies a data register as the destination.
» Effective address field— Specifies the source operand; use the following data
addressing modes:

Addressing Mode Mode Register Addressing Mode Mode Register
Dy 000 reg. number:Dy (dg,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000
(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
- (Ay) 100 reg. number:Ay (d16,PC) 111 010
(d1g,Ay) 101 reg. number:Ay (dg,PC,Xi) 111 011
Mvz V2,V3 Core V4 Core
Opcode present No Yes
Operand sizes supported — b, .w

(M) moToroLA Chapter 2. ColdFire Core 2-49

IFire Instruction Set Architecture Enhancements

SATS Signed Saturate SATS

Operation:

If CCR.V == 1,
then if Dx[31] == 0,
then Dx[31:0] = 0x80000000
else Dx[31:0] = Ox7FFFFFFF
else Dx[31:0] is unchanged

Assembler Syntax: SATS Dx
Attributes: Size = long

Description: Update the destination register only if the overflow bit of the CCR is set. If the
operand is negative, then set the result to greatest positive number, otherwise set the result
to the largest negative value. The condition codes are set according to the result.

Condition Codes:

X N z Vv C X Not affected
l — [# [# [0 [0 l N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Instruction | © | 1 oo |1 1 oo |1 olo| o] o REGISTER
Format:

Instruction Fields:
» Register field— Specifies the destination data register.

SATS V2,V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — A

2-50 MCF5407 User’s Manual (M) moToroLa

ColdFire Instruction Set Architecture Enhancements

TAS TAS

Operation:

Test and Set an Operand
Destination Tested — CCR; 1 — bit 7 of Destination

Assembler Syntax: TAS <ea>x

Attributes: Size = byte

Description: Tests and sets the byte operand addressed by the effective address field. The
instruction tests the current value of the operand and sets the N and Z condition code bits
appropriately. TAS also sets the high-order bit of the operand. The operand uses a
read-modify-write memory cycle that completes the operation without interruption. This
instruction supports use of a flag or semaphore to coordinate several processors.

Condition Codes:

X N z \Y C X Not affected
l — [s [s [0 [0] N Set if the msb of the operand is currently set; cleared otherwise
Z Set if the operand was zero; cleared otherwise
V Always cleared
C Always cleared
15 14 13 12 1N 10 9 8 7 6 5 4 3 2 1 0
Instruction | © 1 0 0 1 0 1 0 1 1 EFFECTIVE ADDRESS
Format: MODE REGISTER

Instruction Fields:

» Effective address field — specifies the destination location; the possible data alterable
addressing modes are listed in the table below.

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dx — . (dg,Ax,Xi) 110 reg. number:Ax
Ax — — (xxx).W 111 000
(Ax) 010 reg. number:Ax (xxx).L 111 001
(Ax) + 011 reg. number:Ax #<data> — —
— (Ax) 100 reg. number:Ax (d46,PC) — —
(d16,AX) 101 reg. number:Ax (dg,PC,Xi) — —
TAS V2,V3 Core V4 Core
Opcode present No Yes
Operand sizes supported — b

@ MOTOROLA

Chapter 2. ColdFire Core

2-51

IFire Instruction Set Architecture Enhancements

2-52 MCF5407 User’s Manual (M) moToroLA

Chapter 3
Hardware Multiply/Accumulate (MAC)
Unit

This chapter describes the MCF5407 multiply/accumulate (MAC) unit, which executes
integer multiply, multiply-accumulate, and miscellaneous register instructions. The MAC
is integrated into the operand execution pipeline (OEP).

3.1 Overview

The MAC unit provides hardware support for a limited set of digital signal processing
(DSP) operations used in embedded code, while supporting the integer multiply
instructions in the ColdFire microprocessor family.

The MAC unit provides signal processing capabilities for the MCF5407 in a variety of
applications including digital audio and servo control. Integrated as an execution unit in the
processor’s OEP, the MAC unit implements a three-stage arithmetic pipeline optimized for
16 x 16 multiplies. Both 16- and 32-bit input operands are supported by this design in
addition to a full set of extensions for signed and unsigned integers plus signed, fixed-point
fractional input operands.

The MAC unit provides functionality in three related areas:
* Signed and unsigned integer multiplies

e Multiply-accumulate operations supporting signed, unsigned, and signed fractional
operands

* Miscellaneous register operations

Each of the three areas of support is addressed in detail in the succeeding sections. Logic
that supports this functionality is contained in a MAC module, as shown in Figure 3-1.

The MAC unit is tightly coupled to the OEP and features a three-stage execution pipeline.
To minimize silicon costs, the ColdFire MAC is optimized for 16 x 16 multiply
instructions. The OEP can issue a 16 x 16 multiply with a 32-bit accumulation and fetch a
32-bit operand in the same cycle. A 32 x 32 multiply with a 32-bit accumulation takes three
cycles before the next instruction can be issued. Figure 3-1 shows the basic functionality of
the ColdFire MAC. A full set of instructions is provided for signed and unsigned integers
plus signed, fixed-point, fractional input operands.

@ MOTOROLA Chapter 3. Hardware Multiply/Accumulate (MAC) Unit 3-1

rview

Operand Y ‘ l Operand X

Shift 0,1,-1

Accumulator

\J
Figure 3-1. ColdFire MAC Multiplication and Accumulation

The MAC unit is an extension of the basic multiplier found on most microprocessors. It can
perform operations native to signal processing algorithms in an acceptable number of
cycles, given the application constraints. For example, small digital filters can tolerate some
variance in the execution time of the algorithm; larger, more complicated algorithms such
as orthogonal transforms may have more demanding speed requirements exceeding the
scope of any processor architecture and requiring a fully developed DSP implementation.

The M68000 architecture was not designed for high-speed signal processing, and a large
DSP engine would be excessive in an embedded environment. In striking a middle ground
between speed, size, and functionality, the ColdFire MAC unit is optimized for a small set
of operations that involve multiplication and cumulative additions. Specifically, the
multiplier array is optimized for single-cycle, 16 x 16 multiplies producing a 32-bit result,
with a possible accumulation cycle following. This is common in a large portion of signal
processing applications. In addition, the ColdFire core architecture has been modified to
allow for an operand fetch in parallel with a multiply, increasing overall performance for
certain DSP operations.

3.1.0.1 MAC Programming Model

Figure 3-2 shows the registers in the MAC portion of the user programming model.

31 0
MACSR MAC status register
ACC MAC accumulator
MASK MAC mask register

Figure 3-2. MAC Programming Model

8-2 MCF5407 User’s Manual (M) moToroLa

Overview

These registers are described as follows:

* Accumulator (ACC)—This 32-bit, read/write, general-purpose register is used to
accumulate the results of MAC operations.

* Mask register (MASK)—This 16-bit general-purpose register provides an optional
address mask for MAC instructions that fetch operands from memory. It is useful in
the implementation of circular queues in operand memory.

* MAC status register (MACSR)—This 8-bit register defines configuration of the
MAC unit and contains indicator flags affected by MAC instructions. Unless noted
otherwise, the setting of MACSR indicator flags is based on the final result, that is,
the result of the final operation involving the product and accumulator.

3.1.0.2 General Operation

The MAC unit supports the ColdFire integer multiply instructions (MULS and MULU) and
provides additional functionality for multiply-accumulate operations. The added MAC
instructions to the ColdFire ISA provide for the multiplication of two numbers, followed
by the addition or subtraction of this number to or from the value contained in the
accumulator. The product may be optionally shifted left or right one bit before the addition
or subtraction takes place. Hardware support for saturation arithmetic may be enabled to
minimize software overhead when dealing with potential overflow conditions using signed
or unsigned operands.

These MAC operations treat the operands as one of the following formats:

* Signed integers
* Unsigned integers
» Signed, fixed-point, fractional numbers

To maintain compactness, the MAC module is optimized for 16-bit multiplications. Two
16-bit operands produce a 32-bit product. Longword operations are performed by reusing
the 16-bit multiplier array at the expense of a small amount of extra control logic. Again,
the product of two 32-bit operands is a 32-bit result. For longword integer operations, only
the least significant 32 bits of the product are calculated. For fractional operations, the
entire 63-bit product is calculated and then either truncated or rounded to a 32-bit result
using the round-to-nearest (even) method.

Because the multiplier array is implemented in a 3-stage pipeline, MAC instructions can
have an effective issue rate of one clock for word operations, three for longword integer
operations, and four for 32-bit fractional operations. Arithmetic operations use
register-based input operands, and summed values are stored internally in the accumulator.
Thus, an additional MOVE instruction is necessary to store data in a general-purpose
register. MAC instructions can choose the upper or lower word of a register as the input,
which helps filtering operations in which one data register is loaded with input data and
another is loaded with coefficient data. Two 16-bit MAC operations can be performed
without fetching additional operands between instructions by alternating the word choice
during the calculations.

@ MOTOROLA Chapter 3. Hardware Multiply/Accumulate (MAC) Unit 3-3

rview

The need to move large amounts of data quickly can limit throughput in DSP engines.
However, data can be moved efficiently by using the MOVEM instruction, which
automatically generates line-sized burst references and is ideal for filling registers quickly
with input data, filter coefficients, and output data. Loading an operand from memory into
a register during a MAC operation makes some DSP operations, especially filtering and
convolution, more manageable.

The MACSR has a 4-bit operational mode field and three condition flags. The operational
mode bits control the overflow/saturation mode, whether operands are signed or unsigned,
whether operands are treated as integers or fractions, and how rounding is performed.
Negative, zero and overflow flags are also provided.

The three program-visible MAC registers, a 32-bit accumulator (ACC), the MAC mask
register (MASK), and MACSR, are described in Section 3.1.0.1, “MAC Programming
Model.”

3.1.0.3 MAC Instruction Set Summary

The MAC unit supports the integer multiply operations defined by the baseline ColdFire
architecture, as well as the new multiply-accumulate instructions. Table 3-1 summarizes
the MAC unit instruction set.

Table 3-1. MAC Instruction Summary

Instruction Mnemonic Description

Multiply Signed MULS <ea>y,Dx Multiplies two signed operands yielding a signed result

Multiply Unsigned MULU <ea>y,Dx Multiplies two unsigned operands yielding an unsigned result

Multiply Accumulate MAC Ry,RxSF Multiplies two operands, then adds or subtracts the product
MSAC Ry,RxSF to/from the accumulator

Multiply Accumulate MAC Ry,RxSFRw Multiplies two operands, then adds or subtracts the product

with Load MSAC Ry,RxSF,Rw to/from the accumulator while loading a register with the

memory operand

Load Accumulator MOV.L {Ry,#imm},ACC Loads the accumulator with a 32-bit operand

Store Accumulator MOV.L ACC,Rx Writes the contents of the accumulator to a register

Load MACSR MOV.L {Ry,#imm},MACSR | Writes a value to the MACSR

Store MACSR MOV.L MACSR,Rx Write the contents of MACSR to a register

Store MACSR to CCR | MOV.L MACSR,CCR Write the contents of MACSR to the processor’s CCR register

Load MASK MOV.L {Ry,#imm},MASK | Writes a value to MASK

Store MASK MOV.L MASK,Rx Writes the contents of MASK to a register

3.1.0.4 Data Representation
The MAC unit supports three basic operand types:

* Two’s complement signed integer: In this format, an N-bit operand represents a

number within the range 2D o operand < 2MN-D_1 The binary point is to the right
of the least significant bit.

3-4 MCF5407 User’s Manual (M) moToroLa

MAC Instruction Execution Timings

* Two’s complement unsigned integer: In this format, an N-bit operand represents a

number within the range 0 < operand < 2N _ 1. The binary point is to the right of the
least significant bit.

* Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit.
The remaining bits signify the first N-1 bits after the binary point. Given an N-bit
number, an.1aN.2aN-3--- G2d 14, its value is given by the following formula:

N-2
+ E 2(1+1_N)'al
i=0

This format can represent numbers in the range -1 < operand < 1 - 2(N-D),

For words and longwords, the greatest negative number that can be represented is -1,
whose internal representation is 0x8000 and 0x0x8000_0000, respectively. The

most positive word is O0x7FFF or (1 - 2713): the most positive longword is
0x7FFF_FFFF or (1 - 2°31).

3.2 MAC Instruction Execution Timings

Table 3-2 shows standard timings for two-operand MAC instructions.

Table 3-2. Two-Operand MAC Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
mac.w Ry,Rx 1(0/0) — — — — — — —
mac.| Ry,Rx 3(0/0) — — — — — — —
msac.w Ry,Rx 1(0/0) — — — — — — —
msac.| Ry,Rx 3(0/0) — — — — — — —
mac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
mac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
msac.w | Ry,Rx.ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
msac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
muls.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
mulu.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
muls.| <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
mulu.l <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —

Table 3-3 shows standard timings for MAC move instructions.

@ MOTOROLA Chapter 3. Hardware Multiply/Accumulate (MAC) Unit 3-5

» Instruction Execution Timings

Table 3-3. MAC Move Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | -(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl #<xxx>
move.| <ea>,ACC 1(0/0) — — — — — — 1(0/0)
move.| <ea>,MACSR | 6(0/0) — — — — — — 6(0/0)
move.| <ea>,MASK 5(0/0) — — — — — — 5(0/0)
move.| ACC,Rx 1(0/0) — — — — — — —
move.| MACSR,CCR | 1(0/0) — — — — — — —
move.| MACSR,Rx 1(0/0) — — — — — — —
move.| MASK,Rx 1(0/0) — — — — — — —

3-6 MCF5407 User’s Manual (M) moToroLa

Chapter 4
Local Memory

This chapter describes the MCF5407 implementation of the ColdFire Version 4 local
memory specification. It consists of two major sections.

e Section 4.2, “SRAM Overview,” describes the MCF5407 on-chip static RAM
(SRAM) implementation. It covers general operations, configuration, and
initialization. It also provides information and examples showing how to minimize
power consumption when using the SRAM.

* Section 4.7, “Cache Overview,” describes the MCF5407 cache implementation,
including organization, configuration, and coherency. It describes cache operations
and how the cache interfaces with other memory structures.

4.1 Interactions between Local Memory Modules

Depending on configuration information, instruction fetches and data read accesses may be
sent simultaneously to the RAM and cache controllers. This approach is required because
all three controllers are memory-mapped devices and the hit/miss determination is made
concurrently with the read data access. Power dissipation can be minimized by configuring
the RAMBARS to mask unused address spaces whenever possible.

If the access address is mapped into the region defined by the RAM (and this region is not
masked), the RAM provides the data back to the processor, and the cache data is discarded.
Accesses from the RAM module are never cached. The complete definition of the
processor’s local bus priority scheme for read references is as follows:
if (RAM “hits”

) RAM supplies data to the processor

else if (data cache “hits”)

data cache supplies data to the processor
else system memory reference to access data

For data write references, the memory mapping into the local memories is resolved before
the appropriate destination memory is accessed. Accordingly, only the targeted local
memory is accessed for data write transfers.

4.2 SRAM Overview

The two 2-Kbyte on-chip SRAM modules provide pipelined, single-cycle access to
memory mapped to these modules. Memory can be independently mapped to any

(M) moToroLA Chapter 4. Local Memory 4-1

M Operation

0-modulo-2K location in the 4-Gbyte address space and configured to respond to either
instruction or data accesses. Time-critical functions can be mapped into instruction
memory and the system stack. Other heavily-referenced data can be mapped into data
memory.

The following summarizes features of the MCF5407 SRAM implementation:
* Two 2-Kbyte SRAMs, organized as 512 x 32 bits

* Single-cycle throughput. When the pipeline is full, one access can occur per clock
cycle.

* Physical location on the processor’s high-speed local bus with a user-programmed
connection to the internal instruction or data bus

e Memory location programmable on any 0-modulo-2K address boundary
* Byte, word, and longword address capabilities

* The RAM base address registers (RAMBARO and RAMBART1) define the logical
base address, attributes, and access types for the two SRAM modules.

4.3 SRAM Operation

Each SRAM module provides a general-purpose memory block that the ColdFire processor
can access with single-cycle throughput. The location of the memory block can be specified
to any word-aligned address in the 4-Gbyte address space by RAMBAR~n[BA], described
in Section 4.4.1, “SRAM Base Address Registers (RAMBARO/RAMBARI1).” The memory
is ideal for storing critical code or data structures or for use as the system stack. Because
the SRAM module connects physically to the processor’s high-speed local bus, it can
service processor-initiated accesses or memory-referencing debug module commands.

The Version 4 ColdFire processor core implements a Harvard memory architecture. Each
SRAM module may be logically connected to either the processor’s internal instruction or
data bus. This logical connection is controlled by a configuration bit in the RAM base
address registers (RAMBARO and RAMBART1).

If an instruction fetch is mapped into the region defined by the SRAM, the SRAM sources
the data to the processor and any cache data is discarded. Likewise, if a data access is
mapped into the region defined by the SRAM, the SRAM services the access and the cache
is not affected. Accesses from SRAM modules are never cached, and debug-initiated
references are treated as data accesses.

Note also that the SRAMs cannot be accessed by the on-chip DMAs. The on-chip system
configuration allows concurrent core and DMA execution, where the core can reference
code or data from the internal SRAMs or caches while performing a DMA transfer.

4-2 MCF5407 User’s Manual (M) moToroLa

SRAM Programming Model

Accesses are attempted in the following order:
1. SRAM
2. Cache (if space is defined as cacheable)

3. External access

4.4 SRAM Programming Model

The SRAM programming model consists of RAMBARO and RAMBARI.

4.4.1 SRAM Base Address Registers (RAMBARO/RAMBAR1)

The SRAM modules are configured through the RAMBARS, shown in Figure 4-1.

* Each RAMBAR holds the base address of the SRAM. The MOVEC instruction
provides write-only access to this register from the processor.
e Each RAMBAR can be read or written from the debug module in a similar manner.

e All undefined RAMBAR bits are reserved. These bits are ignored during writes to
the RAMBAR and return zeros when read from the debug module.

e The valid bits, RAMBAR®#[V], are cleared at reset, disabling the SRAM modules.
All other bits are unaffected.

31 1110 9 8 7 6 5 4 3 2 1 0
Field BA | — |we [on][—[cn]sc[sp|uc|up| v
Reset —

R/W W for CPU; R/W for debug
Address CPU space + 0xC04 (RAMBARO), CPU space + 0xC05 (RAMBAR1)

Figure 4-1. SRAM Base Address Registers (RAMBARnN)

RAMBAR® fields are described in detail in Table 4-1.
Table 4-1. RAMBARN Field Description

Bits | Name Description

31-11 | BA Base address. Defines the SRAM module’s word-aligned base address. Each SRAM module
occupies a 2-Kbyte space defined by the contents of BA. SRAM may reside on any 2-Kbyte
boundary in the 4-Gbyte address space.

109 |— Reserved, should be cleared.

8 WP Write protect. Controls read/write properties of the SRAM.

0 Allows read and write accesses to the SRAM module

1 Allows only read accesses to the SRAM module. Any attempted write reference generates an
access error exception to the ColdFire processor core.

7 D/l Data/instruction bus. Indicates whether SRAM is connected to the internal data or instruction bus.
0 Data bus
1 Instruction bus

(M) moToroLA Chapter 4. Local Memory 4-3

M Initialization

Table 4-1. RAMBARN Field Description (Continued)

Bits | Name Description
6 — Reserved, should be cleared.
5-1 Cl/, Address space masks (ASn). These fields allow certain types of accesses to be masked, or
SC, inhibited from accessing the SRAM module. These bits are useful for power management as
SD, described in Section 4.6, “Power Management.” In particular, C/I is typically set.
UG, The address space mask bits are follows:

ub C/I = CPU space/interrupt acknowledge cycle mask. Note that C/I must be set if BA = 0.

SC = Supervisor code address space mask

SD = Supervisor data address space mask

UC = User code address space mask

UD = User data address space mask

For each ASn bit:

0 An access to the SRAM module can occur for this address space

1 Disable this address space from the SRAM module. If a reference using this address space is
made, it is inhibited from accessing the SRAM module and is processed like any other
non-SRAM reference.

0 \ Valid. Enables/disables the SRAM module. V is cleared at reset.
0 RAMBAR contents are not valid.
1 RAMBAR contents are valid.

The mapping of a given access into the RAM uses the following algorithm to determine if
the access hits in the memory:

if (RAMBAR[0] = 1)

if (((access = instructionFetch) & (RAMBAR[7] = 1)) |

((access = dataReference) & (RAMBAR[7] = 0)))
if (requested address[31:10] = RAMBAR[31:10])
if (requested address[31:n] = RAMBAR[31:n]

if (ASn of the requested type = 0)
Access is mapped to the RAM module
if (access = read)
Read the RAM and return the data
if (access = write)
if (RAMBAR[8] = 0)
Write the data into the RAM
else Signal a write-protect access error

ASn refers to the five address space mask bits: C/I, SC, SD, UC, and UD.

4.5 SRAM Initialization

After a hardware reset, the contents of each SRAM module are undefined. The valid bits,
RAMBAR~#[V], are cleared, disabling the SRAM modules. If the SRAM requires
initialization with instructions or data, the following steps should be performed:

1. Load RAMBAR~# with bit 7 =0, mapping the SRAM module to the desired location.
Clearing RAMBAR®[7] logically connects the SRAM module to the processor’s
data bus.

4-4 MCF5407 User’s Manual (M) moToroLa

SRAM Initialization

2. Read the source data and write it to the SRAM. Various instructions support this
function, including memory-to-memory move instructions and the move multiple
instruction (MOVEM). MOVEM is optimized to generate line-sized burst fetches on
line-aligned addresses, so it generally provides maximum performance.

3. After the data is loaded into the SRAM, it may be appropriate to revise the
RAMBAR attribute bits, including the write-protect and address space mask fields.
If the SRAM contains instructions, RAMBAR[D/I] must be set to logically connect
the memory to the processor’s internal instruction bus.

Remember that the SRAM cannot be accessed by the on-chip DMAs. The on-chip system
configuration allows concurrent core and DMA execution where the core can execute code
out of internal SRAM or cache during DMA access.

The ColdFire processor or an external emulator using the debug module can perform these
initialization functions.

4.5.1 SRAM Initialization Code

The code segment below initializes the SRAM using RAMBARO. The code sets the base
address of the SRAM at 0x2000_0000 and then initializes the RAM to zeros.

RAMBASE EQU 0x20000000 ;set this variable to 0x20000000
RAMVALID EQU 0x00000035

move.l #RAMBASE+RAMVALID, DO ;s load RAMBASE + valid bit into DO
movec.1l DO, RAMBARO ; load RAMBARO and enable SRAM

The following loop initializes the entire SRAM to zero:

lea.l RAMBASE, A0 ;load pointer to SRAM
move.l #512,D0 ;load loop counter into DO

SRAM INIT LOOP:

clr.1 (AO0)+ ;clear 4 bytes of SRAM
subg.l #1,D0 ;decrement loop counter
bne.b SRAM_INIT LOOP ;exit if done; else continue looping

The following function copies the number of bytesToMove from the source (*src) to the
processor’s local RAM at an offset relative to the SRAM base address defined by
destinationOffset. The bytesToMove must be a multiple of 16. For best performance, source
and destination SRAM addresses should be line-aligned (0-modulo-16).

; copyToCpuRam (*src, destinationOffset, bytesToMove)

RAMBASE EQU 0x20000000 ; SRAM base address

RAMFLAGS EQU 0x00000035 ;sRAMBAR valid + mask bits
lea.l -12(a7),a7 ;allocate temporary space
movem. 1 #0x1lc, (a7) ;store D2/D3/D4 registers

; stack arguments and locations

(M) moToroLA Chapter 4. Local Memory 4-5

er Management

+20 destinationOffset
+24 bytesToMove

; +0 saved d2

; +4 saved d3

; +8 saved d4

; +12 returnPc

; +16 pointer to source operand
’

r

move.l RAMBASE+RAMFLAGS,a0 ;define RAMBARO contents

movec.1l a0, rambar0 ;load it

move.l 16(a7),a0 ;load argument defining *src

lea.l RAMBASE, al ;memory pointer to RAM base

add.1l 20(a7),al ;include destinationOffset

move.l 24 (a7),d4 ;load byte count

asr.l #4 ,d4 ;divide by 16 to convert to loop count

.align 4 ;force loop on 0-mod-4 address
loop: movem. 1 (a0) ,#0xf ;read 16 bytes from source

movem. 1 #0x£f, (al) ;store into RAM destination

lea.l 16(a0),a0 ;increment source pointer

lea.l l6(al),al ;increment destination pointer

subqg.l #1,d4 ;decrement loop counter

bne.b loop ;if done, then exit, else continue

movem. 1 (a7),#0xlc ;restore d2/d3/d4 registers

lea.l 12(a7),a7 ;deallocate temporary space

rts

4.6 Power Management

Because processor memory references may be simultaneously sent to an SRAM module
and cache, power can be minimized by configuring RAMBAR address space masks as
precisely as possible. For example, if an SRAM is mapped to the internal instruction bus
and contains instruction data, setting the ASn mask bits associated with operand references
can decrease power dissipation. Similarly, if the SRAM contains data, setting ASrn bits
associated with instruction fetches minimizes power.

Table 4-2 shows typical RAMBAR configurations.
Table 4-2. Examples of Typical RAMBAR Settings

Data Contained in SRAM RAMBARI[5-0]
Code only 0x2B
Data only 0x35
Both code and data 0x21

4.7 Cache Overview

This section describes the MCF5407 cache implementation, including organization,
configuration, and coherency. It describes cache operations and how the cache interacts
with other memory structures.

4-6 MCF5407 User’s Manual (M) moToroLa

Cache Overview

The MCF5407 implements a special branch instruction cache for accelerating branches,
enabled by a bit in the cache access control register (CACR[BEC]). The branch cache is
described in Section 2.1.2.1.1, “Branch Acceleration.”

The MCF5407 processor’s Harvard memory structure includes an 8-Kbyte data cache and
a 16-Kbyte instruction cache. Both are nonblocking and 4-way set-associative with a
16-byte line. The cache improves system performance by providing single-cycle access to
the instruction and data pipelines. This decouples processor performance from system
memory performance, increasing bus availability for on-chip DMA or external devices.
Figure 4-2 shows the organization and integration of the data cache.

Cache
Control External

Control Bus
% Control Logic kiii
’—W Control

c) System
Prgclzcéilsrgr Integration Address/
i Al Module
Core Directory Array SIM) Data

Dat Data
- [[omeran]

Address
Address Address Path [

Figure 4-2. Data Cache Organization

Both caches implement line-fill buffers to optimize line-sized burst accesses. The data
cache supports operation of copyback, write-through, or cache-inhibited modes. A
four-entry, 32-bit buffer supports cache line-push operations, and can be configured to defer
write buffering in write-through or cache-inhibited modes. The cache lock feature can be
used to guarantee deterministic response for critical code or data areas.

A nonblocking cache services read hits or write hits from the processor while a fill (caused
by a cache allocation) is in progress. As Figure 4-2 shows, accesses use a single bus
connected to the cache.

All addresses from the processor to the cache are physical addresses. A cache hit occurs
when an address matches a cache entry. For a read, the cache supplies data to the processor.
For a write, which is permitted only to the data cache, the processor updates the cache. If
an access does not match a cache entry (misses the cache) or if a write access must be
written through to memory, the cache performs a bus cycle on the internal bus and
correspondingly on the external bus by way of the system integration module (SIM).

The SRAM module does not implement bus snooping; cache coherency with other possible
bus masters must be maintained in software.

(M) moToroLA Chapter 4. Local Memory 4-7

1e Organization

4.8 Cache Organization

A four-way set associative cache is organized as four ways (levels). There are 128 sets in
the 8-Kbyte data cache with each line containing 16 bytes (4 longwords). The 16-Kbyte
instruction cache has 256 sets. Entire cache lines are loaded from memory by burst-mode
accesses that cache 4 longwords of data or instructions. All 4 longwords must be loaded for
the cache line to be valid.

Figure 4-3 shows data cache organization as well as terminology used.

Way 0 Way 1 Way 2 Way 3
Set 0
Set 1
Set 126 Line
Set 127

Cache Line Format
[TAG [VIM] Longword0 | Longword1 [Longword2 [Longword3 |

Where:

TAG—21-bitaddresstag
V—Validbitforline

M—Modified bit for line (data cache only)

Figure 4-3. Data Cache Organization and Line Format

A setis a group of four lines (one from each level, or way), corresponding to the same index
into the cache array.

4.8.1 Cache Line States: Invalid, Valid-Unmodified, and
Valid-Modified
As shown in Table 4-3, a data cache line can be invalid, valid-unmodified (often called

exclusive), or valid-modified. An instruction cache line can be valid or invalid.

Table 4-3. Valid and Modified Bit Settings

\" M Description

0 X Invalid. Invalid lines are ignored during lookups.

1 0 Valid, unmodified. Cache line has valid data that matches system memory.

1 1 Valid, modified. Cache line contains most recent data, data at system memory location is stale.

A valid line can be explicitly invalidated by executing a CPUSHL instruction.

4-8 MCF5407 User’s Manual (M) moToroLa

Cache Organization

4.8.2 The Cache at Start-Up

As Figure 4-4 (A) shows, after power-up, cache contents are undefined; V and M may be
set on some lines even though the cache may not contain the appropriate data for start up.
Because reset and power-up do not invalidate cache lines automatically, the cache should
be cleared explicitly by setting CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way O is
occupied, the cacheable entry is loaded into the same set in way 1, as shown in Figure 4-4
(D). This process is described in detail in Section 4.9, “Cache Operation.”

(M) moToroLA Chapter 4. Local Memory 4-9

'

k 1e Organization

—— Invalid (V=0)
mmm Valid, not modified (V =1, M =0)
=== Valid, modified (V =1, M =1)

A:Cache population at B:Cache after invalidation, C:Cache after loads in D:First load in Way 1
start-up before it is enabled Way 0

Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3

Set 0 .--- .

Set 127
At reset, cache contents Setting CACR[DCINVA] Initial cacheable Alineis Ioa_ded in _
are indeterminate; V and invalidates the entire accesses to memory-fill way 1 only if that set is
M may be set. The cache cache. positions in way 0. full in way 0.

should be cleared
explicitly by setting
CACRI[DCINVA] before
the cache is enabled.

Figure 4-4. Data Cache—A: at Reset, B: after Invalidation, C and D: Loading Pattern

4-10 MCF5407 User’s Manual (M) moToroLa

Cache Operation

4.9 Cache Operation

Figure 4-5 shows the general flow of a caching operation using the 8-Kbyte data cache as
an example. The discussion in this chapter assumes a data cache. Instruction cache
operations are similar except that there is no support for writing to the cache; therefore such
notions of modified cache lines and write allocation do not apply.

Address

31 11 10 430
Way 3
Tag Data/Tag Reference ‘ Index | | Way 2

Set0 TAG |STATUS|LWO|LW1 |LW2|LW3

Set Set 1
Select R < < < <
A[10:4] H . . P

Set 127| TAG |STATUS |LWO|LW1

Address }
A31:11] I i

[¥ Y 3 Line Select
[y y 2 Hita
v Y 1] [Hit2 | .
o] ™— Hit1 | Logical OR [Hit
Comparator — Hit 0 :

Figure 4-5. Data Caching Operation

The following steps determine if a data cache line is allocated for a given address:
1. The cache set index, A[10:4], selects one cache set.

2. A[31:11] and the cache set index are used as a tag reference or are used to update
the cache line tag field. Note that A[31:11] can specify 21 possible addresses that
can be mapped to one of the four ways.

3. The four tags from the selected cache set are compared with the tag reference. A
cache hit occurs if a tag matches the tag reference and the V bit is set, indicating that
the cache line contains valid data. If a cacheable write access hits in a valid cache
line, the write can occur to the cache line without having to load it from memory.

If the memory space is copyback, the updated cache line is marked modified

(M = 1), because the new data has made the data in memory out of date. If the
memory location is write-through, the write is passed on to system memory and the
M bit is never used. Note that the tag does not have TT or TM bits.

(M) moToroLA Chapter 4. Local Memory 4-11

1e Operation

To allocate a cache entry, the cache set index selects one of the cache’s 128 sets. The cache
control logic looks for an invalid cache line to use for the new entry. If none is available,
the cache controller uses a pseudo-round-robin replacement algorithm to choose the line to
be deallocated and replaced. First the cache controller looks for an invalid line, with way 0
the highest priority. If all lines have valid data, a 2-bit replacement counter is used to choose
the way. After a line is allocated, the pointer increments to point to the next way.

Cache lines from ways 0 and 1 can be protected from deallocation by enabling half-cache
locking. If CACR[DHLCK,IHLCK] = 1, the replacement pointer is restricted to way 2 or 3.

As part of deallocation, a valid, unmodified cache line is invalidated. It is consistent with
system memory, so memory does not need to be updated. To deallocate a modified cache
line, data is placed in a push buffer (for an external cache line push) before being
invalidated. After invalidation, the new entry can replace it. The old cache line may be
written after the new line is read.
When a cache line is selected to host a new cache entry, the following three things happen:
1. The new address tag bits A[31:11] are written to the tag.
2. The cache line is updated with the new memory data.

3. The cache line status changes to a valid state (V = 1).
Read cycles that miss in the cache allocate normally as previously described.

Write cycles that miss in the cache do not allocate on a cacheable write-through region, but
do allocate for addresses in a cacheable copyback region.
A copyback byte, word, longword, or line write miss causes the following:

1. The cache initiates a line fill or flush.

2. Space is allocated for a new line.

3. V and M are both set to indicate valid and modified.

4. Data is written in the allocated space. No write to memory occurs.

Note the following:

* Read hits cannot change the status bits and no deallocation or replacement occurs;
the data or instructions are read from the cache.

» If the cache hits on a write access, data is written to the appropriate portion of the
accessed cache line. Write hits in cacheable, write-through regions generate an
external write cycle and the cache line is marked valid, but is never marked modified.
Write hits in cacheable copyback regions do not perform an external write cycle; the
cache line is marked valid and modified (V=1and M = 1).

* Misaligned accesses are broken into at least two cache accesses.

* Validity is provided only on a line basis. Unless a whole line is loaded on a cache
miss, the cache controller does not validate data in the cache line.

4-12 MCF5407 User’s Manual (M) moToroLA

Cache Operation

Write accesses designated as cache-inhibited by the CACR or ACR bypass the cache and
perform a corresponding external write.

Normally, cache-inhibited reads bypass the cache and are performed on the external bus.
The exception to this normal operation occurs when all of the following conditions are true
during a cache-inhibited read:

e The cache-inhibited fill buffer bit, CACR[DNFB], is set.
e The access is an instruction read.

e The access is normal (that is, transfer type (TT) equals 0).

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there, and
the cache can service additional read accesses from this buffer until either another fill or a
cache-invalidate-all operation occurs.

Valid cache entries that match during cache-inhibited address accesses are neither pushed
nor invalidated. Such a scenario suggests that the associated cache mode for this address
space was changed. To avoid this, it is generally recommended to use the CPUSHL
instruction to push or invalidate the cache entry or set CACR[DCINVA] to invalidate the
data cache before switching cache modes.

4.9.1 Caching Modes

For every memory reference generated by the processor or debug module, a set of effective
attributes is determined based on the address and the ACRs. Caching modes determine how
the cache handles an access. A data access can be cacheable in either write-through or
copyback mode; it can be cache-inhibited in precise or imprecise modes. For normal
accesses, the ACRa[CM] bit corresponding to the address of the access specifies the
caching modes. If an address does not match an ACR, the default caching mode is defined
by CACR[DDCM,IDCM]. The specific algorithm is as follows:
if (address == ACR0O-address including mask)

effective attributes = ACRO attributes
else if (address == ACRl-address including mask)

effective attributes = ACR1l attributes

else effective attributes = CACR default attributes
Addresses matching an ACR can also be write-protected using ACR[W]. Addresses that do
not match either ACR can be write-protected using CACR[DW].

Reset disables the cache and clears all CACR bits. As shown in Figure 4-4, reset does not
automatically invalidate cache entries; they must be invalidated through software.

The ACRs allow the defaults selected in the CACR to be overridden. In addition, some
instructions (for example, CPUSHL) and processor core operations perform accesses that
have an implicit caching mode associated with them. The following sections discuss the
different caching accesses and their associated cache modes.

(M) moToroLA Chapter 4. Local Memory 4-13

1e Operation

4.9.1.1 Cacheable Accesses

If ACRn[CM] or the default field of the CACR indicates write-through or copyback, the
access is cacheable. A read access to a write-through or copyback region is read from the
cache if matching data is found. Otherwise, the data is read from memory and the cache is
updated. When a line is being read from memory for either a write-through or copyback
read miss, the longword within the line that contains the core-requested data is loaded first
and the requested data is given immediately to the processor, without waiting for the three
remaining longwords to reach the cache.

The following sections describe write-through and copyback modes in detail. Note that
some of this information applies to data caches only.

4.9.1.2 Write-Through Mode (Data Cache Only)

Write accesses to regions specified as write-through are always passed on to the external
bus, although the cycle can be buffered, depending on the state of CACR[DESB]. Writes in
write-through mode are handled with a no-write-allocate policy —that is, writes that miss
in the cache are written to the external bus but do not cause the corresponding line in
memory to be loaded into the cache. Write accesses that hit always write through to
memory and update matching cache lines. The cache supplies data to data-read accesses
that hit in the cache; read misses cause a new cache line to be loaded into the cache.

4.9.1.3 Copyback Mode (Data Cache Only)

Copyback regions are typically used for local data structures or stacks to minimize external
bus use and reduce write-access latency. Write accesses to regions specified as copyback
that hit in the cache update the cache line and set the corresponding M bit without an
external bus access.

Be sure to flush the cache using the CPUSHL instruction before invalidating the cache in
copyback mode. Modified cache data is written to memory only if the line is replaced
because of a miss or a CPUSHL instruction pushes the line. If a byte, word, longword, or
line write access misses in the cache, the required cache line is read from memory, thereby
updating the cache. When a miss selects a modified cache line for replacement, the
modified cache data moves to the push buffer. The replacement line is read into the cache
and the push buffer contents are then written to memory.

4.9.2 Cache-Inhibited Accesses

Memory regions can be designated as cache-inhibited, which is useful for memory
containing targets such as I/O devices and shared data structures in multiprocessing
systems. It is also important to not cache the MCF5407 memory mapped registers. If the
corresponding ACRn[CM] or CACR[DDCM] indicates cache-inhibited, precise or
imprecise, the access is cache-inhibited. The caching operation is identical for both
cache-inhibited modes, which differ only regarding recovery from an external bus error.

4-14 MCF5407 User’s Manual (M) moToroLa

Cache Operation

In determining whether a memory location is cacheable or cache-inhibited, the CPU checks
memory-control registers in the following order:

1. RAMBARSs

2. ACRO and ACR2
3. ACRI1 and ACR3
4

. If an access does not hit in the RAMBARS or the ACRs, the default is provided for
all accesses in CACR.

Cache-inhibited write accesses bypass the cache and a corresponding external write is
performed. Cache-inhibited reads bypass the cache and are performed on the external bus,
except when all of the following conditions are true:

¢ The cache-inhibited fill-buffer bit, CACR[DNFB], is set.
e The access is an instruction read.

e The access is normal (that is, TT = 0).

In this case, a fetched line is stored in the fill buffer and remains valid there; the cache can
service additional read accesses from this buffer until another fill occurs or a
cache-invalidate-all operation occurs.

If ACRn[CM] indicates cache-inhibited mode, precise or imprecise, the controller bypasses
the cache and performs an external transfer. If a line in the cache matches the address and
the mode is cache-inhibited, the cache does not automatically push the line if it is modified,
nor does it invalidate the line if it is valid. Before switching cache mode, execute a
CPUSHL instruction or set CACR[DCINVA ICINVA] to invalidate the entire cache.

If ACRr[CM] indicates precise mode, the sequence of read and write accesses to the region
is guaranteed to match the instruction sequence. In imprecise mode, the processor core
allows read accesses that hit in the cache to occur before completion of a pending write
from a previous instruction. Writes are not deferred past data-read accesses that miss the
cache (that is, that must be read from the bus).

Precise operation forces data-read accesses for an instruction to occur only once by
preventing the instruction from being interrupted after data is fetched. Otherwise, if the
processor is not in precise mode, an exception aborts the instruction and the data may be
accessed again when the instruction is restarted. These guarantees apply only when
ACRn[CM] indicates precise mode and aligned accesses.

CPU space-register accesses, such as MOVEC, are treated as cache-inhibited and precise.

4.9.3 Cache Protocol

The following sections describe the cache protocol for processor accesses and assumes that
the data is cacheable (that is, write-through or copyback). Note that the discussion of write
operations applies to the data cache only.

(M) moToroLA Chapter 4. Local Memory 4-15

1e Operation

4.9.3.1 Read Miss

A processor read that misses in the cache requests the cache controller to generate a bus
transaction. This bus transaction reads the needed line from memory and supplies the
required data to the processor core. The line is placed in the cache in the valid state.

4.9.3.2 Write Miss (Data Cache Only)

The cache controller handles processor writes that miss in the data cache differently for
write-through and copyback regions. Write misses to copyback regions cause the cache line
to be read from system memory, as shown in Figure 4-6.

1. Writing character X to 0xOB generates a write miss. Data cannot be written to an invalid line.

Cache Line

0XOC 0x08 Ox04 Ox00
MCF5407 [[[[| v

0
0

2. The cache line (characters A—P) is updated from system memory, and line is marked valid.

0x0C 0x08 0x04 0x00

V=1 System
[ABCD]EFGH] IJKL [MNOP| yr Z
] 1§ M=0 Memory

3. After the cache line is filled, the write that initiated the write miss (the character X) completes to 0x0B.

0xOC 0x08 0x04 0x00
MCF5407 [ABCD[EXGH] IJKL [MNOP]

=1
=1

Figure 4-6. Write-Miss in Copyback Mode

The new cache line is then updated with write data and the M bit is set for the line, leaving
it in modified state. Write misses to write-through regions write directly to memory without
loading the corresponding cache line into the cache.

4.9.3.3 Read Hit

On a read hit, the cache provides the data to the processor core and the cache line state
remains unchanged. If the cache mode changes for a specific region of address space, lines
in the cache corresponding to that region that contain modified data are not pushed out to
memory when a read hit occurs within that line. First execute a CPUSHL instruction or set
CACR[DCINVA,ICINVA] before switching the cache mode.

4-16 MCF5407 User’s Manual (M) moToroLa

Cache Operation

4.9.3.4 Write Hit (Data Cache Only)

The cache controller handles processor writes that hit in the data cache differently for
write-through and copyback regions. For write hits to a write-through region, portions of
cache lines corresponding to the size of the access are updated with the data. The data is
also written to external memory. The cache line state is unchanged. For copyback accesses,
the cache controller updates the cache line and sets the M bit for the line. An external write
is not performed and the cache line state changes to (or remains in) the modified state.

4.9.4 Cache Coherency (Data Cache Only)

The MCF5407 provides limited cache coherency support in multiple-master environments.
Both write-through and copyback memory update techniques are supported to maintain
coherency between the cache and memory.

The cache does not support snooping (that is, cache coherency is not supported while
external or DMA masters are using the bus). Therefore, on-chip DMAs of the MCF5407
cannot access local memory and do not maintain coherency with the data cache.

4.9.5 Memory Accesses for Cache Maintenance

The cache controller performs all maintenance activities that supply data from the cache to
the core, including requests to the SIM for reading new cache lines and writing modified
lines to memory. The following sections describe memory accesses resulting from cache
fill and push operations. Chapter 18, “Bus Operation,” describes required bus cycles in
detail.

4.9.5.1 Cache Filling

When a new cache line is required, a line read is requested from the SIM, which generates
a burst-read transfer by indicating a line access with the size signals, SIZ[1:0].

The responding device supplies 4 consecutive longwords of data. Burst operations can be
inhibited or enabled through the burst read/write enable bits (BSTR/BSTW) in the
chip-select control registers (CSCRO-CSCR?7).

SIM line accesses implicitly request burst-mode operations from memory. For more
information regarding external bus burst-mode accesses, see Chapter 18, “Bus Operation.”

The first cycle of a cache-line read loads the longword entry corresponding to the requested
address. Subsequent transfers load the remaining longword entries.

A burst operation is aborted by an a write-protection fault, which is the only possible access
error. Exception processing proceeds immediately. Note that unlike Version 2 and Version 3
access errors, the program counter stored on the exception stack frame points to the faulting
instruction. See Section 2.8.2, “Processor Exceptions.”

(M) moToroLA Chapter 4. Local Memory 4-17

1e Operation

4.9.5.2 Cache Pushes

Cache pushes occur for line replacement and as required for the execution of the CPUSHL
instruction. To reduce the requested data’s latency in the new line, the modified line being
replaced is temporarily placed in the push buffer while the new line is fetched from
memory. After the bus transfer for the new line completes, the modified cache line is written
back to memory and the push buffer is invalidated.

4.9.5.2.1 Push and Store Buffers

The 16-byte push buffer reduces latency for requested new data on a cache miss by holding
a displaced modified data cache line while the new data is read from memory.

If a cache miss displaces a modified line, a miss read reference is immediately generated.
While waiting for the response, the current contents of the cache location load into the push
buffer. When the burst-read bus transaction completes, the cache controller can generate the
appropriate line-write bus transaction to write the push buffer contents into memory.

In imprecise mode, the FIFO store buffer can defer pending writes to maximize
performance. The store buffer can support as many as four entries (16 bytes maximum) for
this purpose.

Data writes destined for the store buffer cannot stall the core. The store buffer effectively
provides a measure of decoupling between the pipeline’s ability to generate writes (one per
cycle maximum) and the external bus’s ability to retire those writes. In imprecise mode,
writes stall only if the store buffer is full and a write operation is on the internal bus. The
internal write cycle is held, stalling the data execution pipeline.

If the store buffer is not used (that is, store buffer disabled or cache-inhibited precise mode),
external bus cycles are generated directly for each pipeline write operation. The instruction
is held in the pipeline until external bus transfer termination is received. Therefore, each
write is stalled for 5 cycles, making the minimum write time equal to 6 cycles when the
store buffer is not used. See Section 2.1.2.2, “Operand Execution Pipeline (OEP).”

The data store buffer enable bit, CACR[DESB], controls the enabling of the data store
buffer. This bit can be set and cleared by the MOVEC instruction. DESB is zero at reset and
all writes are performed in order (precise mode). ACRn[CM] or CACR[DDCM] generates
the mode used when DESB is set. Cacheable write-through and cache-inhibited imprecise
modes use the store buffer.

The store buffer can queue data as much as 4 bytes wide per entry. Each entry matches the
corresponding bus cycle it generates; therefore, a misaligned longword write to a
write-through region creates two entries if the address is to an odd-word boundary. It
creates three entries if it is to an odd-byte boundary —one per bus cycle.

4.9.5.2.2 Push and Store Buffer Bus Operation

As soon as the push or store buffer has valid data, the internal bus controller uses the next
available external bus cycle to generate the appropriate write cycles. In the event that

4-18 MCF5407 User’s Manual (M) moToroLa

Cache Operation

another cache fill is required (for example, cache miss to process) during the continued
instruction execution by the processor pipeline, the pipeline stalls until the push and store
buffers are empty, then generate the required external bus transaction.

Supervisor instructions, the NOP instruction, and exception processing synchronize the
processor core and guarantee the push and store buffers are empty before proceeding. Note
that the NOP instruction should be used only to synchronize the pipeline. The preferred
no-operation function is the TPF instruction.

4.9.6 Cache Locking

Ways 0 and 1 of the data cache can be locked by setting CACR[DHLCK]; likewise, ways
0 and 1 of the instruction cache can be locked by setting CACR[IHLCK]. If a cache is
locked, cache lines in ways O and 1 are not subject to being deallocated by normal cache
operations.

As Figure 4-7 (B and C) shows, the algorithm for updating the cache and for identifying
cache lines to be deallocated is otherwise unchanged. If ways 2 and 3 are entirely invalid,
cacheable accesses are first allocated in way 2. Way 3 is not used until the location in way 2
is occupied.

Ways 0 and 1 are still updated on write hits (D in Figure 4-7) and may be pushed or cleared
only explicitly by using specific cache push/invalidate instructions. However, new cache
lines cannot be allocated in ways O and 1.

(M) moToroLA Chapter 4. Local Memory 4-19

'

k 1e Operation

— Invalid (V=0)
mmm Valid, not modified (V =1, M =0)
=== Valid, modified (V =1, M= 1)

A:Ways 0 and 1 are filled. B:CACR[DHLCK] is set,
Ways 2 and 3 are locking ways 0 and 1.
invalid.

C:When a set in Way 2 is
occupied, the set in way 3
is used for a cacheable

D:Write hits to ways 0
and 1 update cache
lines.

..

Way 0 Way 1 Way 2 Way 3

Way 0 Way 1 Way 2 Way 3

=

access.

Way 0 Way 1 Way 2 Way 3

—= =

Way 0 Way 1 Way 2 Way 3

Set 27I

After reset, the cache is
invalidated, ways 0 and 1
are then written with data
that should not be
deallocated. Ways 0 and 1
can be filled
systematically by using
the INTOUCH instruction.

After CACR[DHLCK] is
set, subsequent cache
accesses go to ways 2
and 3.

While the cache is
locked and after a
position in ways is full,
the set in Way 3 is
updated.

Figure 4-7. Data Cache Locking

MCF5407 User’s Manual

While the cache is
locked, ways 0 and 1 can
be updated by write hits.
In this example, memory
is configured as
copyback, so updated
cache lines are marked
modified.

@ MOTOROLA

Cache Registers

4.10 Cache Registers

This section describes the MCF5407 implementation of the Version 4 cache registers.

4.10.1 Cache Control Register (CACR)

The CACR in Figure 4-8 contains bits for configuring the cache. It can be written by the
MOVEC register instruction and can be read or written from the debug facility. A hardware
reset clears CACR, which disables the cache; however, reset does not affect the tags, state
information, or data in the cache.

31 30 29 28 27 26 25 24 23 20 19 18 17 16
Field DEC‘ DW‘DESB‘DDPI‘DHLCK‘ DDCM ‘DCINVA‘ — ‘BEC‘BCINVA‘ —
Reset 0000_0000_0000_0000

R/W Write (R/W by debug module)

15 14 13 12 11 10 9 8 7 0

Field IEC‘ — ‘DNFB‘ IDPI ‘ IHLCK ‘ IDCM‘ — ‘ ICINVA ‘ —
Reset 0000_0000_0000_0000

R/W Write (R/W by debug module)

Rc 0x002

Figure 4-8. Cache Control Register (CACR)

Table 4-4 describes CACR fields.
Table 4-4. CACR Field Descriptions

Bits Name Description

31 DEC Enable data cache.

0 Cache disabled. The data cache is not operational, but data and tags are preserved.
1 Cache enabled.

30 DW Data default write-protect. For normal operations that do not hit in the RAMBARs or ACRs, this
field defines write-protection. See Section 4.9.1, “Caching Modes.”

0 Not write protected.

1 Write protected. Write operations cause an access error exception.

29 DESB | Enable data store buffer. Affects the precision of transfers. CACR[DESB] has precedence over

CACR[9-8] and ACRn[9-8]; therefore, the store buffer must be disabled to use imprecise mode.

0 Imprecise-mode, write-through or cache-inhibited writes bypass the store buffer and generate
bus cycles directly. Section 4.9.5.2.1, “Push and Store Buffers,” describes the associated
performance penalty.

1 The four-entry FIFO store buffer is enabled; to maximize performance, this buffer defers
pending imprecise-mode, write-through or cache-inhibited writes.

Precise-mode, cache-inhibited accesses always bypass the store buffer. Precise and imprecise

modes are described in Section 4.9.2, “Cache-Inhibited Accesses.”

28 DDPI | Disable CPUSHL invalidation.

0 Normal operation. A CPUSHL instruction causes the selected line to be pushed if modified and
then invalidated.

1 No clear operation. A CPUSHL instruction causes the selected line to be pushed if modified,
then left valid.

(M) moToroLA Chapter 4. Local Memory 4-21

1e Registers

Table 4-4. CACR Field Descriptions (Continued)

Bits

Name

Description

27

DHLCK

Half-data cache lock mode

0 Normal operation. The cache allocates the lowest invalid way. If all ways are valid, the cache
allocates the way pointed at by the counter and then increments this counter modulo-4.

1 Half-cache operation. The cache allocates to the lower invalid way of levels 2 and 3; if both are
valid, the cache allocates to way 2 if the high-order bit of the round-robin counter is zero;
otherwise, it allocates way 3 and increments the round-robin counter modulo-2. This locks the
content of ways 0 and 1. Ways 0 and 1 are still updated on write hits and may be pushed or
cleared by specific cache push/invalidate instructions.

This implementation allows maximum use of available cache memory and provides the flexibility

of setting DHLCK before, during, or after allocations occur.

26-25

DDCM

Default data cache mode. For normal operations that do not hit in the RAMBARSs or ACRs, this
field defines the effective cache mode.

00 Cacheable write-through imprecise

01 Cacheable copyback

10 Cache-inhibited precise

11 Cache-inhibited imprecise

Precise and imprecise accesses are described in Section 4.9.2, “Cache-Inhibited Accesses.”

24

DCINVA

Data cache invalidate all. Writing a 1 to this bit initiates entire cache invalidation. Once
invalidation is complete, this bit automatically returns to O; it is not necessary to clear it explicitly.
Note the caches are not cleared on power-up or normal reset, as shown in Figure 4-4.

0 No invalidation is performed.

1 Initiate invalidation of the entire data cache. The cache controller sequentially clears V and M
bits in all sets. Subsequent data accesses stall until the invalidation is finished, at which point,
this bit is automatically cleared. In copyback mode, the cache should be flushed using a
CPUSHL instruction before setting this bit.

23-20

Reserved, should be cleared.

19

BEC

Enable branch cache. The branch cache is described in Section 2.1.2.1.1, “Branch Acceleration.”
0 Branch cache disabled. This may be useful if code is unlikely to be reused.
1 Branch cache enabled.

18

BCINVA

Branch cache invalidate. Invalidation occurs when this bit is written as a 1. Note that branch
caches are not cleared on power-up or normal reset.

0 No invalidation is performed.

1 Initiate an invalidation of the entire branch cache.

17-16

Reserved. These bits must be cleared; otherwise performance may be affected.

15

IEC

Enable instruction cache
0 Instruction cache disabled. All instructions and tags in the cache are preserved.
1 Instruction cache enabled.

14

Reserved, should be cleared.

13

DNFB

Default cache-inhibited fill buffer

0 Fill buffer does not store cache-inhibited instruction accesses (16 or 32 bits).

1 Fill buffer can store cache-inhibited accesses. The buffer is used only for normal (TT = 0)
instruction reads of a cache-inhibited region. Instructions are loaded into the buffer by a burst
access (line fill). They stay in the buffer until they are displaced; subsequent accesses may not
appear on the external bus.

Setting DNFB can cause a coherency problem for self-modifying code. If a cache-inhibited

access uses the buffer while DNFB = 1, instructions remain valid in the buffer until a

cache-invalidate-all instruction, another cache-inhibited burst, or a miss that initiates a fill. A write

to the line in the fill goes to the external bus without updating or invalidating the buffer.

Subsequent reads of that written data are serviced by the fill buffer and receive stale information.

12

IDPI

Instruction CPUSHL invalidate disable.
0 Normal operation. A CPUSHL instruction causes the selected line to be invalidated.
1 No clear operation. A CPUSHL instruction causes the selected line to be left valid.

4-22

MCF5407 User’s Manual (M) moToroLa

Cache Registers

Table 4-4. CACR Field Descriptions (Continued)

Bits Name Description

11 IHLCK Instruction cache half-lock.

0 Normal operation. The cache allocates to the lowest invalid way; if all ways are valid, the cache
allocates to the way pointed at by the round-robin counter and then increments this counter
modulo-4.

Half cache operation. The cache allocates to the lowest invalid way of ways 2 and 3; if both of
these ways are valid, the cache allocates to way 2 if the high-order bit of the round-robin
counter is zero; otherwise, it allocates way 3 and then increments the round-robin counter
modulo-2. This locks the content of ways 0 and 1. Ways 0 and 1 are still updated on write hits
and may be pushed or cleared by specific cache push/invalidate instructions.

This implementation allows maximum use of the available cache memory and also provides the
flexibility of setting IHLCK before, during, or after the needed allocations occur.

-y

10 IDCM Instruction default cache mode. For normal operations that do not hit in the RAMBARSs or ACRs,
this field defines the effective cache mode.
0 Cacheable
1 Cache-inhibited

9 — Reserved, should be cleared.

8 ICINVA | Instruction cache invalidate. Invalidation occurs when this bit is written as a 1. Note the caches

are not cleared on power-up or normal reset.

0 No invalidation is performed.

1 Initiate invalidation of instruction cache. The cache controller sequentially clears all V bits.
Subsequent local memory bus accesses stall until invalidation completes, at which point,
ICINVA is cleared automatically without software intervention. For copyback mode, use
CPUSHL before setting ICINVA.

7-0 — Reserved. These bits must be cleared; otherwise, performance may be affected.

4.10.2 Access Control Registers (ACR0-ACR3)

The ACRs, Figure 4-9, assign control attributes, such as cache mode and write protection,
to specified memory regions. ACRO and ACRI1 control data attributes; ACR2 and ACR3
control instruction attributes. Registers are accessed with the MOVEC instruction with the
Rc encodings in Figure 4-9.

For overlapping data regions, ACRO takes priority; ACR2 takes priority for overlapping
instruction regions. Data transfers to and from these registers are longword transfers. Bits
12-7,4,3, 1, and O are always read as zeros.

NOTE:

The SIM MBAR region should be mapped as cache-inhibited
through an ACR.

(M) moToroLA Chapter 4. Local Memory 4-23

1e Management

Field

Reset

31 24 23 16 15 14 13 12 7 6 5 4 3 2 1 0
Address Base Address Mask E| S — ‘ CM ‘ — ‘W1‘ —
Uninitialized 0 Uninitialized

R/W

Write (R/W by debug module)

Rc

ACRO: 0x004; ACR1: 0x005; ACR2: 0x006; ACR3: 0x007

1 Reserved in ACR2 and ACR3.

Figure 4-9. Access Control Register Format (ACRn)

Table 4-5 describes ACRn fields.

Table 4-5. ACRn Field Descriptions

Bits

Name

Description

31-24

Address
base

Address base. Compared with address bits A[31:24]. Eligible addresses that match are
assigned the access control attributes of this register.

23-16

Address
mask

Address mask. Setting a mask bit causes the corresponding address base bit to be ignored.
The low-order mask bits can be set to define contiguous regions larger than 16 Mbytes. The
mask can define multiple noncontiguous regions of memory.

Enable. Enables or disables the other ACRn bits.
0 Access control attributes disabled
1 Access control attributes enabled

14-13

Supervisor mode. Specifies whether only user or supervisor accesses are allowed in this
address range or if the type of access is a don’t care.

00 Match addresses only in user mode

01 Match addresses only in supervisor mode

1x Execute cache matching on all accesses

Reserved; should be cleared.

CM

Cache mode. Selects the cache mode and access precision. Precise and imprecise modes are
described in Section 4.9.2, “Cache-Inhibited Accesses.”

00 Cacheable, write-through

01 Cacheable, copyback

10 Cache-inhibited, precise

11 Cache-inhibited, imprecise

Reserved, should be cleared.

ACRO/ACRT1 only. Write protect. Selects the write privilege of the memory region. ACR2[2] and
ACRB3[2] are reserved.

0 Read and write accesses permitted

1 Write accesses not permitted

1-0

Reserved, should be cleared.

4.11 Cache Management

The cache can be enabled and configured by using a MOVEC instruction to access CACR.
A hardware reset clears CACR, disabling the cache and removing all configuration
information; however, reset does not affect the tags, state information, and data in the cache.

Set CACR[DCINVA,ICINVA] to invalidate the caches before enabling them.

4-24

MCF5407 User’s Manual (M) moToroLA

Cache Management

The privileged CPUSHL instruction supports cache management by selectively pushing
and invalidating cache lines. The address register used with CPUSHL directly addresses the
cache’s directory array. The CPUSHL instruction flushes a cache line.

The value of CACR[DDPLIDPI] determines whether CPUSHL invalidates a cache line
after it is pushed. To push the entire cache, implement a software loop to index through all
sets and through each of the four lines within each set (a total of 512 lines for the data cache
and 1024 lines for the instruction cache). The state of CACR[DEC,IEC] does not affect the
operation of CPUSHL or CACR[DCINVA,ICINVA]. Disabling a cache by setting
CACRIIEC] or CACR[DEC] makes the cache nonoperational without affecting tags, state
information, or contents.

The contents of An used with CPUSHL specify cache row and line indexes. This differs
from the MC68040 where a physical address is specified. Figure 4-11 shows the An format
for the data cache.

31 11 10 4 3 0

0 Set Index ‘ Line Index

Figure 4-10. An Format (Data Cache)

Figure 4-11 shows the An format for the instruction cache.

31 12 1 4 3 0
0 Set Index ‘ Line Index

Figure 4-11. An Format (Instruction Cache)

The following code example flushes the entire data cache:

_cache_disable:

nop
move.w #0x2700, SR ;mask off IRQs

jsr _cache_flush ;flush the cache completely
clr.1l do

movec d0,ACRO ;ACRO off

movec d0,ACR1 ;ACR1 off

move.l #0x01000000,d0 ;Invalidate and disable cache
movec d0,CACR

rts

_cache_flush:

nop ;synchronize—flush store buffer

moveq.1l #0,d0 ;initialize way counter

moveq.1l #0,d1 ;initialize set counter

move.l do,a0 ;initialize cpushl pointer
setloop:

cpushl dc, (a0) ;jpush cache line a0

add.1l #0x0010,a0 ;increment set index by 1

addg.l #1,d1 ;increment set counter

cmpi.l #128,d1 ;are sets for this way done?

bne setloop

moveq.l #0,d1 ;set counter to zero again

(M) moToroLA Chapter 4. Local Memory 4-25

1e Management

addg.1l #1,d0 ;increment to next way
move.l do, a0 ;set = 0, way = dO
cmpi.l #4 ,d0 ;flushed all the ways?
bne setloop

rts

The following CACR loads assume the instruction cache has been invalidated, the default
instruction cache mode is cacheable, and the default data cache mode is copyback.

dataCacheLoadAndLock:

move.l #0xa3080800,d0; enable and invalidate data cache ...
movec d0,cacr ; ... in the CACR

The following code preloads half of the data cache (4 Kbytes). It assumes a contiguous
block of data is to be mapped into the data cache, starting at a 0-modulo-4K address.

move.l #256,d0 ;256 16-byte lines in 4K space

lea data_,a0 ; load pointer defining data area
dataCacheLoop:

tst.b (a0) ;touch location + load into data cache

lea 16(a0),a0 ;increment address to next line

subg.l #1,d0 ;decrement loop counter

bne.b dataCacheLoop ;if done, then exit, else continue

; A 4K region has been loaded into levels 0 and 1 of the 8K data cache. lock it!

move.l #0xaa088000,d0 ;set the data cache lock bit

movec d0,cacr s ... in the CACR
rts
align 16

The following CACR loads assume the data cache has been invalidated, the default
instruction cache mode is cacheable and the default operand cache mode is copyback.

Note that this function must be mapped into a cache inhibited or SRAM space or these text
lines will be prefetched into the instruction cache, which may displace some of the 8-Kbyte
space being explicitly fetched.

instructionCacheLoadAndLock:
move.l #0xa2088100,d0 ;enable and invalidate the instruction

movec d0,cacr ;cache in the CACR

The following code segments preload half of the instruction cache (8 Kbytes). It assumes a
contiguous block of data is to be mapped, starting at a 0-modulo-8K address

move.l #512,d0 ;512 16-byte lines in 8K space

lea code_,a0 ;load pointer defining code area
instCacheLoop:
; intouch (a0) ;touch location + load into instruction cache

; Note in the assembler we use, there is no INTOUCH opcode. The following
; is used to produce the required binary representation

cpushl #nc, (a0) ;touch location + load into

4-26 MCF5407 User’s Manual (M) moToroLA

Cache Operation Summary

;instruction cache

lea 16(a0),a0 ;increment address to next line
subg.l #1,d0 ;decrement loop counter
bne.b instCacheLoop ;if done, then exit, else continue

; A 8K region was loaded into levels 0 and 1 of the 16-Kbyte instruction cache.
; lock it!

move.l #0xa2088800,d0 ;set the instruction cache lock bit
movec d0,cacr ;in the CACR
rts

4.12 Cache Operation Summary

This section gives operational details for the cache and presents instruction and data
cache-line state diagrams.

4.12.1 Instruction Cache State Transitions

Because the instruction cache does not support writes, it supports fewer operations than the
data cache. As Figure 4-12 shows, an instruction cache line can be in one of two states, valid
or invalid. Modified state is not supported. Transitions are labeled with a capital letter
indicating the previous state and with a number indicating the specific case listed in
Table 4-6. These numbers correspond to the equivalent operations on data caches,
described in Section 4.12.2, “Data Cache State Transitions.”

115—ICINVA i
IV1—CPU read miss
116—CPUSHL & IDPI IV2—CPU read hit

1I7—CPUSHL & IDPI IV7—CPUSHL & IDPI

111—CPU read miss

Invalid
V=0

IV5—ICINVA
IV6—CPUSHL & IDPI

Figure 4-12. Instruction Cache Line State Diagram

Table 4-6 describes the instruction cache state transitions shown in Figure 4-12.

Table 4-6. Instruction Cache Line State Transitions

Current State
Access
Invalid (V = 0) Valid (V=1)

Read miss |llI1 |Read line from memory and update cache; | IV1 | Read new line from memory and update cache;

supply data to processor; supply data to processor; stay in valid state.

go to valid state.
Read hit 112 | Not possible IV2 | Supply data to processor;

stay in valid state.

Write miss | 113 | Not possible IV3 | Not possible
Write hit 114 | Not possible IV4 | Not possible

(M) moToroLA Chapter 4. Local Memory 4-27

1e Operation Summary

Table 4-6. Instruction Cache Line State Transitions (Continued)

Current State
Acce
Invalid (V = 0) Valid (V=1)

Cache 115 | No action; IV5 | No action;
invalidate stay in invalid state. go to invalid state.

Cache 116, | No action; IV6 | No action;
push 117 |stay in invalid state. go to invalid state.

IV7 | No action;
stay in valid state.

4.12.2 Data Cache State Transitions

Using the V and M bits, the data cache supports a line-based protocol allowing individual
cache lines to be invalid, valid, or modified. To maintain memory coherency, the data cache
supports both write-through and copyback modes, specified by the corresponding
ACR[CM], or CACR[DDCM] if no ACR matches.

Read or write misses to copyback regions cause the cache controller to read a cache line
from memory into the cache. If available, tag and data from memory update an invalid line
in the selected set. The line state then changes from invalid to valid by setting the V bit. If
all lines in the row are already valid or modified, the pseudo-round-robin replacement
algorithm selects one of the four lines and replaces the tag and data. Before replacement,
modified lines are temporarily buffered and later copied back to memory after the new line
has been read from memory.

Figure 4-13 shows the three possible data cache line states and possible processor-initiated
transitions for memory configured as copyback. Transitions are labeled with a capital letter
indicating the previous state and a number indicating the specific case listed in Table 4-7.

CV1—CPU read miss
CV2—CPU read hit
CV7—CPUSHL & DDPI

CI5—DCINVA
Cl6—CPUSHL & DDPI
CI7—CPUSHL & DDPI

CI1—CPU read miss

CV5—DCINVA

CV6—CPUSHL & DDPI
CI3—CPU
write miss

CD1—CPU
read miss

CD5—DCINVA

CD6—CPUSHL & DDP!I CV3—CPU write miss

CV4—CPU write hit

CD2—CPU read hit
CD3—CPU write miss
CD4—CPU write hit

Figure 4-13. Data Cache Line State Diagram—Copyback Mode

4-28 MCF5407 User’s Manual (M) moToroLa

Cache Operation Summary

Figure 4-14 shows the two possible states for a cache line in write-through mode.

WI3—CPU write miss
WI5—DCINVA
WI6—CPUSHL & DDPI
WI7—CPUSHL & DDPI

WI1—CPU read miss

WV5—DCINVA
WV6—CPUSHL & DDPI

WV1—CPU read miss
WV2—CPU read hit
WV3—CPU write miss
WV4—CPU write hit
WV7—CPUSHL & DDPI

Figure 4-14. Data Cache Line State Diagram—Write-Through Mode

Table 4-7 describes data cache line transitions and the accesses that cause them.

Table 4-7. Data Cache Line State Transitions

Current State
Acce
Invalid (V = 0) Valid (V=1,M=0) Modified (V=1,M=1)
Read (C,W)I1 | Read line from (C,W)V1 | Read new line from CD1 | Push modified line to
miss memory and update memory and update buffer;
cache; cache; read new line from memory
supply data to supply data to processor; and update cache;
processor; stay in valid state. supply data to processor;
go to valid state. write push buffer contents
to memory;
go to valid state.
Read hit | (C,W)I2 | Not possible. (C,W)V2 | Supply data to processor; | CD2 | Supply data to processor;
stay in valid state. stay in modified state.
Write CI3 Read line from CV3 Read new line from CD3 | Push modified line to
miss memory and update memory and update buffer;
(copy- cache; cache; read new line from memory
back) write data to cache; write data to cache; and update cache;
go to modified state. go to modified state. write push buffer contents
to memory;
stay in modified state.
Write WI3 Write data to WV3 Write data to memory; WD3 | Write data to memory;
miss memory; stay in valid state. stay in modified state.
(write- stay in invalid state. Cache mode changed for
through) the region corresponding to
this line. To avoid this state,
execute a CPUSHL
instruction or set
CACRI[DCINVA,ICINVA]
before switching modes.
Write hit | Cl4 Not possible. Cv4 Write data to cache; CD4 | Write data to cache;
(copy- go to modified state. stay in modified state.
back)
@ MOTOROLA Chapter 4. Local Memory 4-29

1e Operation Summary

Table 4-7. Data Cache Line State Transitions (Continued)

Current State

Acce
Invalid (V = 0) Valid (V=1,M=0) Modified (V=1,M=1)
Write hit |WI4 Not possible. WV4 Write data to memory and | WD4 | Write data to memory and
(write- to cache; to cache;
through) stay in valid state. go to valid state.
Cache mode changed for
the region corresponding to
this line. To avoid this state,
execute a CPUSHL
instruction or set
CACRI[DCINVA,ICINVA]
before switching modes.
Cache (C,W)I5 | No action; (C,W)V5 | No action; CD5 |No action (modified data
invalidate stay in invalid state. go to invalid state. lost);
go to invalid state.
Cache (C,W)I6 | No action; (C,W)V6 | No action; CD6 | Push modified line to
push (C,W)I7 | stay in invalid state. go to invalid state. memory;
go to invalid state.
(C,W)V7 | No action; CD7 | Push modified line to
stay in valid state. memory;
go to valid state.

The following tables present the same information as Table 4-7, organized by the current
state of the cache line. In Table 4-8 the current state is invalid.

Table 4-8. Data Cache Line State Transitions (Current State Invalid)

stay in invalid state.

Access Response

Read miss (C,W)I1 | Read line from memory and update cache;
supply data to processor;
go to valid state.

Read hit (C,W)I2 | Not possible

Write miss (copyback) CI3 Read line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) | WI3 Write data to memory;
stay in invalid state.

Write hit (copyback) Cl4 Not possible

Write hit (write-through) Wi4 Not possible

Cache invalidate (C,W)I5 | No action;
stay in invalid state.

Cache push (C,W)I6 | No action;
stay in invalid state.

Cache push (C,W)I7 | No action;

In Table 4-9 the current state is valid.

4-30

MCF54

07 User’s Manual

@ MOTOROLA

Cache Operation Summary

Table 4-9. Data Cache Line State Transitions (Current State Valid)

Access Response
Read miss (C,W)V1 | Read new line from memory and update cache;
supply data to processor; stay in valid state.
Read hit (C,W)V2 | Supply data to processor;
stay in valid state.
Write miss (copyback) Cv3 Read new line from memory and update cache;
write data to cache;
go to modified state.
Write miss (write-through) | WV3 Write data to memory;
stay in valid state.
Write hit (copyback) Cv4 Write data to cache;
go to modified state.
Write hit (write-through) Wv4 Write data to memory and to cache;
stay in valid state.
Cache invalidate (C,W)V5 | No action;
go to invalid state.
Cache push (C,W)V6 | No action;
go to invalid state.
Cache push (C,W)V7 | No action;
stay in valid state.

In Table 4-10 the current state is modified.
Table 4-10. Data Cache Line State Transitions (Current State Modified)

(write-through)

Access Response
Read miss CD1 | Push modified line to buffer;
read new line from memory and update cache;
supply data to processor;
write push buffer contents to memory;
go to valid state.
Read hit CD2 | Supply data to processor;
stay in modified state.
Write miss CD3 | Push modified line to buffer;
(copyback) read new line from memory and update cache;
write push buffer contents to memory;
stay in modified state.
Write miss WD3 | Write data to memory;
(write-through) stay in modified state.
Cache mode changed for the region corresponding to this line. To avoid this state,
execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.
Write hit CD4 | Write data to cache;
(copyback) stay in modified state.
Write hit WD4 | Write data to memory and to cache;

go to valid state.
Cache mode changed for the region corresponding to this line. To avoid this state,
execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.

@ MOTOROLA

Chapter 4. Local Memory 4-31

1e Initialization Code

Table 4-10. Data Cache Line State Transitions (Current State Modified) (Continued)

Access Response
Cache invalidate CD5 | No action (modified data lost);
go to invalid state.
Cache push CD6 | Push modified line to memory;
go to invalid state.
Cache push CD7 | Push modified line to memory;

go to valid state.

4.13 Cache Initialization Code
The following example sets up the cache for FLASH or ROM space only.

move.l#0xA30C8100,D0 //enable cache, invalidate it,

movecDO,

CACR

//default mode is cache-inhibited imprecise

move.l #0xXFF00C000,D0//cache FLASH space, enable,

movecDO,ACRO

4-32

//ignore FC2, cacheable, writethrough

MCF5407 User’s Manual (M) moToroLA

Chapter 5
Debug Support

This chapter describes the Revision C enhanced hardware debug support in the MCF5407.
This revision of the ColdFire debug architecture encompasses the two earlier revisions.

5.1 Overview

The debug module is shown in Figure 5-1.

High-speed

L local bus

’ ColdFire CPU Core 7y

'

Debug Module

.

Control Trace Port Communication Port
BKPT PSTDDATA[7:0] DSCLK, DSI, DSO
PSTCLK

Figure 5-1. Processor/Debug Module Interface

Debug support is divided into three areas:

Real-time trace support—The ability to determine the dynamic execution path
through an application is fundamental for debugging. The ColdFire solution
implements an 8-bit parallel output bus that reports processor execution status and
data to an external emulator system. See Section 5.3, “Real-Time Trace Support.”

Background debug mode (BDM)—Provides low-level debugging in the ColdFire
processor complex. In BDM, the processor complex is halted and a variety of
commands can be sent to the processor to access memory and registers. The external
emulator uses a three-pin, serial, full-duplex channel. See Section 5.5, “Background
Debug Mode (BDM),” and Section 5.4, “Programming Model.”

Real-time debug support—BDM requires the processor to be halted, which many
real-time embedded applications cannot do. Debug interrupts let real-time systems
execute a unique service routine that can quickly save the contents of key registers
and variables and return the system to normal operation. The emulator can access
saved data because the hardware supports concurrent operation of the processor and
BDM-initiated commands. See Section 5.6, “Real-Time Debug Support.”

(M) moToroLA Chapter 5. Debug Support 5-1

1al Descriptions

The Version 2 ColdFire core implemented the original debug architecture, now called
Revision A. Based on feedback from customers and third-party developers, enhancements
have been added to succeeding generations of ColdFire cores. The Version 3 core
implements the Revision B of the debug architecture, providing more flexibility for
configuring the hardware breakpoint trigger registers and removing the restrictions
involving concurrent BDM processing while hardware breakpoint registers are active.

The MCF5407 core implements Revision C of the debug architecture, which more than
doubles the on-chip breakpoint registers and provides an ability to interrupt debug service
routines. For Revision C, the revision level bit, CSR[HRL], is 2. See Section 5.4.4,
“Configuration/Status Register (CSR).”

5.2 Signal Descriptions

Table 5-1 describes debug module signals. All ColdFire debug signals are unidirectional
and related to a rising edge of the processor core’s clock signal. The standard 26-pin debug
connector is shown in Section 5.7, “Motorola-Recommended BDM Pinout.”

Table 5-1. Debug Module Signals

Signal Description

Development Serial | Internally synchronized input that clocks the serial communication port to the debug module.
Clock (DSCLK) Maximum frequency is 1/5 the processor CLK speed. At the synchronized rising edge of
DSCLK, the data input on DSl is sampled and DSO changes state. The logic level on DSCLK is
validated if it has the same value on two consecutive rising CLKIN edges.

Development Serial | Internally synchronized input that provides data input for the serial communication port to the
Input (DSI) debug module.

Development Serial | Provides serial output communication for debug module responses. DSO is registered
Output (DSO) internally.

Breakpoint (BKPT) | Used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state
after the current instruction completes. Halt status is reflected on processor status/debug data
signals (PSTDDATA[7:0]) as the value OxF. If CSR[BKD] is set (disabling normal BKPT
functionality), asserting BKPT generates a debug interrupt exception in the processor.

Processor Status Half-speed version of the processor clock. Its rising edge appears in the center of the two
Clock (PSTCLK) processor-cycle window of valid PSTDDATA output. See Figure 5-2. Because debug trace port
signals change on alternate processor cycles and are unrelated to external bus frequency,
PSTCLK helps the development system sample PSTDDATA values.

If real-time trace is not used, setting CSR[PCD] keeps PSTCLK and PSTDDATA outputs from
toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing
CSRI[PCD], although the emulator must resynchronize with the PSTDDATA output.

PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs
during system reset exception processing. Table 5-4 describes PST values. Chapter 7,
“Phase-Locked Loop (PLL),” describes PSTCLK generation.

Processor These outputs indicate both processor status and captured address and data values and are
Status/Debug Data | discussed more thoroughly in Section 5.2.1, “Processor Status/Debug Data (PSTDDATA[7:0]).
(PSTDDATA[7:0])

5-2 MCF5407 User’s Manual (M) moToroLa

Signal Descriptions

Figure 5-2 shows PSTCLK timing.

| | | | |

- | | | | i
i«

| | |

PSTDDATA J\>< J\>< >< >< ><

Figure 5-2. PSTCLK Timing

5.2.1 Processor Status/Debug Data (PSTDDATA[7:0])

Processor status data outputs are used to indicate both processor status and captured address
and data values. They operate at half the processor’s frequency. Given that real-time trace
information appears as a sequence of 4-bit data values, there are no alignment restrictions;
that is, the processor status (PST) values and operands may appear on either nibble of
PSTDDATA([7:0]. The upper nibble (PSTDDATA([7:4]) is the most significant.

CSR controls capturing of data values. Executing the WDDATA instruction captures data
displayed on PSTDDATA. These signals are updated each processor cycle and displayed
two values at a time for two processor clock cycles. Table 5-2 shows the PSTDDATA output
for the processor’s sequential execution of single-cycle instructions (A, B, C, D...). Cycle
counts are shown relative to processor frequency. These outputs indicate the current
processor pipeline status and are not related to the current bus transfer.

Table 5-2. PSTDDATA: Sequential Execution of Single-Cycle Instructions

Cycle PSTDDATA[7:0]
T {PST for A, PST for B}
T+1 {PST for A, PST for B}
T+2 {PST for C, PST for D}
T+3 {PST for C, PST for D}
T+4 {PST for E, PST for F}
T+5 {PST for E, PST for F}

The signal timing for the example in Table 5-2 is shown in Figure 5-3.

| [L[

PSTDDATA >< {A, B} >< {C, D} {E, F} ><
Figure 5-3. PSTDDATA: Single-Cycle Instruction Timing

(M) moToroLA Chapter 5. Debug Support 5-3

3
4

'
A

-Time Trace Support

Table 5-3 shows the case where a PSTDDATA module captures a memory operand on a
simple load instruction: mov.l <mem>,Rx.

Table 5-3. PSTDDATA: Data Operand Captured

Cycle PSTDDATA[7:0]
T {PST for mov.l, PST marker for captured operand) = {Ox1, OxB}

T+1 {Ox1, 0xB}

T+2 {Operand[3:0], Operand[7:4]}

T+3 {Operand[3:0], Operand[7:4]}

T+4 {Operand[11:8], Operand[15:12]}

T+5 {Operand[11:8], Operand[15:12]}

T+6 {Operand[19:16], Operand[23:20]}

T+7 {Operand[19:16], Operand[23:20]}

T+8 {Operand[27:24], Operand[31:28]}

T+9 {Operand[27:24], Operand[31:28]}

T+10 (PST for next instruction)

T+11 (PST for next instruction,...)

A PST marker and its data display are transmitted contiguously. Except for this
transmission, the IDLE status (0x0) may appear any time. Again, given the real-time trace
information appears as a sequence of 4-bit values, there are no alignment restrictions. That
is, PST values and operands may appear on either nibble of PSTDDATA.

5.3 Real-Time Trace Support

Real-time trace, which defines the dynamic execution path, is a fundamental debug
function. The ColdFire solution is to include a parallel output port providing encoded
processor status and data to an external development system. This 8-bit port is partitioned
into two consecutive 4-bit nibbles. Each nibble can either transmit information concerning
the processor’s execution status (PST) or debug data (DDATA). The processor status may
not be related to the current bus transfer.

External development systems can use PSTDDATA outputs with an external image of the
program to completely track the dynamic execution path. This tracking is complicated by
any change in flow, especially when branch target address calculation is based on the
contents of a program-visible register (variant addressing). PSTDDATA outputs can be
configured to display the target address of such instructions in sequential nibble increments
across multiple processor clock cycles, as described in Section 5.3.1, “Begin Execution of
Taken Branch (PST = 0x5).” Four 32-bit storage elements form a FIFO buffer connecting
the processor’s high-speed local bus to the external development system through
PSTDDATA[7:0]. The buffer captures branch target addresses and certain data values for
eventual display on the PSTDDATA port, two nibbles at a time starting with the Isb.

5-4 MCF5407 User’s Manual (M) moToroLa

Real-Time Trace Support

Execution speed is affected only when three storage elements have valid data to be dumped
to the PSTDDATA port. This occurs only when two values are captured simultaneously in
a read-modify-write operation; the core stalls until two FIFO entries are available.

Table 5-4 shows the encoding of these signals.

Table 5-4. Processor Status Encoding

PST[3:0]

Hex

Binary

Definition

0x0

0000

Continue execution. Many instructions execute in one processor cycle. If an instruction requires more
clock cycles, subsequent clock cycles are indicated by driving PSTDDATA outputs with this encoding.

0x1

0001

Begin execution of one instruction. For most instructions, this encoding signals the first clock cycle of
an instruction’s execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA instructions,
generate different encodings.

0x2

0010

Begin execution of two instructions. For superscalar instruction dispatches, this encoding signals the
first clock cycle of the simultaneous instructions’ execution.

0x3

0011

Entry into user-mode. Signaled after execution of the instruction that caused the MCF5407 to enter
user mode.

0x4

0100

Begin execution of PULSE and WDDATA instructions. PULSE defines logic analyzer triggers for debug
and/or performance analysis. WDDATA lets the core write any operand (byte, word, or longword)
directly to the PSTDDATA port, independent of debug module configuration. When WDDATA is
executed, a value of 0x4 is signaled, followed by the appropriate marker, and then the data transfer on
the PSTDDATA port. Transfer length depends on the WDDATA operand size.

0x5

0101

Begin execution of taken branch. For some opcodes, a branch target address may be displayed on
PSTDDATA depending on the CSR settings. CSR also controls the number of address bytes displayed,
indicated by the PST marker value preceding the DDATA nibble that begins the data output. See
Section 5.3.1, “Begin Execution of Taken Branch (PST = 0x5).”

0x6

0110

Begin execution of instruction plus a taken branch. The processor completes execution of a taken
conditional branch instruction and simultaneously starts executing the target instruction. This is
achieved through branch folding.

0x7

0111

Begin execution of return from exception (RTE) instruction.

0x8—
0xB

1000-
1011

Indicates the size of the next consecutive nibbles. The encoding is driven onto the PSTDDATA port one
clock cycle before the data is displayed on PSTDDATA.

0x8 Begin 1-byte transfer on PSTDDATA.

0x9 Begin 2-byte transfer on PSTDDATA.

0xA Begin 3-byte transfer on PSTDDATA.

0xB Begin 4-byte transfer on PSTDDATA.

0xC

1100

Exception processing. Exceptions that enter emulation mode (debug interrupt or optionally trace)
generate a different encoding, 0xD. Because the 0xC encoding defines a multiple-cycle mode,
PSTDDATA outputs are driven with 0xC until exception processing completes.

0oxD

1101

Entry into emulator mode. Displayed during emulation mode (debug interrupt or optionally trace).
Because this encoding defines a multiple-cycle mode, PSTDDATA outputs are driven with 0xD until
exception processing completes.

OxE

1110

A breakpoint state change causes this encoding to assert for one cycle only followed by the trigger
status value. If the processor stops waiting for an interrupt, the encoding is asserted for multiple cycles.
See Section 5.3.2, “Processor Stopped or Breakpoint State Change (PST = OxE)”

OxF

1111

Processor is halted. See Section 5.3.3, “Processor Halted (PST = 0xF).”

(M) moToroLA Chapter 5. Debug Support 5-5

-Time Trace Support

5.3.1 Begin Execution of Taken Branch (PST = 0x5)

PST is 0x5 when a taken branch is executed. For some opcodes, a branch target address may
be displayed on PSTDDATA depending on the CSR settings. CSR also controls the number
of address bytes displayed, which is indicated by the PST marker value immediately
preceding the DDATA nibble that begins the data output.

Bytes are displayed in least-to-most-significant order. The processor captures only those
target addresses associated with taken branches which use a variant addressing mode, that
is, RTE and RTS instructions, JMP and JSR instructions using address register indirect or
indexed addressing modes, and all exception vectors.

The simplest example of a branch instruction using a variant address is the compiled code
for a C language case statement. Typically, the evaluation of this statement uses the variable
of an expression as an index into a table of offsets, where each offset points to a unique case
within the structure. For such change-of-flow operations, the MCF5407 uses the debug pins
to output the following sequence of information on successive processor clock cycles:

1. Use PSTDDATA (0x5) to identify that a taken branch was executed.

2. Optionally signal the target address to be displayed sequentially on the PSTDDATA

pins. Encodings 0x9-0xB identify the number of bytes displayed.

3. The new target address is optionally available on subsequent cycles using the
PSTDDATA port. The number of bytes of the target address displayed on this port
is configurable (2, 3, or 4 bytes).

Another example of a variant branch instruction would be a JMP (AO) instruction.
Figure 5-4 shows when the PSTDDATA outputs that indicate when a JMP (AO) executed,
assuming the CSR was programmed to display the lower 2 bytes of an address.

R s N s H e

PSTDDATA >< 0x59 >< AO[3-0,7-4] AO[11-8,15-12] ><
Figure 5-4. Example JMP Instruction Output on PSTDDATA

PSTDDATA is driven two nibbles at a time with a 0x59; 0x5 indicates a taken branch and
the marker value 0x9 indicates a 2-byte address. Thus, the remaining 4 nibbles display the
lower 2 bytes of address register AO in least-to-most-significant nibble order. The
PSTDDATA output after the JMP instruction continues with the next instruction.

5-6 MCF5407 User’s Manual (M) moToroLa

Real-Time Trace Support

5.3.2 Processor Stopped or Breakpoint State Change
(PST = 0xE)

The OxE encoding is generated either as a one- or multiple-cycle issue as follows:

e When the MCF5407 is stopped by a STOP instruction, this encoding appears in
multiple-cycle format. The ColdFire processor remains stopped until an interrupt
occurs, thus PSTDDATA outputs display OxE until stopped mode is exited.

* When a breakpoint status change is to be output on PSTDDATA, OxE is displayed
for one cycle, followed immediately with the 4-bit value of the current trigger status,
where the trigger status is left justified rather than in the CSR[BSTAT] description.
Section 5.4.4, “Configuration/Status Register (CSR),” shows that status is right
justified. That is, the displayed trigger status on PSTDDATA after a single OxE is as
follows:

— 0x0 = no breakpoints enabled

— 0x2 = waiting for level-1 breakpoint
— 0x4 =level-1 breakpoint triggered
— O0xA = waiting for level-2 breakpoint
— 0xC = level-2 breakpoint triggered

Thus, OxE can indicate multiple events, based on the next value, as Table 5-5 shows.
Table 5-5. OxE Status Posting

PSTDDATA Stream Includes Result
{OxE, 0x2} Breakpoint state changed to waiting for level-1 trigger
{OxE, 0x4} Breakpoint state changed to level-1 breakpoint triggered
{OxE, OxA} Breakpoint state changed to waiting for level-2 trigger
{OxE, 0xC} Breakpoint state changed to level-2 breakpoint triggered
{OxE, OxE} The MCF5407 is in stopped mode.

5.3.3 Processor Halted (PST = OxF)

PST is OxF when the processor is halted (see Section 5.5.1, “CPU Halt”). Because this
encoding defines a multiple-cycle mode, the PSTDDATA outputs display OxF until the
processor is restarted or reset.

HALT can be distinguished from a data output OxFF by counting OxFF occurrences on
PSTDDATA. Because data always follows a marker (0x8, 0x9, 0xA, or 0xB), the longest
occurrence in PSTDDATA of OxFF, in a data output, is four OxFFs.

(M) moToroLA Chapter 5. Debug Support 5-7

3
4

y
A

jramming Model

Two scenarios exist for data—OxFFFF_FFFF

¢ A B marker occurs on the left nibble of PSTDDATA with the data of OXFF
following:

PSTDDATA[7:0]

0xBF

O0xFF

O0xFF

O0xFF

0xFX (X indicates that the next PST value is guaranteed to not be OxF.)

* A B marker occurs on the right nibble of PSTDDATA with the data of OxFF
following:

PSTDDATA[7:0]

0xYB

OxFF

OxFF

OxFF

OxFF

0xXY (X indicates the PST value is guaranteed not to be OxF, and Y signifies a
PSTDDATA value that doesn’t affect the OXFF count.)

Thus, a count of either nine or more sequential single OxF values or five or more sequential
OxFF values signifies the HALT condition.

5.4 Programming Model

In addition to the existing BDM commands that provide access to the processor’s registers
and the memory subsystem, the debug module contains 19 registers to support the required
functionality. These registers are also accessible from the processor’s supervisor
programming model by executing the WDEBUG instruction. Thus, the breakpoint
hardware in the debug module can be accessed by the external development system using
the debug serial interface or by the operating system running on the processor core.
Software is responsible for guaranteeing that accesses to these resources are serialized and
logically consistent. Hardware provides a locking mechanism in the CSR to allow the
external development system to disable any attempted writes by the processor to the
breakpoint registers (setting CSR[IPW]). BDM commands must not be issued if the
MCF5407 is using the WDEBUG instruction to access debug module registers or the
resulting behavior is undefined.

These registers, shown in Figure 5-5, are treated as 32-bit quantities, regardless of the
number of implemented bits.

5-8 MCF5407 User’s Manual (M) moToroLa

Programming Model

31 15 7 0
[[[] AATR Address attribute trigger register
31 15 0
[[| ABLR Address low breakpoint register
[[| ABHR Address high breakpoint register
31 15 7 0
[[[] AATR1 Address 1 attribute register
31 15 0
[[| ABLR1 Address low breakpoint 1 register
[[| ABHR1 Address high breakpoint 1 register
31 15 7 0
l [] BAAR BDM address attribute register
31 15 0
[[] CSR Configuration/status register
31 15 0
[[] DBR Data breakpoint register
[[| DBMR Data breakpoint mask register
31 15 0
[[| DBR1 Data breakpoint 1 register
[| | DBMR1 Data breakpoint mask 1 register
31 15 0
PBR PC breakpoint register
PBR1 PC breakpoint 1 register
PBR2 PC breakpoint 2 register
PBR3 PC breakpoint 3 register
PBMR PC breakpoint mask register
31 15 0
[[] TDR Trigger definition register
31 15 0
[[] XTDR Extended trigger definition register

Note: Each debug register is accessed as a 32-bit register; shaded fields above are not used (don’t care).
All debug control registers are writable from the external development system or the CPU via the
WDEBUG instruction.
CSR is write-only from the programming model as debug control register 0x00 using the supervisor-mode
WDEBUG instruction. It can be read from and written through the BDM port using the RDMREG and
WDMREG commands.

Figure 5-5. Debug Programming Model

These registers are accessed through the BDM port by new BDM commands, WDMREG and
RDMREG, described in Section 5.5.3.3, “Command Set Descriptions.” These commands
contain a 5-bit field, DRc, that specifies the register, as shown in Table 5-6.

Table 5-6. BDM/Breakpoint Registers

DRc[4-0] Register Name Abbreviation Initial State Page
0x00 Configuration/status register CSR 0x0020_0000 p. 5-13

0x01-0x04 | Reserved — —_ —
0x05 BDM address attribute register BAAR 0x0000_0005 p. 5-12
0x06 Address attribute trigger register AATR 0x0000_0005 p. 5-10

(M) moToroLA Chapter 5. Debug Support 5-9

h -

jramming Model

Table 5-6. BDM/Breakpoint Registers (Continued)

DRc[4-0] Register Name Abbreviation Initial State Page
0x07 Trigger definition register TDR 0x0000_0000 p. 5-18
0x08 Program counter breakpoint register PBR — p. 5-16
0x09 Program counter breakpoint mask register PBMR — p. 5-16

0x0A—-0x0B | Reserved — —_ —
0x0C Address breakpoint high register ABHR — p. 5-12
0x0D Address breakpoint low register ABLR — p. 5-12
Ox0E Data breakpoint register DBR — p. 5-15
O0xOF Data breakpoint mask register DBMR — p. 5-15

0x10-0x15 | Reserved — — —
0x16 Address attribute trigger register 1 AATR1 0x0000_0005 p. 5-10
0x17 Extended trigger definition register XTDR 0x0000_0000 p. 5-19
0x18 Program counter breakpoint 1 register PBR1 0x0000_0000 p. 5-16
0x19 Reserved — —_ —
Ox1A Program counter breakpoint register 2 PBR2 0x0000_0000 p. 5-16
0x1B Program counter breakpoint register 3 PBR3 0x0000_0000 p. 5-16
0x1C Address high breakpoint register 1 ABHR1 — p. 5-12
0x1D Address low breakpoint register 1 ABLR1 — p. 5-12
Ox1E Data breakpoint register 1 DBR1 — p. 5-15
Ox1F Data breakpoint mask register 1 DBMR1 — p. 5-15

NOTE:

Debug control registers can be written by the external
development system or the CPU through the WDEBUG
instruction.

CSR is write-only from the programming model as debug
control register 0x00 using the supervisor-mode WDEBUG
instruction. It can be read from and written through the BDM
port using the RDMREG and WDMREG commands.

5.4.1 Address Attribute Trigger Registers (AATR, AATR1)

The address attribute trigger registers (AATR, AATR1) define address attributes and a mask
to be matched in the trigger. The register value is compared with address attribute signals
from the processor’s local high-speed bus, as defined by the setting of the trigger definition
register (TDR) for AATR and the extended trigger definition register (XTDR) for AATR1.

5-10 MCF5407 User’s Manual (M) moToroLa

Programming Model

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field| RM ‘ SZM ‘ T™ ‘ TMM ‘ R ‘ Sz ‘ TT ‘ ™
Reset 0000_0000_0000_0101

R/W|AATR and AATR1 are accessible in supervisor mode as debug control register 0x06 and 0x16
respectively, and using the WDEBUG instruction and through the BDM port using the WDMREG command.

DRc[4-0] 0x06 (AATR); 0x16 (AATR1)
Figure 5-6. Address Attribute Trigger Registers (AATR, AATR1)
Table 5-7 describes AATR and AATRI1 fields.
Table 5-7. AATR and AATR1 Field Descriptions

Bits | Name Description

15 RM Read/write mask. Setting RM masks R in address comparisons.

14-13 | SZM | Size mask. Setting an SZM bit masks the corresponding SZ bit in address comparisons.

12-11 | TTM | Transfer type mask. Setting a TTM bit masks the corresponding TT bit in address comparisons.

10-8 | TMM | Transfer modifier mask. Setting a TMM bit masks the corresponding TM bit in address comparisons.

7 R Read/write. R is compared with the R/W signal of the processor’s local bus.
6-5 Sz Size. Compared to the processor’s local bus size signals.

00 Longword

01 Byte

10 Word

11 Reserved

4-3 TT Transfer type. Compared with the local bus transfer type signals.

00 Normal processor access

01 Reserved

10 Emulator mode access

11 Acknowledge/CPU space access

These bits also define the TT encoding for BDM memory commands. In this case, the 01 encoding
indicates an external or DMA access (for backward compatibility). These bits affect the TM bits.

2-0 ™ Transfer modifier. Compared with the local bus transfer modifier signals, which give supplemental
information for each transfer type.

TT = 00 (normal mode):

000 Data and instruction cache line push

001 User data access

010 User code access

011 Instruction cache invalidate

100 Data cache push

101 Supervisor data access

110 Supervisor code access

111 INTOUCH instruction access

TT = 10 (emulator mode):

0xx—100 Reserved

101 Emulator mode data access

110 Emulator mode code access

111 Reserved

TT = 11 (acknowledge/CPU space transfers):

000 CPU space access

001-111 Interrupt acknowledge levels 1-7

These bits also define the TM encoding for BDM memory commands (for backward compatibility).

(M) moToroLA Chapter 5. Debug Support 5-11

h -

jramming Model

5.4.2 Address Breakpoint Registers (ABLR/ABLR1,
ABHR/ABHR1)

The address breakpoint low and high registers (ABLR, ABLR1, ABHR, and ABHR1),
Figure 5-7, define regions in the processor’s data address space that can be used as part of
the trigger. These register values are compared with the address for each transfer on the
processor’s high-speed local bus. TDR determines if the trigger is in the address in ABLR
or either inside or outside of the range bound by ABLR and ABHR. XTDR determines the
same for ABLR1 and ABHRI1.

31 0
Field Address

Reset —

R/W|ABHR and ABHR1 are accessible in supervisor mode as debug control registers 0x0C and 0x1C, using the
WDEBUG instruction and via the BDM port using the RDMREG and WDMREG commands.

ABLR and ABLR1 are accessible in supervisor mode as debug control register 0xOD and 0x1D, using the
WDEBUG instruction and via the BDM port using the WDMREG command.

DRc[4-0] 0x0D (ABLR); 0x1D (ABLR1); 0x0C (ABHR); 0x1C (ABHR1)
Figure 5-7. Address Breakpoint Registers (ABLR, ABHR, ABLR1, ABHR1)
Table 5-8 describes ABLR and ABLRI1 fields.
Table 5-8. ABLR and ABLR1 Field Description

Bits Name Description

31-0 | Address | Low address. Holds the 32-bit address marking the lower bound of the address breakpoint range.
Breakpoints for specific addresses are programmed into ABLR or ABLR1.

Table 5-9 describes ABHR and ABHR1 fields.
Table 5-9. ABHR and ABHR1 Field Description

Bits | Name Description

31-0 | Address | High address. Holds the 32-bit address marking the upper bound of the address breakpoint range.

5.4.3 BDM Address Attribute Register (BAAR)

The BAAR defines the address space for memory-referencing BDM commands. See
Figure 5-8. The reset value of 0x5 sets supervisor data as the default address space.

5-12 MCF5407 User’s Manual (M) moToroLa

Programming Model

Field

Sz TT ™

Reset

0000_0101

R/W|BAARIR,SZ] are loaded directly from the BDM command; BAAR[TT,TM] can be programmed as debug

control register 0x05 from the external development system. For compatibility with Rev. A, BAAR is loaded
each time AATR is written.

DRc[4-0]

0x05

Figure 5-8. BDM Address Attribute Register (BAAR)

Table 5-10 describes BAAR fields.

Table 5-10. BAAR Field Descriptions

Bits | Name Description
7 R Read/write

0 Write

1 Read
65 |SzZ Size

00 Longword

01 Byte

10 Word

11 Reserved
4-3 |TT Transfer type. See the TT definition in Table 5-7.
20 |T™M Transfer modifier. See the TM definition in Table 5-7.

5.4.4 Configuration/Status Register (CSR)

The configuration/status register (CSR) defines the debug configuration for the processor
and memory subsystem and contains status information from the breakpoint logic.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Field BSTAT FOF | TRG |HALT | BKPT HRL — |BKD |PCD| IPW
Reset 0000 ol o] o 0 0010 — | =] =10
RW! R| R |R R R — | — | — |RW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field| MAP | TRC |[EMU| DDC | UHE BTB —2 |NPL| — |SSM —
Resetf 0 | 0 | © 00 0 00 o|o|—1]o —
R/W| RW | RIW | R'W R/W R/W R/W R |RW| — |RW —
DRc[4-0] 0x00

T CSR is write-only from the programming model. It can be read from and written to through the BDM port. CSR
is accessible in supervisor mode as debug control register 0x00 using the WDEBUG instruction and through
the BDM port using the RDMREG and WDMREG commands.

2 Bit 7 is reserved for Motorola use and must be written as a zero.

Figure 5-9. Configuration/Status Register (CSR)

@ MOTOROLA

Chapter 5. Debug Support 5-13

3
4

'
A

jramming Model

Table 5-11 describes CSR fields.

Table 5-11. CSR Field Descriptions

Bit

Name

Description

31-28

BSTAT

Breakpoint status. Provides read-only status information concerning hardware breakpoints. Also
output on PSTDDATA when it is not displaying PST or other processor data. BSTAT is cleared by a
TDR or XTDR write or by a CSR read when either a level-2 breakpoint is triggered or a level-1
breakpoint is triggered and the level-2 breakpoint is disabled.

0000 No breakpoints enabled

0001 Waiting for level-1 breakpoint

0010 Level-1 breakpoint triggered

0101 Waiting for level-2 breakpoint

0110 Level-2 breakpoint triggered

27

FOF

Fault-on-fault. If FOF is set, a catastrophic halt occurred and forced entry into BDM.

26

TRG

Hardware breakpoint trigger. If TRG is set, a hardware breakpoint halted the processor core and
forced entry into BDM. Reset and the debug Go command clear TRG.

25

HALT

Processor halt. If HALT is set, the processor executed a HALT and forced entry into BDM. Reset
and the debug Go command reset HALT.

24

BKPT

Breakpoint assert. If BKPT is set, BKPT was asserted, forcing the processor into BDM. Reset and
the debug Go command clears this bit.

23-20

HRL

Hardware revision level. Indicates the level of debug module functionality. An emulator could use
this information to identify the level of functionality supported.

0000 Initial debug functionality (Revision A)

0001 Revision B

0010 Revision C (this is the only valid value for the MCF5407)

19

Reserved, should be cleared.

18

BKD

Breakpoint disable. Used to disable the normal BKPT input functionality and to allow the assertion

of BKPT to generate a debug interrupt.

0 Normal operation

1 BKPT is edge-sensitive: a high-to-low edge on BKPT signals a debug interrupt to the processor.
The processor makes this interrupt request pending until the next sample point, when the
exception is initiated. In the ColdFire architecture, the interrupt sample point occurs once per
instruction. There is no support for nesting debug interrupts.

17

PCD

PSTCLK disable. Setting PCD disables generation of PSTCLK and PSTDDATA outputs and forces
them to remain quiescent.

16

IPW

Inhibit processor writes. Setting IPW inhibits processor-initiated writes to the debug module’s
programming model registers. IPW can be modified only by commands from the external
development system.

15

MAP

Force processor references in emulator mode.

0 All emulator-mode references are mapped into supervisor code and data spaces.

1 The processor maps all references while in emulator mode to a special address space, TT = 10,
TM =101 or 110.

14

TRC

Force emulation mode on trace exception. If TRC = 1, the processor enters emulator mode when a
trace exception occurs.

13

EMU

Force emulation mode. If EMU = 1, the processor begins executing in emulator mode. See
Section 5.6.1.1, “Emulator Mode.”

MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 5-11. CSR Field Descriptions (Continued)

Bit Name Description
12-11 | DDC | Debug data control. Controls operand data capture for PSTDDATA, which displays the number of
bytes defined by the operand reference size before the actual data; byte displays 8 bits, word
displays 16 bits, and long displays 32 bits (one nibble at a time across multiple clock cycles). See
Table 5-4.
00 No operand data is displayed.
01 Capture all write data.
10 Capture all read data.
11 Capture all read and write data.
10 UHE User halt enable. Selects the CPU privilege level required to execute the HALT instruction.
0 HALT is a supervisor-only instruction.
1 HALT is a supervisor/user instruction.
9-8 |BTB Branch target bytes. Defines the number of bytes of branch target address PSTDDATA displays.
00 0 bytes
01 Lower 2 bytes of the target address
10 Lower 3 bytes of the target address
11 Entire 4-byte target address
See Section 5.3.1, “Begin Execution of Taken Branch (PST = 0x5).”
7 — Reserved, should be cleared.
6 NPL Non-pipelined mode. Determines whether the core operates in pipelined or mode.
0 Pipelined mode
1 Nonpipelined mode. The processor effectively executes one instruction at a time with no overlap.
This adds at least 5 cycles to the execution time of each instruction. Instruction folding is
disabled. Given an average execution latency of 1.6, throughput in non-pipeline mode would be
6.6, approximately 25% or less compared to pipelined performance.
Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering
instruction executes. In normal pipeline operation, the occurrence of an address and/or data
breakpoint trigger is imprecise. In non-pipeline mode, triggers are always reported before the next
instruction begins execution and trigger reporting can be considered precise.
An address or data breakpoint should always occur before the next instruction begins execution.
Therefore the occurrence of the address/data breakpoints should be guaranteed.
5 — Reserved, should be cleared.
4 SSM | Single-step mode. Setting SSM puts the processor in single-step mode.
0 Normal mode.
1 Single-step mode. The processor halts after execution of each instruction. While halted, any
BDM command can be executed. On receipt of the GO command, the processor executes the
next instruction and halts again. This process continues until SSM is cleared.
3-0 |— Reserved, should be cleared.

5.4.5 Data Breakpoint/Mask Registers (DBR/DBR1,
DBMR/DBMR1)

The data breakpoint registers (DBR/DBR1), Figure 5-10, specify data patterns used as part
of the trigger into debug mode. Only DBR# bits not masked with a corresponding zero in
DBMR# are compared with the data from the processor’s local bus, as defined in TDR.

@ MOTOROLA

Chapter 5. Debug Support 5-15

h -

jramming Model

31 0

Field Data (DBR/DBR1); Mask (DBMR/DBMR1)

Reset Uninitialized

R/W|DBR and DBR1 are accessible in supervisor mode as debug control register 0OxOE and 0x1E, using the
WDEBUG instruction and through the BDM port using the RDMREG and WDMREG commands.

DBMR and DBMR1 are accessible in supervisor mode as debug control register 0xOF and 0xOF1 using the
WDEBUG instruction and via the BDM port using the WDMREG command.

DRc[4-0] 0XOE (DBRY), Ox1E (DBR1); 0xOF (DBMR), Ox1F (DBMR1)

Figure 5-10. Data Breakpoint/Mask Registers (DBR/DBR1 and DBMR/DBMR1)

Table 5-12 describes DBR# fields.
Table 5-12. DBRn Field Descriptions

Bits | Name Description

31-0 | Data Data breakpoint value. Contains the value to be compared with the data value from the processor’s
local bus as a breakpoint trigger.

Table 5-13 describes DBMR~ fields.
Table 5-13. DBMRn Field Descriptions

Bits | Name Description

31-0 | Mask | Data breakpoint mask. The 32-bit mask for the data breakpoint trigger. Clearing a DBRn bit allows
the corresponding DBRn bit to be compared to the appropriate bit of the processor’s local data bus.

Setting a DBMRn bit causes that bit to be ignored.

DBRs support both aligned and misaligned references. Table 5-14 shows relationships
between processor address, access size, and location within the 32-bit data bus.

Table 5-14. Access Size and Operand Data Location

A[1:0] Access Size Operand Location

00 Byte D[31:24]
01 Byte D[23:16]
10 Byte D[15:8]
11 Byte D[7:0]

0x Word D[31:16]
1x Word D[15:0]
XX Longword D[31:0]

5.4.6 Program Counter Breakpoint/Mask Registers
(PBR, PBR1, PBR2, PBR3, PBMR)

Each PC breakpoint register (PBR, PBR1, PBR2, PBR3) defines an instruction address for
use as part of the trigger. These registers’ contents are compared with the processor’s

5-16 MCF5407 User’s Manual (M) moToroLa

Programming Model

program counter register when the appropriate valid bit is set and TDR and/or XTDR are
configured appropriately. PBR bits are masked by clearing corresponding PBMR bits.
Results are compared with the processor’s program counter register, as defined in TDR
and/or XTDR. PBR1-PBR3 are not masked. Figure 5-11 shows the PC breakpoint register.

31 1 0
Field Program Counter v
Reset - 0

R/W|Write. PC breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and
through the BDM port using the RDMREG and WDMREG commands using values shown in Section 5.5.3.3,
“Command Set Descriptions.”

DRc[4-0] 0x08 (PBR); 0x18 (PBR1); 0x1A (PBR2); 0x1B (PBR3)

" PBR does not have a valid bit. PBR[0] is read as 0 and should be cleared.
Figure 5-11. Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)
Table 5-15 describes PBR, PBR1, PBR2, and PBR3 fields.
Table 5-15. PBR, PBR1, PBR2, PBR3 Field Descriptions

Bits | Name Description

31-1 | Address | PC breakpoint address. The 31-bit address to be compared with the PC as a breakpoint trigger.
PBR does not have a valid bit.

0 \Y Valid. Breakpoint registers are compared with the processor’s program counter register when the
appropriate valid bit is set and TDR and/or XTDR are configured appropriately. This bit is not
implemented on PBR.

PBMR is accessible in supervisor mode as debug control register 0x09 using the WDEBUG
instruction and via the BDM port using the WDMREG command. Figure 5-12 shows PBMR.

31 1 0
Field Mask —

Reset — —

R/W |Write. PBMR is accessible in supervisor mode as debug control register 0x09 using the WDEBUG
instruction and via the BDM port using the wdmreg command.

DRc[4-0] 0x09

Figure 5-12. Program Counter Breakpoint Mask Register (PBMR)

Table 5-16 describes PBMR fields.
Table 5-16. PBMR Field Descriptions

Bits | Name Description

31-0 | Mask | PC breakpoint mask. A zero in a bit position causes the corresponding PBR bit to be compared to
the appropriate PC bit. Set PBMR bits cause PBR bits to be ignored.

(M) moToroLA Chapter 5. Debug Support 5-17

h -

jramming Model

5.4.7 Trigger Definition Register (TDR)

The TDR, shown in Table 5-13, configures the operation of the hardware breakpoint logic
that corresponds with the ABHR/ABLR/AATR, PBR/PBR1/PBR2/PBR3/PBMR, and
DBR/DBMR registers within the debug module. In conjunction with the XTDR and its
associated debug registers, TDR controls the actions taken under the defined conditions.
Breakpoint logic may be configured as one- or two-level triggers. TDR[31-16] and/or
XTDR[31-16] define second-level triggers and bits 15-0 define first-level triggers.

NOTE:

The debug module has no hardware interlocks, so to prevent
spurious breakpoint triggers while the breakpoint registers are
being loaded, disable TDR and XTDR (by clearing
TDR[29,13] and XTDR[29,13]) before defining triggers.

A write to TDR clears the CSR trigger status bits, CSR[BSTAT].

Section 5.4.9, “Resulting Set of Possible Trigger Combinations,” describes how to handle
multiple breakpoint conditions.

Second-Level Triggers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field| TRC ‘ EBL ‘ EDLW ‘EDWL‘ EDWU ‘EDLL‘ EDLM ‘EDUM‘EDUU‘ DI ‘ EAI ‘EAR‘ EAL ‘ EPC‘ PCI

Reset 0000_0000_0000_0000

R/W|Accessible in supervisor mode as debug control register 0x07 using the WDEBUG instruction and through the
BDM port using the WDMREG command.

First-Level Triggers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field| — ‘ EBL ‘ EDLW ‘EDWL‘ EDWU ‘EDLL‘ EDLM ‘EDUM‘EDUU‘ DI ‘ EAIl ‘EAR‘ EAL ‘ EPC‘ PCI
Reset 0000_0000_0000_0000

R/W|Accessible in supervisor mode as debug control register 0x07 using the WDEBUG instruction and through the
BDM port using the WDMREG command.

DRc[4-0] 0x07

Figure 5-13. Trigger Definition Register (TDR)
Table 5-17 describes TDR fields.

5-18 MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 5-17. TDR Field Descriptions

Bits Name Description

31-30 | TRC Trigger response control. Determines how the processor responds to a completed trigger condition.
The trigger response is always displayed on PSTDDATA.

00 Display on PSTDDATA only

01 Processor halt

10 Debug interrupt

11 Reserved

29/13 | EBL Enable breakpoint. Global enable for the breakpoint trigger. Setting TDR[EBL] or XTDR[EBL]
enables a breakpoint trigger; clearing both disables all breakpoints.

28-22 | EDx Setting an EDx bit enables the corresponding data breakpoint condition based on the size and

12-6 placement on the processor’s local data bus. Clearing all EDx bits disables data breakpoints.
28/12 EDLW | Data longword. Entire processor’s local data bus.

27111 EDWL | Lower data word.

26/10 EDWU | Upper data word.

25/9 EDLL | Lower lower data byte. Low-order byte of the low-order word.

24/8 EDLM | Lower middle data byte. High-order byte of the low-order word.

28/7 EDUM | Upper middle data byte. Low-order byte of the high-order word.

22/6 EDUU | Upper upper data byte. High-order byte of the high-order word.

21/5 DI Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint

comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR contents.

20-18/ | EAx Enable address bits. Setting an EA bit enables the corresponding address breakpoint. Clearing all
4-2 three bits disables the breakpoint.

20/4 EAI Enable address breakpoint inverted. Breakpoint is based outside the range between ABLR
and ABHR.

19/3 EAR Enable address breakpoint range. The breakpoint is based on the inclusive range defined
by ABLR and ABHR.

18/2 EAL Enable address breakpoint low. The breakpoint is based on the address in the ABLR.

171 EPC Enable PC breakpoint. If set, this bit enables the PC breakpoint.

16/0 PCI Breakpoint invert. If set, this bit allows execution outside a given region as defined by
PBR/PBR1/PBR2/PBR3 and PBMR to enable a trigger. If cleared, the PC breakpoint is defined
within the region defined by PBR/PBR1/PBR2/PBR3 and PBMR.

5.4.8 Extended Trigger Definition Register (XTDR)

The XTDR configures the operation of the hardware breakpoint logic that corresponds with
the ABHR1/ABLR1/AATR1 and DBR1/DBMRI registers within the debug module and,
in conjunction with the TDR and its associated debug registers, controls the actions taken
under the defined conditions. The breakpoint logic may be configured as a one- or two-level
trigger, where TDR[31-16] and/or XTDR[31-16] define the second-level trigger and bits
15-0 define the first-level trigger. The XTDR is accessible in supervisor mode as debug
control register 0x17 using the WDEBUG instruction and via the BDM port using the
WDMREG command.

(M) moToroLA Chapter 5. Debug Support 5-19

h -

jramming Model

NOTE:

The debug module has no hardware interlocks, so to prevent
spurious breakpoint triggers while the breakpoint registers are
being loaded, disable TDR and XTDR (by clearing
TDR[29,13] and XTDR[29,13]) before defining triggers.

A write to the XTDR clears the trigger status bits, CSR[BSTAT].

Section 5.4.9, “Resulting Set of Possible Trigger Combinations,” describes how to handle
multiple breakpoint conditions.

T Second-Level Triggers 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field| — EBL ‘EDLW‘EDWL‘ EDWU ‘ EDLL‘EDLM‘EDUM‘EDUU‘ DI ‘ EAI ‘ EAR ‘ EAL | —

Reset| — 000_0000_0000_000 —
RW| — Write —

[First-Level ITriggers 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Field| — EBL ‘EDLW‘EDWL‘ EDWU ‘ EDLL‘EDLM‘EDUM‘EDUU‘ DI ‘ EAI ‘ EAR ‘ EAL | —
Reset| — 000_0000_0000_000 —
RW| — Write —

DRc[4-0] 0x17

Figure 5-14. Extended Trigger Definition Register (XTDR)
Table 5-18 describes XTDR fields.
Table 5-18. XTDR Field Descriptions

Bits | Name Description

29/13 | EBL Enable breakpoint level. If set, EBL is the global enable for the breakpoint trigger; that is, if
TDRIEBL] or XTDR[EBL] is set, a breakpoint trigger is enabled. Clearing both disables all
breakpoints.

28-22 | EDx Setting an EDx bit enables the corresponding data breakpoint condition based on the size and

12-6 placement on the processor’s local data bus. Clearing all EDx bits disables data breakpoints.

28/12 EDLW | Data longword. Entire processor’s local data bus.

27/11 EDWL | Lower data word.

26/10 EDWU | Upper data word.

25/9 EDLL | Lower lower data byte. Low-order byte of the low-order word.

24/8 EDLM | Lower middle data byte. High-order byte of the low-order word.

23/7 EDUM | Upper middle data byte. Low-order byte of the high-order word.

22/6 EDUU | Upper upper data byte. High-order byte of the high-order word.

5-20 MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 5-18. XTDR Field Descriptions (Continued)

Bits | Name Description

21/5 DI Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR1 contents.

20-18/ | EAx Enable address bits. Setting an EAx bit enables the corresponding address breakpoint. If all three

4-2 bits are cleared, this breakpoint is disabled.

20/4 EAI Enable address breakpoint inverted. Breakpoint is based outside the range between
ABLR1 and ABHR1.

19/3 EAR Enable address breakpoint range. Breakpoint is based on the range defined between
ABLR1 and ABHR1.

18/2 EAL Enable address breakpoint low. The breakpoint is based on the address in ABLR1.

17-16, | — Reserved, should be cleared.

1-0

5.4.9 Resulting Set of Possible Trigger Combinations

The resulting set of possible breakpoint trigger combinations consist of the following
options where Il denotes logical OR, && denotes logical AND, and {} denotes an optional
additional trigger term:

One-level triggers of the form:

if (PC_breakpoint)
if (PC_breakpoint | |Address_breakpoint{&& Data_ breakpoint})
if (PC_breakpoint | |Address_breakpoint{&& Data_breakpoint}

|| Addressl breakpoint{&& Datal breakpoint})
if (Address_breakpoint {&& Data_breakpoint})
if ((Address breakpoint {&& Data_breakpoint})

T (Addressl_breakpoint{&& Datal_ breakpoint}))
if (Addressl_breakpoint {&& Datal_ breakpoint})

Two-level triggers of the form:

if (PC_breakpoint)

then if (Address_breakpoint{&& Data_ breakpoint})
if (PC_breakpoint)

then if (Address_breakpoint{&& Data_ breakpoint}

|| Addressl breakpoint{&& Datal breakpoint})

if (PC_breakpoint)

then if (Addressl_breakpoint{&& Datal_breakpoint})
if (Address_breakpoint {&& Data_breakpoint})

then if (Addressl_breakpoint{&& Datal_breakpoint})
if (Addressl_breakpoint {&& Datal_ breakpoint})

then if (Address_breakpoint{&& Data_breakpoint})
if (Address_breakpoint {&& Data_breakpoint})

then if (PC_breakpoint)
if (Addressl_breakpoint {&& Datal_ breakpoint})

(M) moToroLA Chapter 5. Debug Support 5-21

h -

<ground Debug Mode (BDM)

then if (PC_breakpoint)
if (Address_breakpoint {&& Data_breakpoint})
then if (PC_breakpoint
|| Addressl_breakpoint{&& Datal breakpoint})
if (Addressl_breakpoint {&& Datal_ breakpoint})
then if (PC_breakpoint

[Address_breakpoint{&& Data_breakpoint})

In this example, PC_breakpoint is the logical summation of the PBR/PBMR, PBR1, PBR2,
and PBR3 breakpoint registers; Address_breakpoint is a function of ABHR, ABLR, and
AATR; Data_breakpoint is a function of DBR and DBMR; Addressl_breakpoint is a
function of ABHR1, ABLRI, and AATR1; and Datal_breakpoint is a function of DBR1
and DBMRI. In all cases, the data breakpoints can be included with an address breakpoint
to further qualify a trigger event as an option.

5.5 Background Debug Mode (BDM)

The ColdFire Family implements a low-level system debugger in the microprocessor
hardware. Communication with the development system is handled through a dedicated,
high-speed serial command interface. The ColdFire architecture implements the BDM
controller in a dedicated hardware module. Although some BDM operations, such as CPU
register accesses, require the CPU to be halted, other BDM commands, such as memory
accesses, can be executed while the processor is running.

5.5.1 CPU Halt

Although many BDM operations can occur in parallel with CPU operations, unrestricted
BDM operation requires the CPU to be halted. The sources that can cause the CPU to halt
are listed below in order of priority:

1. A catastrophic fault-on-fault condition automatically halts the processor.

2. A hardware breakpoint can be configured to generate a pending halt condition
similar to the assertion of BKPT. This type of halt is always first made pending in
the processor. Next, the processor samples for pending halt and interrupt conditions
once per instruction. When a pending condition is asserted, the processor halts
execution at the next sample point. See Section 5.6.1, “Theory of Operation.”

3. The execution of a HALT instruction immediately suspends execution. Attempting
to execute HALT in user mode while CSR[UHE] = 0 generates a privilege violation
exception. If CSR[UHE] = 1, HALT can be executed in user mode. After HALT
executes, the processor can be restarted by serial shifting a GO command into the
debug module. Execution continues at the instruction after HALT.

5-22 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

4. The assertion of the BKPT input is treated as a pseudo-interrupt; that is, the halt

condition is postponed until the processor core samples for halts/interrupts. The
processor samples for these conditions once during the execution of each
instruction. If there is a pending halt condition at the sample time, the processor
suspends execution and enters the halted state.

The assertion of BKPT should be considered in the following two special cases:

After the system reset signal is negated, the processor waits for 16 clock cycles
before beginning reset exception processing. If the BKPT input is asserted within
eight cycles after RSTI is negated, the processor enters the halt state, signaling halt
status (OxF) on the PSTDDATA outputs. While the processor is in this state, all
resources accessible through the debug module can be referenced. This is the only
chance to force the processor into emulation mode through CSR[EMU].

After system initialization, the processor’s response to the GO command depends on
the set of BDM commands performed while it is halted for a breakpoint.
Specifically, if the PC register was loaded, the GO command causes the processor to
exit halted state and pass control to the instruction address in the PC, bypassing
normal reset exception processing. If the PC was not loaded, the GO command
causes the processor to exit halted state and continue reset exception processing.

The ColdFire architecture also handles a special case of BKPT being asserted while
the processor is stopped by execution of the STOP instruction. For this case, the
processor exits the stopped mode and enters the halted state, at which point, all BDM
commands may be exercised. When restarted, the processor continues by executing
the next sequential instruction, that is, the instruction following the STOP opcode.

CSR[27-24] indicates the halt source, showing the highest priority source for multiple halt
conditions. Debug module Revisions A and B clear CSR[27-24] upon a read of the CSR,
but Revision C (in the MCF5407) does not. The debug GO command clears CSR[26-24].

HALT can be recognized by counting OxFF occurrences on PSTDDATA. The count is
necessary to determine between a possible data output value of OxFF and the HALT
condition. Because data always follows a marker (0x8, 0x9, OxA, or 0xB), PSTDDATA can
display no more than four data OxFFs. Two such scenarios exist:

A B marker occurs on the left nibble of PSTDDATA with the data of OxFF
following:

PSTDDATA[7:0]

0xBF
OxFF
OxFF
OxFF
0xFX (X indicates that the next PST value is guaranteed to not be 0xF)

(M) moToroLA Chapter 5. Debug Support 5-23

3
4

'
A

<ground Debug Mode (BDM)

* A B marker occurs on the right nibble of PSTDDATA with the data of OxFF
following:

PSTDDATA[7:0]

0xYB

OxFF

OxFF

OxFF

OxFF

0xXY (X indicates that the PST value is guaranteed to not be OxF; and Y indicates
a PSTDDATA value that doesn’t affect the OXFF count).

Thus, a count of either nine or more sequential single OxF values or five or more sequential
OxFF values signifies the HALT condition.

5.5.2 BDM Serial Interface

When the CPU is halted and PSTDDATA reflects the halt status, the development system
can send unrestricted commands to the debug module. The debug module implements a
synchronous protocol using two inputs (DSCLK and DSI) and one output (DSO), where
DSCLK and DSI must meet the required input setup and hold timings and the DSO is
specified as a delay relative to the rising edge of the processor clock. See Table 5-1. The
development system serves as the serial communication channel master and must generate
DSCLK.

The serial channel operates at a frequency from DC to 1/5 of the processor frequency. The
channel uses full-duplex mode, where data is sent and received simultaneously by both
master and slave devices. The transmission consists of 17-bit packets composed of a
status/control bit and a 16-bit data word. As shown in Figure 5-15, all state transitions are
enabled on a rising edge of the processor clock when DSCLK is high; that is, DSI is
sampled and DSO is driven.

ci c2 c3 c4
CPU CLK l
PSTCLK ‘

DSCLK | |

I
T
\
i
f
|

}
T
\
f
f
|
|

f \
| L—
DSI ? >< ‘ Curreiht ‘ ‘ >< ? Next ?
[I I I I I I
BDMMa(?;iar:: i i Current iState i i>< i i N%xt State ' i
DSO ‘ I past! ‘ ‘ ‘ >< ‘ Gurrent | ‘
T T T T T

T T T T

Figure 5-15. BDM Serial Interface Timing

5-24 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

DSCLK and DSI are synchronized inputs. DSCLK acts as a pseudo clock enable and is
sampled on the rising edge of the processor CLK as well as the DSI. DSO is delayed from
the DSCLK-enabled CLK rising edge (registered after a BDM state machine state change).
All events in the debug module’s serial state machine are based on the processor clock
rising edge. DSCLK must also be sampled low (on a positive edge of CLK) between each
bit exchange. The MSB is transferred first. Because DSO changes state based on an
internally-recognized rising edge of DSCLK, DSDO cannot be used to indicate the start of
a serial transfer. The development system must count clock cycles in a given transfer.
C1-C4 are described as follows:

* Cl1—First synchronization cycle for DSI (DSCLK is high).
* (C2—Second synchronization cycle for DSI (DSCLK is high).

e (C3—BDM state machine changes state depending upon DSI and whether the entire
input data transfer has been transmitted.

* C4—DSO changes to next value.
NOTE:

A not-ready response can be ignored except during a
memory-referencing cycle. Otherwise, the debug module can
accept a new serial transfer after 32 processor clock periods.

5.5.2.1 Receive Packet Format

The basic receive packet, Figure 5-16, consists of 16 data bits and 1 status bit.

’ S ‘ Data Field [15:0]
Figure 5-16. Receive BDM Packet

Table 5-19 describes receive BDM packet fields.
Table 5-19. Receive BDM Packet Field Description

Bits | Name Description

16 S Status. Indicates the status of CPU-generated messages listed below. The not-ready response can
be ignored unless a memory-referencing cycle is in progress. Otherwise, the debug module can
accept a new serial transfer after 32 processor clock periods.

Data Message

XXXX Valid data transfer

OxFFFF Status OK

0x0000 Not ready with response; come again

0x0001 Error—Terminated bus cycle; data invalid

OxFFFF lllegal command

s 200

15-0 | Data Data. Contains the message to be sent from the debug module to the development system. The
response message is always a single word, with the data field encoded as shown above.

(M) moToroLA Chapter 5. Debug Support 5-25

h -

<ground Debug Mode (BDM)

5.5.2.2 Transmit Packet Format

The basic transmit packet, Figure 5-17, consists of 16 data bits and 1 control bit.

D[15:0]
Figure 5-17. Transmit BDM Packet

Table 5-20 describes transmit BDM packet fields.
Table 5-20. Transmit BDM Packet Field Description

Bits | Name Description

16 C Control. This bit is reserved. Command and data transfers initiated by the development system
should clear C.

15-0 | Data | Contains the data to be sent from the development system to the debug module.

5.5.3 BDM Command Set

Table 5-21 summarizes the BDM command set. Subsequent paragraphs contain detailed
descriptions of each command. Issuing a BDM command when the processor is accessing
debug module registers using the WDEBUG instruction causes undefined behavior.

Table 5-21. BDM Command Summary

. _— CPU . Command
Command | Mnemonic Description State! Section (Hex)
Read A/D RAREG/ Read the selected address or data register and Halted | 5.5.3.3.1 | 0x218 {A/D,
register RDREG return the results through the serial interface. Reg[2:0]}
Write A/D WAREG/ Write the data operand to the specified address or Halted | 5.5.3.3.2 | 0x208 {A/D,
register WDREG data register. Reg[2:0]}
Read READ Read the data at the memory location specified by Steal 5.5.3.3.3 | 0x1900—byte
memory the longword address. 0x1940—word
location 0x1980—Iword
Write WRITE Write the operand data to the memory location Steal 5.5.3.3.4 | Ox1800—byte
memory specified by the longword address. 0x1840—word
location 0x1880—Iword
Dump DUMP Used with READ to dump large blocks of memory. Steal 5.5.3.3.5 | Ox1D00O—Dbyte
memory An initial READ is executed to set up the starting 0x1D40—word
block address of the block and to retrieve the first result. 0x1D80—Iword
A DUMP command retrieves subsequent operands.
Fill memory | FILL Used with WRITE to fill large blocks of memory. An Steal 5.5.3.3.6 | 0x1C00—byte
block initial WRITE is executed to set up the starting 0x1C40—word
address of the block and to supply the first operand. 0x1C80—Iword
A FILL command writes subsequent operands.
Resume GO The pipeline is flushed and refilled before resuming | Halted | 5.5.3.3.7 | 0x0C00
execution instruction execution at the current PC.
No operation | NOP Perform no operation; may be used as a null Parallel | 5.5.3.3.8 | 0x0000
command.

5-26

MCF5407 User’s Manual

@ MOTOROLA

Background Debug Mode (BDM)

Table 5-21. BDM Command Summary (Continued)

. . CPU . Command

Command | Mnemonic Description State! Section (Hex)
Output the SYNC_PC | Capture the current PC and display it on the Parallel | 5.5.3.3.9 | 0x0001
current PC PSTDDATA output pins.
Read control | RCREG Read the system control register. Halted |5.5.3.3.10 | 0x2980
register
Write control | WCREG Write the operand data to the system control Halted |5.5.3.3.11|0x2880
register register.
Read debug |RDMREG Read the debug module register. Parallel |5.5.3.3.12 | 0x2D {0x4?
module DRc[4:0]}
register
Write debug | WDMREG Write the operand data to the debug module Parallel |5.5.3.3.13 | 0x2C {Ox42
module register. Drc[4:0]}
register

General command effect and/or requirements on CPU operation:

- Halted. The CPU must be halted to perform this command.

- Steal. Command generates bus cycles that can be interleaved with bus accesses.
- Parallel. Command is executed in parallel with CPU activity.

2 0x4 is a three-bit field.

Unassigned command opcodes are reserved by Motorola. All unused command formats
within any revision level perform a NOP and return the illegal command response.

5.5.3.1 ColdFire BDM Command Format

All ColdFire Family BDM commands include a 16-bit operation word followed by an
optional set of one or more extension words, as shown in Figure 5-18.

15 10 9 8 7 6 5 4 3 2 0
Operation ‘ 0 ‘RNV‘ Op Size ‘ 0 ‘ 0 ‘A/D‘ Register

Extension Word(s)

Figure 5-18. BDM Command Format

Table 5-22 describes BDM fields.
Table 5-22. BDM Field Descriptions

Bit Name Description

15-10 | Operation | Specifies the command. These values are listed in Table 5-21.
9 0 Reserved

8 R/W Direction of operand transfer.

0 Data is written to the CPU or to memory from the development system.
1 The transfer is from the CPU to the development system.

(M) moToroLA Chapter 5. Debug Support 5-27

<ground Debug Mode (BDM)

Table 5-22. BDM Field Descriptions (Continued)

Bit Name Description

7-6 Operand | Operand data size for sized operations. Addresses are expressed as 32-bit absolute values.

Size Note that a command performing a byte-sized memory read leaves the upper 8 bits of the

response data undefined. Referenced data is returned in the lower 8 bits of the response.
Operand Size Bit Values

00 Byte 8 bits
01 Word 16 bits
10 Longword 32 bits
11 Reserved —
5-4 00 Reserved
3 A/D Address/data. Determines whether the register field specifies a data or address register.

0 Indicates a data register.
1 Indicates an address register.

2-0 Register | Contains the register number in commands that operate on processor registers.

5.5.3.1.1 Extension Words as Required

Some commands require extension words for addresses and/or immediate data. Addresses
require two extension words because only absolute long addressing is permitted. Longword
accesses are forcibly longword-aligned and word accesses are forcibly word-aligned.
Immediate data can be 1 or 2 words long. Byte and word data each requires a single
extension word and longword data requires two extension words.

Operands and addresses are transferred most-significant word first. In the following
descriptions of the BDM command set, the optional set of extension words is defined as
address, data, or operand data.

5.5.3.2 Command Sequence Diagrams

The command sequence diagram in Figure 5-19 shows serial bus traffic for commands.
Each bubble represents a 17-bit bus transfer. The top half of each bubble indicates the data
the development system sends to the debug module; the bottom half indicates the debug
module’s response to the previous development system commands. Command and result
transactions overlap to minimize latency.

5-28 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

— COMMANDS TRANSMITTED TO THE DEBUG MODULE

— COMMAND CODE TRANSMITTED DURING THIS CYCLE
— HIGH-ORDER 16 BITS OF MEMORY ADDRESS
LOW-ORDER 16 BITS OF MEMORY ADDRESS

NONSERIAL-RELATED ACTIVITY

SEQUENCE TAKEN IF

OPERATION HAS NOT
COMPLETED
L READ
MS ADDR LS ADDR MEMORY
'NOT READY, 'NOT READY LOGATION
XXX NEXT CMD
BERR "NOT READY.
DATA UNUSED FROM
THIS TRANSFER
SEQUENCE TAKEN IF BUS
SEQUENCE TAKEN IF ERROR OCCURS ON
ILLEGAL COMMAND MEMORY ACCESS
IS RECEIVED BY DEBUG MODULE
'— HIGH- AND LOW-ORDER
'— RESULTS FROM PREVIOUS COMMAND 16 BITS OF RESULT

— RESPONSES FROM THE DEBUG MODULE

Figure 5-19. Command Sequence Diagram

The sequence is as follows:

In cycle 1, the development system command is issued (READ in this example). The
debug module responds with either the low-order results of the previous command
or a command complete status of the previous command, if no results are required.

In cycle 2, the development system supplies the high-order 16 address bits. The
debug module returns a not-ready response unless the received command is decoded
as unimplemented, which is indicated by the illegal command encoding. If this
occurs, the development system should retransmit the command.

NOTE:

A not-ready response can be ignored except during a
memory-referencing cycle. Otherwise, the debug module can
accept a new serial transfer after 32 processor clock periods.

In cycle 3, the development system supplies the low-order 16 address bits. The
debug module always returns a not-ready response.

At the completion of cycle 3, the debug module initiates a memory read operation.
Any serial transfers that begin during a memory access return a not-ready response.

(M) moToroLA Chapter 5. Debug Support 5-29

3
4

'
A

<ground Debug Mode (BDM)

* Results are returned in the two serial transfer cycles after the memory access
completes. For any command performing a byte-sized memory read operation, the
upper 8 bits of the response data are undefined and the referenced data is returned in
the lower 8 bits. The next command’s opcode is sent to the debug module during the
final transfer. If a memory or register access is terminated with a bus error, the error
status (S = 1, DATA = 0x0001) is returned instead of result data.

5.5.3.3 Command Set Descriptions
The following sections describe the commands summarized in Table 5-21.

NOTE:

The BDM status bit (S) is O for normally completed
commands; S = 1 for illegal commands, not-ready responses,
and transfers with bus-errors. Section 5.5.2, “BDM Serial
Interface,” describes the receive packet format.

Motorola reserves unassigned command opcodes for future expansion. Unused command
formats in any revision level perform a NOP and return an illegal command response.

5.5.3.3.1 Read A/D Register (RAREG/RDREG)

Read the selected address or data register and return the 32-bit result. A bus error response
is returned if the CPU core is not halted.

Command/Result Formats:

15 12 1N 8 7 4 3 2 0
Command 0x2 Ox1 0x8 ‘ A/D ‘ Register
Result D[31:16]
D[15:0]

Figure 5-20. RAREG/RDREG Command Format

Command Sequence:

RAREG/RDREG XXX NEXT CMD
S RESULT LS RESULT

0 N (NEXT CMD
_BERR__/ UNOT READY

Figure 5-21. RAREG/RDREG Command Sequence

Operand Data: None

Result Data: The contents of the selected register are returned as a longword
value, most-significant word first.

5-30 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.2 Write A/D Register (WAREG/WDREG)

The operand longword data is written to the specified address or data register. A write alters
all 32 register bits. A bus error response is returned if the CPU core is not halted.

Command Format:

15 12 11 8 7 4 3 2 0
Command 0x2 0x0 0x8 ‘ A/D ‘ Register
Result D[31:16]
D[15:0]

Figure 5-22. WAREG/WDREG Command Format

Command Sequence

(~ WDREG/WAREG / MSDATAY _ / ISDATA _/ NEXTCMD
. 272 /Y, T \WOTREADY/ TT\WNOTREADY/ ~ _'CMD COMPLETE" /

ol XXX N\ /_NEXT CMD
_BERR__/ '\"jOTREADY')'

Figure 5-23. WAREG/WDREG Command Sequence

Operand Data Longword data is written into the specified address or data register.
The data is supplied most-significant word first.

Result Data Command complete status is indicated by returning OXFFFF (with S
cleared) when the register write is complete.

(M) moToroLA Chapter 5. Debug Support 5-31

h -

<ground Debug Mode (BDM)

5.5.3.3.3 Read Memory Location (READ)

Read data at the longword address. Address space is defined by BAAR[TT,TM]. Hardware
forces low-order address bits to zeros for word and longword accesses to ensure that word
addresses are word-aligned and longword addresses are longword-aligned.

Command/Result Formats:

15 12 1 8 7 4 3 0

Byte 0ox1 ‘ 0x9 ‘ 0x0 0x0
Command A[31:16]
A[15:0]

Result X ‘ X ‘ X ‘ X X ‘ X ‘ X ‘ X D[7:0]

Word |Command Oox1 0x9 Ox4 0x0
A[31:16]
A[15:0]
Result D[15:0]

Longword | Command 0ox1 0x9 0x8 0x0
A[31:16]
A[15:0]
Result D[31:16]
D[15:0]

Figure 5-24. READ Command/Result Formats

Command Sequence:

READ BW) MS ADDR 1S ADDR READ XXX

XXX
m "NOT READY "NOT READY e N o Ry
t NEXT CMD

RESULT
(XXX \ NEXT CMD
BERR 'NOT READY.

READ (LONG MS ADDR 1S ADDR ME%’:‘Y X X
{ 77) >NOT READY 'NOT READY Lo ot ReADy
t/ XXX NEXT CMD

\MS RESULT/ LS RESULT

XXX NEXT CMD

_BERR__J "NOT READY.
Figure 5-25. READ Command Sequence

Operand Data The only operand is the longword address of the requested location.

Result Data Word results return 16 bits of data; longword results return 32. Bytes
are returned in the LSB of a word result, the upper byte is undefined.
0x0001 (S = 1) is returned if a bus error occurs.

5-32 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.4 Write Memory Location (WRITE)

Write data to the memory location specified by the longword address. The address space is
defined by BAAR[TT,TM]. Hardware forces low-order address bits to zeros for word and
longword accesses to ensure that word addresses are word-aligned and longword addresses
are longword-aligned.

Command Formats:
15 12 11 8 7 4 3 1

Byte 0x1 ‘ 0x8 ‘ 0x0 0x0
A[31:16]

A[15:0]
X ‘ X ‘ X ‘ X X ‘ X ‘ X ‘ X D[7:0]
Word 0x1 0x8 0x4 0x0

A[31:16]

A[15:0]

D[15:0]

Longword 0x1 0x8 0x8 0x0

A[31:16]

A[15:0]

D[31:16]

D[15:0]
Figure 5-26. WRITE Command Format

(M) moToroLA Chapter 5. Debug Support 5-33

h -

<ground Debug Mode (BDM)
Command Sequence:
WRITE (BW WS ADDR LS ADDR DATA M"é’aggY ‘ oK/
€ 777) > ot READY "NOT READY "NOT READY LOCATION NOT READY/

NEXT CMD
CMD COMPLETE®

NEXT CMD
‘NOT READY.

(WRITE (LONG]\ _ /“MSADDR _ / [SADDR _ / MSDATA\
 J UNOTREADYY/ = \INOTREADYY ~ \INOT READY/

XXX

(XXX
"NOT READY.

NEXT CMD
{CMD COMPLETE®
XXX

BERR

/—/

NEXT CMD
‘NOT READY,

_ H MEMORY
NOT READY LOCATION

Figure 5-27. wRITE Command Sequence

Operand Data This two-operand instruction requires a longword absolute address
that specifies a location to which the data operand is to be written.
Byte data is sent as a 16-bit word, justified in the LSB; 16- and 32-bit
operands are sent as 16 and 32 bits, respectively

Result Data Command complete status is indicated by returning OXxFFFF (with S
cleared) when the register write is complete. A value of 0x0001 (with
S set) is returned if a bus error occurs.

5-34 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.5 Dump Memory Block (bump)

DUMP is used with the READ command to access large blocks of memory. An initial READ
is executed to set up the starting address of the block and to retrieve the first result. If an
initial READ is not executed before the first DUMP, an illegal command response is returned.
The DUMP command retrieves subsequent operands. The initial address is incremented by
the operand size (1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands
use this address, perform the memory read, increment it by the current operand size, and
store the updated address in the temporary register.

NOTE:

DUMP does not check for a valid address; it is a valid command
only when preceded by NOP, READ, or another DUMP command.
Otherwise, an illegal command response is returned. NOP can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is processed, allowing the operand
size to be dynamically altered.

Command/Result Formats:

15 12 1 8 7 4 3 0
Byte Command 0x1 0xD 0x0 ‘ 0x0
Result X ‘ X ‘ X ‘ X | X ‘ X ‘ X ‘ X D[7:0]

Word Command Ox1 0xD 0x4 ‘ 0x0
Result D[15:0]

Longword | Command Ox1 ‘ 0xD ‘ 0x8 ‘ 0x0
Result D[31:16]
D[15:0]

Figure 5-28. pump Command/Result Formats

(M) moToroLA Chapter 5. Debug Support 5-35

k <ground Debug Mode (BDM)

Command Sequence:

/ DUMP B\ . MEI\EI%%Y Y X))
" LOCATION \NoT READY:/
NEXT CMD
__RESULT _/
XXX\ _ / NEXTCMD) XXX\ /_ NEXTCMD)

\ILLEGAL /™ \UNOT READY"/ \ BERR _J \UNOT READYY

DUMP (LONG) MEI\EI%%Y ¥ X))
277 | LocaTion \UNOT READY"/
(_NEXTCMD)\ ./~ NEXTCMD
\WsResutT/ ~ _LSRESULT /
XXX /NEXTCMD O\ _/~ XXX\ _ /7 NEXTCMD)
\ '|LLEGAL" j ~~\UNOT READY"/ _BERR__J ~ \UNOTREADYY/
Figure 5-29. pump Command Sequence
Operand Data: None
Result Data: Requested data is returned as either a word or longword. Byte data is

returned in the least-significant byte of a word result. Word results
return 16 bits of significant data; longword results return 32 bits. A
value of 0x0001 (with S set) is returned if a bus error occurs.

5-36 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.6 Fill Memory Block (FiLL)

A FILL command is used with the WRITE command to access large blocks of memory. An
initial WRITE is executed to set up the starting address of the block and to supply the first
operand. The FILL command writes subsequent operands. The initial address is incremented
by the operand size (1, 2, or 4) and saved in a temporary register after the memory write.
Subsequent FILL commands use this address, perform the write, increment it by the current
operand size, and store the updated address in the temporary register.

If an initial WRITE is not executed preceding the first FILL command, the illegal command
response is returned.

NOTE:

The FILL command does not check for a valid address —FILL is
a valid command only when preceded by another FILL, a NOP,
or a WRITE command. Otherwise, an illegal command response
is returned. The NOP command can be used for intercommand
padding without corrupting the address pointer.

The size field is examined each time a FILL command is processed, allowing the operand
size to be altered dynamically.

Command Formats:

15 12 1 8 7 4 3 0
Byte Oox1 0xC 0x0 ‘ 0x0
x‘x‘x‘x x‘x‘x‘x D[7:0]
Word 0x1 0xC 0x4 ‘ 0x0
D[15:0]
Longword Oox1 ‘ 0xC ‘ 0x8 ‘ 0x0
D[31:16]
D[15:0]

Figure 5-30. FILL Command Format

(M) moToroLA Chapter 5. Debug Support 5-37

3
4

'
A

<ground Debug Mode (BDM)

Command Sequence:

FILL (LONG) (MSDATA LS DATA MEHORY
7 J \UNOT READY" / ™ \UNOT READY" LOCATION "NOT READY"
XXX NEXT CMD NEXT CMD
"ILLEGAL" 'NOT READY" {CMD COMPLETE,

XXX) (_ NEXT CMD
_BERR _J = \UNOTREADYY/

FILL (BW)

DATA MVEVQ'SEY ‘ ,; XXX :
"NOT READY" LOCATION ONOT READYY/

XXX NEXT CMD ”_NEXTCMD
"ILLEGAL" "NOT READY" CMD COMPLETE

XXX NEXT CMD

BERR "NOT READY"

Figure 5-31. FiLL Command Sequence

Operand Data: A single operand is data to be written to the memory location. Byte
data is sent as a 16-bit word, justified in the least-significant byte; 16-
and 32-bit operands are sent as 16 and 32 bits, respectively.

Result Data: Command complete status (OXFFFF) is returned when the register
write is complete. A value of 0x0001 (with S set) is returned if a bus
eITor OCcCurs.

5-38 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.7 Resume Execution (Go)

The pipeline is flushed and refilled before normal instruction execution resumes.
Prefetching begins at the current address in the PC and at the current privilege level. If any
register (such as the PC or SR) is altered by a BDM command while the processor is halted,
the updated value is used when prefetching resumes. If a GO command is issued and the
CPU is not halted, the command is ignored.

15 12 11 8 7 4 3 0

0x0 0xC 0x0 0x0

Figure 5-32. co Command Format

Command Sequence:

(GO > NEXTCMD
m J \.cMb coMPLETEY/

Figure 5-33. Go Command Sequence

Operand Data: None

Result Data: The command-complete response (OxFFFF) is returned during the
next shift operation.

(M) moToroLA Chapter 5. Debug Support 5-39

W
‘ k <ground Debug Mode (BDM)
5.5.3.3.8 No Operation (nOP)
NOP performs no operation and may be used as a null command where required.
Command Formats:

15 12 11 8 7 4 3 0

0x0 0x0 0x0 0x0

Figure 5-34. Nor Command Format

Command Sequence:

[NOP > NEXT CMD
m J \CMD COMPLETE)
Figure 5-35. NoP Command Sequence

Operand Data: None

Result Data: The command-complete response, OXFFFF (with S cleared), is
returned during the next shift operation.

5-40 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.9 Synchronize PC to the PSTDDATA Lines (SYNC_PC)

The SYNC_PC command captures the current PC and displays it on the PSTDDATA outputs.
After the debug module receives the command, it sends a signal to the ColdFire processor
that the current PC must be displayed. The processor then forces an instruction fetch at the
next PC with the address being captured in the DDATA logic under control of CSR[BTB].
The specific sequence of PSTDDATA values is as follows:

1. Debug signals a SYNC_PC command is pending.

2. CPU completes the current instruction.

3. CPU forces an instruction fetch to the next PC, generates a PST = 0x5 value
indicating a taken branch and signals the capture of DDATA.

4. The instruction address corresponding to the PC is captured.

5. The PST marker (0x9-0xB) is generated and displayed as defined by CSR[BTB]
followed by the captured PC address.

The SYNC_PC command can be used to dynamically access the PC for performance
monitoring. The execution of this command is considerably less obtrusive to the real-time
operation of an application than a HALT-CPU/READ-PC/RESUME command sequence.

Command Formats:

15 12 11 8 7 4 3 0
0x0 ‘ 0x0 ‘ 0x0 ‘ oxd

Figure 5-36. sYNC_PCc Command Format

téYNCf’C \ > NEXT CMD
m J \CMD COMPLETE)

Figure 5-37. sYNC_Pc Command Sequence

Command Sequence:

Operand Data: None

Result Data: Command complete status (OXFFFF) is returned when the register
write is complete.

(M) moToroLA Chapter 5. Debug Support 5-41

h -

<ground Debug Mode (BDM)

5.5.3.3.10 Read Control Register (RCREG)

Read the selected control register and return the 32-bit result. Accesses to the
processor/memory control registers are always 32 bits wide, regardless of register width.
The second and third words of the command form a 32-bit address, which the debug
module uses to generate a special bus cycle to access the specified control register. The
12-bit Rc field is the same as that used by the MOVEC instruction.

Command/Result Formats:

15 12 N 8 7 4 3 0
Command 0x2 0x9 0x8 0x0
0x0 0x0 0x0 0x0
0x0 Rc
Result D[31:16]
D[15:0]

Figure 5-38. RCREG Command/Result Formats

Rc encoding:
Table 5-23. Control Register Map

Rc Register Definition Re Register Definition

0x002 | Cache control register (CACR) 0x805 | MAC mask register (MASK)

0x004 | Access control register 0 (ACRO) 0x806 | MAC accumulator (ACC)

0x005 | Access control register 1 (ACR1) 0x80E | Status register (SR)

0x006 | Access control register 2 (ACR2) 0x80F | Program register (PC)

0x007 | Access control register 2 (ACR3) 0xC04 | RAM base address register (RAMBARO)
0x801 | Vector base register (VBR) 0xCO05 | RAM base address register (RAMBART)
0x804 | MAC status register (MACSR) 0xCOF | Memory base address (MBAR)

Command Sequence:

RCREG COFLETAF?OL ‘ [xx N J
'NOT READY “NOT READY REQISTER UNOT READYY/

(NEXT CMD
\LSRESULT /J

> NEXT CMD
_BERR _/ \UNOT READYY/

Figure 5-39. RCREG Command Sequence

Operand Data: The only operand is the 32-bit Rc control register select field.

Result Data: Control register contents are returned as a longword,
most-significant word first. The implemented portion of registers
smaller than 32 bits is guaranteed correct; other bits are undefined.

5-42 MCF5407 User’s Manual (M) moToroLa

Background Debug Mode (BDM)

5.5.3.3.11 Write Control Register (WCREG)

The operand (longword) data is written to the specified control register. The write alters all
32 register bits.

Command/Result Formats:

15 12 N 8 7 4 3 0
Command 0x2 0x8 0x8 0x0
0x0 0x0 0x0 0x0
0x0 Rc
Result D[31:16]
D[15:0]

Figure 5-40. WcREG Command/Result Formats

Command Sequence:

WCREG MS ADDR MS ADDR
7? NOT READY, NOT READY)

MS DATA

WRITE
CONTROL ‘ Cxx N J
NOT READY. REGISTER \ NOT READY.
NEXT CMD
!CMD COMPLETE!

Figure 5-41. wcREG Command Sequence
Operand Data: This instruction requires two longword operands. The first selects the

register to which the operand data is to be written; the second
contains the data.

Result Data: Successful write operations return OXFFFF. Bus errors on the write
cycle are indicated by the setting of bit 16 in the status message and
by a data pattern of 0x0001.

(M) moToroLA Chapter 5. Debug Support 5-43

h -

<ground Debug Mode (BDM)

5.5.3.3.12 Read Debug Module Register (RDMREG)

Read the selected debug module register and return the 32-bit result. The only valid register
selection for the RDMREG command is CSR (DRc = 0x00). Note that this read of the CSR
clears the trigger status bits (CSR[BSTAT]) if either a level-2 breakpoint has been triggered
or a level-1 breakpoint has been triggered and no level-2 breakpoint has been enabled.

Command/Result Formats:

15 12 1 8 7 5 4 0
Command ox2 0xD ox4! DRc
Result D[31:16]
D[15:0]

Figure 5-42. RDMREG BDM Command/Result Formats
' Note 0x4 is a 3-bit field

Table 5-24 shows the definition of DRc encoding.
Table 5-24. Definition of DRc Encoding—Read

DRcl[4:0] Debug Register Definition Mnemonic Initial State Page
0x00 Configuration/Status CSR 0x0 p. 5-13
0x01-0x1F Reserved — — —

Command Sequence:

RDMREG XXX NEXT CMD
\WS RESULT/ LS RESULT

ol XXX\ (~NEXT CMD
\ILLEGAL" / ’\”jOT READYY/

Figure 5-43. RDMREG Command Sequence

Operand Data: None

Result Data: The contents of the selected debug register are returned as a
longword value. The data is returned most-significant word first.

5-44 MCF5407 User’s Manual (M) moToroLa

Real-Time Debug Support

5.5.3.3.13 Write Debug Module Register (WDMREG)

The operand (longword) data is written to the specified debug module register. All 32 bits
of the register are altered by the write. DSCLK must be inactive while the debug module
register writes from the CPU accesses are performed using the WDEBUG instruction.

Command Format:
Figure 5-44. wbMREG BDM Command Format

15 12 11 8 7 5 4 0

ox2 0xC ox4! DRc

D[31:16]

D[15:0]

T Note: 0x4 is a three-bit field

Table 5-6 shows the definition of the DRc write encoding.

Command Sequence:

(~ WDMREG /~ MSDATAY /LSDATAY _ / NEXTCMD
. 27? /7~ \WNOTREADY/ ~ \WOTREADYY ~ _'CMD COMPLETE"/

v XXX\ / NEXT CMD
T\UILLEGAL/ ~ \NOT READYY/

Figure 5-45. wbDMREG Command Sequence

Operand Data: Longword data is written into the specified debug register. The data
is supplied most-significant word first.

Result Data: Command complete status (OxFFFF) is returned when register write
is complete.

5.6 Real-Time Debug Support

The ColdFire Family provides support debugging real-time applications. For these types of
embedded systems, the processor must continue to operate during debug. The foundation
of this area of debug support is that while the processor cannot be halted to allow
debugging, the system can generally tolerate small intrusions into the real-time operation.

The debug module provides three types of breakpoints—PC with mask, operand address
range, and data with mask. These breakpoints can be configured into one- or two-level
triggers with the exact trigger response also programmable. The debug module
programming model can be written from either the external development system using the
debug serial interface or from the processor’s supervisor programming model using the
WDEBUG instruction. Only CSR is readable using the external development system.

(M) moToroLA Chapter 5. Debug Support 5-45

-Time Debug Support

5.6.1 Theory of Operation

Breakpoint hardware can be configured to respond to triggers in several ways. The response
desired is programmed into TDR. As shown in Table 5-25, when a breakpoint is triggered,
an indication (CSR[BSTAT]) is provided on the PSTDDATA output port when it is not
displaying captured processor status, operands, or branch addresses. See Section 5.3.2,
“Processor Stopped or Breakpoint State Change (PST = OxE).”

Table 5-25. PSTDDATA Nibble/CSR[BSTAT] Breakpoint Response

PSTDDATA Nibble/CSR[BSTAT] 1 Breakpoint Status
0000/0000 No breakpoints enabled
0010/0001 Waiting for level-1 breakpoint
0100/0010 Level-1 breakpoint triggered
1010/0101 Waiting for level-2 breakpoint
1100/0110 Level-2 breakpoint triggered

1 Encodings not shown are reserved for future use.

The breakpoint status is also posted in CSR. Note that CSR[BSTAT] is cleared by a CSR
read when either a level-2 breakpoint is triggered or a level-1 breakpoint is triggered and a
level-2 breakpoint is not enabled. Status is also cleared by writing to either TDR or XTDR.

BDM instructions use the appropriate registers to load and configure breakpoints. As the
system operates, a breakpoint trigger generates the response defined in TDR.

PC breakpoints are treated in a precise manner —exception recognition and processing are
initiated before the excepting instruction is executed. All other breakpoint events are
recognized on the processor’s local bus, but are made pending to the processor and sampled
like other interrupt conditions. As a result, these interrupts are imprecise.

In systems that tolerate the processor being halted, a BDM-entry can be used. With
TDR[TRC] =01, a breakpoint trigger causes the core to halt (PST = 0xF).

If the processor core cannot be halted, the debug interrupt can be used. With this
configuration, TDR[TRC] = 10, the breakpoint trigger becomes a debug interrupt to the
processor, which is treated higher than the nonmaskable level-7 interrupt request. As with
all interrupts, it is made pending until the processor reaches a sample point, which occurs
once per instruction. Again, the hardware forces the PC breakpoint to occur before the
targeted instruction executes. This is possible because the PC breakpoint is enabled when
interrupt sampling occurs. For address and data breakpoints, reporting is considered
imprecise because several instructions may execute after the triggering address or data is
detected.

As soon as the debug interrupt is recognized, the processor aborts execution and initiates
exception processing. This event is signaled externally by the assertion of a unique PST
value (PST = 0xD) for multiple cycles. The core enters emulator mode when exception

5-46 MCF5407 User’s Manual (M) moToroLa

Real-Time Debug Support

processing begins. After the standard 8-byte exception stack is created, the processor
fetches a unique exception vector from the vector table. Table 5-26 describes the two
unique entries that distinguish PC breakpoints from other trigger events.

Table 5-26. Exception Vector Assignments

Vector Number | Vector Offset (Hex) Stacked Program Counter Assignment
12 0x030 Next Non-PC-breakpoint debug interrupt
13 0x034 Next PC-breakpoint debug interrupt

In the case of a two-level trigger, the last breakpoint event determines the exception vector;
however, if the second-level trigger is PC Il Address {&& Data} (as shown in the last
condition in the code example in Section 5.4.9, “Resulting Set of Possible Trigger
Combinations”), the vector taken is determined by the first condition that occurs after the
first-level trigger— vector 13 if PC occurs first or vector 12 if Address {&& Data} occurs
first. If both occur simultaneously, the non-PC-breakpoint debug interrupt is taken (vector
number 12).

Execution continues at the instruction address in the vector corresponding to the breakpoint
triggered. The debug interrupt handler can use supervisor instructions to save the necessary
context such as the state of all program-visible registers into a reserved memory area.

During a debug interrupt service routine, all normal interrupt requests are evaluated and
sampled once per instruction. If any exception occurs, the processor responds as follows:

1. It saves a copy of the current value of the emulator mode state bit and then exits
emulator mode by clearing the actual state.

2. Bit 1 of the fault status field (FS1) in the next exception stack frame is set to indicate
the processor was in emulator mode when the interrupt occurred. This corresponds
to bit 17 of the longword at the top of the system stack. See Section 2.8.1,
“Exception Stack Frame Definition.”

3. It passed control to the appropriate exception handler.

4. Tt executes an RTE instruction when the exception handler finishes. During the
processing of the RTE, FS1 is reloaded from the system stack. If this bit is set, the
processor sets the emulator mode state and resumes execution of the original debug
interrupt service routine. This is signaled externally by the generation of the PST
value that originally identified the debug interrupt exception, that is, PST = 0xD.

Fault status encodings are listed in Table 2-21. Implementation of this debug interrupt
handling fully supports the servicing of a number of normal interrupt requests during a
debug interrupt service routine. The emulator mode state bit is essentially changed to be a
program-visible value, stored into memory during exception stack frame creation, and
loaded from memory by the RTE instruction.

When debug interrupt operations complete, the RTE instruction executes and the processor
exits emulator mode. After the debug interrupt handler completes execution, the external

(M) moToroLA Chapter 5. Debug Support 5-47

-Time Debug Support

development system can use BDM commands to read the reserved memory locations.

The generation of another debug interrupt during the first instruction after the RTE exits
emulator mode is inhibited. This behavior is consistent with the existing logic involving
trace mode where the first instruction executes before another trace exception is generated.
Thus, all hardware breakpoints are disabled until the first instruction after the RTE
completes execution, regardless of the programmed trigger response.

5.6.1.1 Emulator Mode

Emulator mode is used to facilitate non-intrusive emulator functionality. This mode can be
entered in three different ways:

* Setting CSR[EMUY] forces the processor into emulator mode. EMU is examined
only if RSTT is negated and the processor begins reset exception processing. It can
be set while the processor is halted before reset exception processing begins. See
Section 5.5.1, “CPU Halt.”

* A debug interrupt always puts the processor in emulation mode when debug
interrupt exception processing begins.

» Setting CSR[TRC] forces the processor into emulation mode when trace exception
processing begins.

While operating in emulation mode, the processor exhibits the following properties:
* Unmasked interrupt requests are serviced. The resulting interrupt exception stack
frame has FS[1] set to indicate the interrupt occurred while in emulator mode.

* If CSR[MAP] =1, all caching of memory and the SRAM module are disabled. All
memory accesses are forced into a specially mapped address space signaled by
TT =2, TM =5 or 6. This includes stack frame writes and the vector fetch for the
exception that forced entry into this mode.

The return-from-exception (RTE) instruction exits emulation mode. The processor status
output port provides a unique encoding for emulator mode entry (0xD) and exit (0x7).

5.6.2 Concurrent BDM and Processor Operation

The debug module supports concurrent operation of both the processor and most BDM
commands. BDM commands may be executed while the processor is running, except those
following operations that access processor/memory registers:

* Read/write address and data registers

* Read/write control registers
For BDM commands that access memory, the debug module requests the processor’s local
bus. The processor responds by stalling the instruction fetch pipeline and waiting for

current bus activity to complete before freeing the local bus for the debug module to
perform its access. After the debug module bus cycle, the processor reclaims the bus.

5-48 MCF5407 User’s Manual (M) moToroLa

Motorola-Recommended BDM Pinout

Breakpoint registers must be carefully configured in a development system if the processor
is executing. The debug module contains no hardware interlocks, so TDR and XTDR
should be disabled while breakpoint registers are loaded, after which TDR and XTDR can
be written to define the exact trigger. This prevents spurious breakpoint triggers.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed
while the CPU is writing the debug’s registers (DSCLK must be inactive).

5.7 Motorola-Recommended BDM Pinout
The ColdFire BDM connector, Figure 5-46, is a 26-pin Berg connector arranged 2 x 13.

Developer reserved ' 1 2l ———» BKPT
GND — >3 4 —> DSCLK
GND ——»5 6 Developer reserved'
RESET - 7 8§ —> DSI
+33V2 ——— 9 10 «——— DSO
GND — 11 12 jfe——m PSTDDATA7
PSTDDATA6 ——FF—F—F > 13 14 |j—— PSTDDATA5
PSTDDATA4 — > 15 16 jf€«—m PSTDDATA3
PSTDDATA2 —_— 17 18 «——— PSTDDATA1
PSTDDATAO —» 19 20 e—— GND
Motorola reserved 21 22 Motorola reserved
GND —»{ 23 24 l—— PSTCLK
VDD CPU —»25 26 ———» TA

1 Pins reserved for BDM developer use.
2 Supplied by target.

Figure 5-46. Recommended BDM Connector

5.8 Debug C Definition of PSTDDATA Outputs

This section specifies the ColdFire processor and debug module’s generation of the
PSTDDATA output on an instruction basis. In general, the PSTDDATA output for an
instruction is defined as PSTDDATA = 1, {[89B], operand} where the {...} definition is
optional operand information defined by the setting of the CSR. The [89B] signifies a PST
value that is a marker identifying the presence and size of valid data to follow. A PST value
of 0x8 (1 byte of data), 0x9 (2 bytes), or 0xB (4 bytes) is displayed before the data output.

The CSR allows operands to be displayed based on reference type (read, write, or both). A
PST value {0x8, 0x9, or 0xB} identifies the size and presence of valid data to follow on the
PSTDDATA output {1, 2, or 4 bytes}. Additionally, for certain change-of-flow branch
instructions, CSR[9,8] provides the ability to display {0x2, 0x3, or 0x4} bytes of the target
instruction address. A PST value {0x9, 0xA, or 0xB} provides the marker identifying the
size and presence of a valid target address on the PSTDDATA output.

(M) moToroLA Chapter 5. Debug Support 5-49

h -

ug C Definition of PSTDDATA Outputs

5.8.1 User Instruction Set

Table 5-27 shows the PSTDDATA specification for user-mode instructions.
Table 5-27. PSTDDATA Specification for User-Mode Instructions

Instruction Syntax PSTDDATA
add.| <ea>y,Rx PSTDDATA = 1, {B, source operand}
add.| Dy,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
addi.l #imm,Dx PSTDDATA = 1
addq.| #imm,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
addx.| Dy,Dx PSTDDATA = 1
and.| <ea>y,Dx PSTDDATA = 1, {B, source operand}
and.| Dy,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
andi.l #imm,Dx PSTDDATA = 1
asl.| {Dy,#imm},Dx PSTDDATA = 1
asr.l {Dy, #imm},Dx PSTDDATA = 1
bee.{b,w,1} if taken, then PSTDDATA = 5, else PSTDDATA =1
bchg Dy,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
bchg #imm,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
belr Dy,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
bclr #imm,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
bra.{b,w,} PSTDDATA =5
bset Dy,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
bset #imm,<ea>x PSTDDATA = 1, {8, source}, {8, destination}
bsr.{b,w,I} PSTDDATA = 5, {B, destination operand}
btst Dy,<ea>x PSTDDATA = 1, {8, source operand}
btst #imm,<ea>x PSTDDATA = 1, {8, source operand}
clr.b <ea>x PSTDDATA = 1, {8, destination operand}
clrw <ea>Xx PSTDDATA = 1, {9, destination operand}
clr.l <ea>x PSTDDATA = 1, {B, destination operand}
cmp.b <ea>y,Rx PSTDDATA = 1, {8, source operand}
cmp.w <ea>y,Rx PSTDDATA = 1, {9, source operand}
cmp.| <ea>y,Rx PSTDDATA = 1, {B, source operand}
cmpi.b #imm,Dx PSTDDATA = 1
cmpi.w #imm,Dx PSTDDATA = 1
cmpi.l #imm,Dx PSTDDATA = 1
divs.| <ea>y,Dx PSTDDATA = 1, {B, source operand}
divs.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
divu.l <ea>y,Dx PSTDDATA = 1, {B, source operand}
5-50 MCF5407 User’s Manual (M) moToroLa

Debug C Definition of PSTDDATA Outputs

Table 5-27. PSTDDATA Specification for User-Mode Instructions (Continued)

Instruction Syntax PSTDDATA
divu.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
eor.l Dy,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
eori.l #imm,Dx PSTDDATA = 1
ext.w Dx PSTDDATA =1
ext.l Dx PSTDDATA = 1
extb.| Dx PSTDDATA = 1
jmp <ea>x PSTDDATA = 5, {[9AB], target address} '
jsr <ea>Xx PSTDDATA = 5, {[9AB], target address},{B, destination operand} 1
lea <ea>y,Ax PSTDDATA = 1
link.w Ay, #imm PSTDDATA = 1, {B, destination operand}
Isl.l {Dy,#imm},Dx PSTDDATA = 1
Isr.| {Dy,#imm},Dx PSTDDATA = 1
mac.| Ry,Rx PSTDDATA = 1
mac.! Ry,Rx,ea,Rw PSTDDATA = 1, {B, source operand}
mac.w Ry,Rx PSTDDATA = 1
mac.w Ry,Rx,ea,Rw PSTDDATA = 1, {B, source operand}
mov3q.l #imm,<ea>Xx PSTDDATA = 1, {B, destination operand}
move.b <ea>y,<ea>X PSTDDATA = 1, {8, source}, {8, destination}
move.w <ea>y,<ea>X PSTDDATA = 1, {9, source}, {9, destination}
move.| <ea>y,<ea>X PSTDDATA = 1, {B, source}, {B, destination}
move.| <ea>y,ACC PSTDDATA = 1
move.| <ea>y,MACSR PSTDDATA =1
move.| <ea>y,MASK PSTDDATA =1
move.| ACC,Rx PSTDDATA = 1
move.| MACSR,CCR PSTDDATA = 1
move.| MACSR,Rx PSTDDATA = 1
move.| MASK,Rx PSTDDATA = 1
move.w CCR,Dx PSTDDATA = 1
move.w {Dy,#imm},CCR PSTDDATA = 1
movem.| <ea>y,#list PSTDDATA = 1, {B, source},... 2
movem.| #list,<ea>x PSTDDATA = 1, {B, destination},...2
moveq #imm,Dx PSTDDATA = 1
msac.| Ry,Rx PSTDDATA = 1
msac.| Ry,Rx,ea,Rw PSTDDATA = 1, {B, source operand}
msac.w Ry,Rx PSTDDATA = 1
msac.w Ry,Rx,ea,Rw PSTDDATA = 1, {B, source operand}

@ MOTOROLA

Chapter 5. Debug Support 5-51

|
y

'
A

ug C Definition of PSTDDATA Outputs

Table 5-27. PSTDDATA Specification for User-Mode Instructions (Continued)

Instruction Syntax PSTDDATA
muls.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
mulu.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
muls.| <ea>y,Dx PSTDDATA = 1, {B, source operand}
mulu.| <ea>y,Dx PSTDDATA = 1, {B, source operand}
mvs.b <ea>y,Dx PSTDDATA = 1, {8, source operand}
mvs.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
mvz.b <ea>y,Dx PSTDDATA = 1, {8, source operand}
mvz.w <ea>y,Dx PSTDDATA = 1, {9, source operand}
neg.| Dx PSTDDATA =1
negx.| Dx PSTDDATA =1
nop PSTDDATA = 1
not.| Dx PSTDDATA = 1
orl <ea>y,Dx PSTDDATA = 1, {B, source operand}
orl Dy,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
ori.l #imm,Dx PSTDDATA = 1
pea <ea>y PSTDDATA = 1, {B, destination operand}
pulse PSTDDATA =4
rems.| <ea>y,Dx:Dw PSTDDATA = 1, {B, source operand}
remu.| <ea>y,Dx:Dw PSTDDATA = 1, {B, source operand}
rts (not predicted) PSTDDATA=1, {B, source operand},

PSTDDATA=5, {[9AB], target address}
rts (predicted) 3 PSTDDATA=1, {B, source operand}, 5
sats.| Dx PSTDDATA = 1
scc Dx PSTDDATA = 1
sub.| <ea>y,Rx PSTDDATA = 1, {B, source operand}
sub.| Dy,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
subi.| #imm,Dx PSTDDATA = 1
subq.l #imm,<ea>x PSTDDATA = 1, {B, source}, {B, destination}
subx.| Dy,Dx PSTDDATA = 1
swap Dx PSTDDATA = 1
tas <ea>x PSTDDATA = 1, {8, source}, {8, destination}
trap #imm PSTDDATA =14
tpf PSTDDATA = 1
tpf.w PSTDDATA = 1
tpf.l PSTDDATA = 1
tst.b <ea>x PSTDDATA = 1, {8, source operand}
5-52 MCF5407 User’s Manual (M) moToroLa

Debug C Definition of PSTDDATA Outputs

Table 5-27. PSTDDATA Specification for User-Mode Instructions (Continued)

Instruction Syntax PSTDDATA
tst.w <ea>x PSTDDATA = 1, {9, source operand}
tst.l <ea>Xx PSTDDATA = 1, {B, source operand}
unlk Ax PSTDDATA = 1, {B, destination operand}
wddata.b <ea>y PSTDDATA = 4, 8, source operand
wddata.w <ea>y PSTDDATA = 4, 9, source operand
wddata.l <ea>y PSTDDATA = 4, B, source operand

For JMP and JSR instructions, the optional target instruction address is displayed only for those effective
address fields defining variant addressing modes. This includes the following <ea>x values: (An), (d16,An),
(d8,An,Xi), (d8,PC,Xi).

For move multiple instructions (MOVEM), the processor automatically generates line-sized transfers if the
address reaches a cache line (0-modulo-16) boundary four or more registers are to be transferred. For these
line-sized transfers, the operand data is never captured nor displayed, regardless of the CSR value.
Automatic line-sized burst transfers maximize performance for these sequential memory accesses.

8 The source operand in predicted RTS is displayed if CSR[12] and/or (CSR[9] or CSR[8]) is set.

During normal exception processing, PSTDDATA outputs are driven to 0xC. The exception stack write operands
and the vector read and target address of the exception handler may also be displayed.

Rn represents any {Dn, An} register. In this definition, the ‘y’ suffix generally denotes the
source and ‘x’ denotes the destination operand. For a given instruction, the optional
operand data is displayed only for those effective addresses referencing memory.

Exception Processing

PSTDDATA = C,{B, destination},// stack frame
{B, destination},// stack frame
{B, source},// vector read

PSTDDATA = 5,{[9AB], target}// PC of handler

The PSTDDATA specification for the reset exception is shown below:

Exception Processing

PSTDDATA
PSTDDATA

c,
5,{[9AB], target}// initial PC

The initial references at address 0 and 4 are never captured nor displayed since these
accesses are treated as instruction fetches.

For all types of exception processing, the PSTDDATA = 0xC value is driven at all times,
unless the PSTDDATA output is needed for one of the optional marker values or for the
taken branch indicator (0x5).

5.8.2 Supervisor Instruction Set

The supervisor instruction set has complete access to the user mode instructions plus the
opcodes shown below. Table 5-28 shows the PSTDDATA specification for these opcodes.

(M) moToroLA Chapter 5. Debug Support 5-53

V¥ ¢
)

k ug C Definition of PSTDDATA Outputs

Table 5-28. PSTDDATA Specification for Supervisor-Mode Instructions

Instruction Syntax PSTDDATA
cpushl PSTDDATA =1
halt PSTDDATA =1,
PSTDDATA =F
intouch PSTDDATA = 1
move.w SR,Dx PSTDDATA =1
move.w {Dy,#imm},SR PSTDDATA =1, {3}
movec Ry,Rc PSTDDATA = 1
rte PSTDDATA = 7, {B, source operand}, {3},{B, source operand}, {DD},
PSTDDATA = 5, {[9AB], target address}
stop #imm PSTDDATA =1,
PSTDDATA =E
wdebug <ea>y PSTDDATA = 1, {B, source, B, source}

The move-to-SR and RTE instructions include an optional PSTDDATA = 0x3 value,
indicating an entry into user mode. Additionally, if the execution of a RTE instruction
returns the processor to emulator mode, a multiple-cycle status of OxD is signaled.

Similar to the exception processing mode, the stopped state (PSTDDATA = OxE) and the
halted state (PSTDDATA = OxF) display this status throughout the entire time the ColdFire
processor is in the given mode.

5-54 MCF5407 User’s Manual (M) moToroLa

Part Il
System Integration Module (SIM)

Intended Audience

Part Il is intended for users who need to understand the interface between the ColdFire core
processor complex, described in Part I, and internal peripheral devices, described in
Part III. It includes a general description of the SIM and individual chapters that describe
components of the SIM, such as the phase-lock loop (PLL) timing source, interrupt
controller for both on-chip and external peripherals, configuration and operation of chip
selects, and the SDRAM controller.

Contents

Part IT contains the following chapters:

Chapter 6, “SIM Overview,” describes the SIM programming model, bus
arbitration, and system-protection functions for the MCF5407.

Chapter 7, “Phase-Locked Loop (PLL),” describes configuration and operation of
the PLL module. It describes in detail the registers and signals that support the PLL
implementation.

Chapter 8, “I2C Module,” describes the MCF5407 12C module, including 12C
protocol, clock synchronization, and the registers in the I2C programing model. It
also provides extensive programming examples.

Chapter 9, “Interrupt Controller,” describes operation of the interrupt controller
portion of the SIM. Includes descriptions of the registers in the interrupt controller
memory map and the interrupt priority scheme.

Chapter 10, “Chip-Select Module,” describes the MCF5407 chip-select
implementation, including the operation and programming model, which includes
the chip-select address, mask, and control registers.

Chapter 11, “Synchronous/Asynchronous DRAM Controller Module,” describes
configuration and operation of the synchronous/asynchronous DRAM controller
component of the SIM. It begins with a general description and brief glossary, and

(M) moToroLA Part Il. System Integration Module (SIM) II-i

includes a description of signals involved in DRAM operations. The remainder of
the chapter is divided between descriptions of asynchronous and synchronous
operations.

Suggested Reading

The following literature may be helpful with respect to the topics in Part II:
e The I°C Bus Specification, Version 2.1 (January 2000)

Acronyms and Abbreviations

Table II-i contains acronyms and abbreviations are used in Part II.

Table II-i. Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
BDM Background debug mode
CODEC Code/decode
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose /0
1’C Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
LIFO Last-in, first-out
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex

MCF5407 User’s Manual

@ MOTOROLA

Table II-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
NOP No operation
PCLK Processor clock
PLL Phase-locked loop
POR Power-on reset
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit
UART Universal asynchronous/synchronous receiver transmitter

(M) moToroLA Part II. System Integration Module (SIM)

g |

ll-iv

MCF5407 User’s Manual

@ MOTOROLA

Chapter 6
SIM Overview

This chapter provides detailed operation information regarding the system integration
module (SIM). It describes the SIM programming model, bus arbitration, and
system-protection functions for the MCF5407.

6.1 Features

The SIM, shown in Figure 6-1, provides overall control of the bus and serves as the
interface between the ColdFire core processor complex and the internal peripheral devices.

CLKIN (to on-chip peripherals)

V4 COLDFIRE PROCESSOR COMPLEX

CLKIN 4 p| {— PCLK
RSTI—{ Xn | RSTO
A A
Y
SYSTEM INTEGRATION MODULE (SIM)
PLL Control System Control Base Address Bus Master Park Parallel Port
PLL RSR SWIVR MBAR MPARK PAR
—/ L 1 [] L 1 —// —//
SYPCR SWSR
— /)
DRAM Controller Chip Select Module External Interrupt Controller

DRAM Control

Bus Interface

10 ICRs IRQPAR
—

DCR 8 8 8
— CSARs CSCRs CSMRs PR
Addr/Cntrl Mask MR
DACRO/1 - DMRO/1 V=
L 1 L 1 —//
8 ; 4
Yy 32-Bit Data Bus
DRAM Controller Outputs CS[7:0] Yy 32-Bit Address Bus IRQ[1,3,5,7]

@ MOTOROLA

Control Signals

Figure 6-1. SIM Block Diagram

Chapter 6. SIM Overview

| Channels

DMA

Four

[| Watchdog

Software

I2C Module

[|Two UARTS|

Two
General-
Purpose

Timers

6-1

3
4

y
A

ures

The following is a list of the key SIM features:

6-2

Module base address register (MBAR)

— Base address location of all internal peripherals and SIM resources

— Address space masking to internal peripherals and SIM resources

Phase-locked loop (PLL) clock control register (PLLCR) for CPU STOP instruction
— Control for turning off clocks to core and interrupt levels that turn clocks back on
Chapter 7, “Phase-Locked Loop (PLL).”

Interrupt controller

— Programmable interrupt level (1-7) for internal peripheral interrupts

— Programmable priority level (0-3) within each interrupt level

— Four external interrupts; one set to interrupt level 7; three others programmable
to two interrupt levels

See Chapter 9, “Interrupt Controller.”
Chip select module

— Eight independent, user-programmable chip-select signals (CS[7:0]) that can
interface with SRAM, PROM, EPROM, EEPROM, Flash, and peripherals

— Address masking for 64-Kbyte to 4-Gbyte memory block sizes

— Programmable wait states and port sizes

— External master access to chip selects

See Chapter 10, “Chip-Select Module.”

System protection and reset status

— Reset status indicating the cause of last reset

— Software watchdog timer with programmable secondary bus monitor
See Section 6.2.4, “Software Watchdog Timer.”

Pin assignment register (PAR) configures the parallel port. See Section 6.2.9, “Pin
Assignment Register (PAR).”

Bus arbitration

— Default bus master park register (MPARK) controls internal and external bus
arbitration and enables display of internal accesses on the external bus for
debugging

— Supports several arbitration algorithms
See Section 6.2.10, “Bus Arbitration Control.”

MCF5407 User’s Manual (M) moToroLa

6.2 Programming Model

Programming Model

The following sections describe the registers incorporated into the SIM.

6.2.1 SIM Register Memory Map

Table 6-1 shows the memory map for the SIM registers. The internal registers in the SIM
are memory-mapped registers offset from the MBAR address pointer defined in
MBARI[BA]. This supervisor-level register is described in Section 6.2.2, “Module Base
Address Register (MBAR).” Because SIM registers depend on the base address defined in
MBAR[BA], MBAR must be programmed before SIM registers can be accessed.

NOTE:

Although external masters cannot access the MCF5407’s
on-chip memories or MBAR, they can access any of the SIM
memory map and peripheral registers, such as those belonging
to the interrupt controller, chip-select module, UARTS, timers,

DMA, and 1°C.
Table 6-1. SIM Registers
MBAR . i . .
Offset [31:24] [23:16] [15:8] [7:0]
0x000 Reset status register System protection Software watchdog Software watchdog
(RSR) [p. 6-5] control register interrupt vector register | service register (SWSR)
(SYPCR) [p. 6-8] (SWIVR) [p. 6-9] [p. 6-9]
0x004 Pin assignment register (PAR) [p. 6-10] Interrupt port Reserved
assignment register
(IRQPAR) [p. 9-7]
0x008 PLL control (PLLCR) Reserved
[p. 7-3]
0x00C Default bus master park Reserved
register (MPARK)
[p. 6-11]
0x010— Reserved
0x03C
Interrupt Controller Registers [p. 9-2]
0x040 Interrupt pending register (IPR) [p. 9-6]
0x044 Interrupt mask register (IMR) [p. 9-6]
0x048 Reserved Autovector register
(AVR) [p. 9-5]
Interrupt Control Registers (ICRs) [p. 9-3]

@ MOTOROLA

Chapter 6. SIM Overview

6-3

h -

jramming Model

Table 6-1. SIM Registers (Continued)

ngfsAeF: [31:24] [23:16] [15:8] [7:0]

0x04C Software watchdog Timer0 (ICR1) [p. 9-3] Timer1 (ICR2) [p. 9-3] [2C (ICR3) [p. 9-3]
timer (ICRO) [p. 9-3]

0x050 UARTO (ICR4) [p. 9-3] | UART1 (ICRS5) [p. 9-3] DMAO (ICR®) [p. 9-3] DMAT1 (ICR7) [p. 9-3]

0x054 DMA2 (ICRS8) [p. 9-3] DMA3 (ICR9) [p. 9-3] Reserved

6.2.2 Module Base Address Register (MBAR)

The supervisor-level MBAR, Figure 6-2, specifies the base address and allowable access
types for all internal peripherals. It is written with a MOVEC instruction using the CPU
address OxCOF. (See the ColdFire Family Programmer’s Reference Manual.) MBAR can
be read or written through the debug module as a read/write register, as described in
Chapter 5, “Debug Support.” Only the debug module can read MBAR.

The valid bit, MBAR[V], is cleared at system reset to prevent incorrect references before
MBAR is written; other MBAR bits are uninitialized at reset. To access internal peripherals,
write MBAR with the appropriate base address (BA) and set MBAR[V] after system reset.

All internal peripheral registers occupy a single relocatable memory block along 4-Kbyte
boundaries. If MBAR[V] is set, MBAR[BA] is compared to the upper 20 bits of the full
32-bit internal address to determine if an internal peripheral is being accessed. MBAR
masks specific address spaces using the address space fields. Attempts to access a masked
address space generate an external bus access.
Addresses hitting overlapping memory spaces take the following priority:

1. MBAR

2. SRAM and caches

3. Chip select

NOTE:
The MBAR region must be mapped to non-cacheable space.

— Attribute Mask Bits———

31 121110 9 8 7 6 5 4 3 2 1 0
Field BA ‘ —_ ‘WP‘—‘AM‘C/I‘SC‘SD‘UC‘UD \
Reset Undefined
R/W W (supervisor only); R/W through debug module (only the debug module can read MBAR)

Address CPU + 0xO0COF
Figure 6-2. Module Base Address Register (MBAR)
6-4 MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 6-2 describes MBAR fields.
Table 6-2. MBAR Field Descriptions

Bits | Field Description

31-12 | BA | Base address. Defines the base address for a 4-Kbyte address range.

11-9 — | Reserved, should be cleared.

8 WP | Write protect. Mask bit for write cycles in the MBAR-mapped register address range.
0 Module address range is read/write.
1 Module address range is read only.

7 — | Reserved, should be cleared.

6 AM | Alternate master mask. When AM = 0 and an alternate master (external master or DMA) accesses
MBAR-mapped registers, MBAR[SC,SD,UC,UD] are ignored in address decoding. These fields
mask address space, placing the MBAR-mapped register in a specific address space or spaces.

5 C/I | Mask CPU space and interrupt acknowledge cycles.
0 Activates the corresponding MBAR-mapped register
1 Regular external bus access

4 SC | Setting masks supervisor code space in MBAR address range
3 SD | Setting masks supervisor data space in MBAR address range
2 UC | Setting masks user code space in MBAR address range

1 UD | Setting masks user data space in MBAR address range

0 V | Valid. Determines whether MBAR settings are valid.

0 MBAR contents are invalid.
1 MBAR contents are valid.

The following example shows how to set the MBAR to location 0x1000_0000 using the DO
register. Setting MBAR[V] validates the MBAR location. This example assumes all
accesses are valid:

move.l #0x10000001,DO
movec DO,MBAR

6.2.3 Reset Status Register (RSR)

The reset status register (RSR), Figure 6-3, contains two status bits, HRST and SWTR.
Reset control logic sets one of the bits depending on whether the last reset was caused by
an external device asserting RSTI (HRST = 1) or by the software watchdog timer
(SWTR = 1). Only one RSR bit can be set at any time. If a reset occurs, reset control logic
sets only the bit that indicates the cause of reset.

7 6 5 4 0
Field| HRST — SWTR —
Reset| 1/0 0 1/0 0_0000
R/W Read/Write
Address MBAR + 0x000

Figure 6-3. Reset Status Register (RSR)

@ MOTOROLA Chapter 6. SIM Overview 6-5

3
4

'
A

jramming Model

Table 6-3 describes RSR fields.
Table 6-3. RSR Field Descriptions

Bits Name Description

7 HRST Hardware or system reset

1 An external device driving RSTI caused the last reset. Assertion of reset by an external
device causes the core processor to take a reset exception. All registers in internal
peripherals and the SIM are reset.

— Reserved, should be cleared.

SWTR Software watchdog timer reset
1 The last reset was caused by the software watchdog timer. If SYPCR[SWRI] = 1 and the
software watchdog timer times out, a hardware reset occurs.

4-0 — Reserved, should be cleared.

6.2.4 Software Watchdog Timer

The software watchdog timer prevents system lockup should the software become trapped
in loops with no controlled exit. The software watchdog timer can be enabled or disabled
through SYPCR[SWE]. If enabled, the watchdog timer requires the periodic execution of
a software watchdog servicing sequence. If this periodic servicing action does not occur,
the timer times out, resulting in a watchdog timer IRQ or hardware reset with RSTO driven
low, as programmed by SYPCR[SWRI].

If the timer times out and the software watchdog transfer acknowledge enable bit
(SYPCR[SWTAY]) is set, a watchdog timer IRQ is asserted. Note that the software watchdog
timer IACK cycle cannot be autovectored.

If a software watchdog timer IACK cycle has not occurred after another timeout, SWT TA
is asserted in an attempt to terminate the bus cycle and allow the IACK cycle to proceed.
The setting of SYPCR[SWTAVAL] indicates that the watchdog timer TA was asserted.
Figure 6-4 shows termination of a locked bus.

6-6 MCF5407 User’s Manual (M) moToroLa

Programming Model

Code in the watchdog timer interrupt

Cod bl t tchdog fi int t and handler polls SYPCR[SWTAVAL] to
ode enables software watchdog timer interrupt an determine if SWT TA was needed. If so
WTA funct lit t YPCR. ' ’
s un? tonality by writing SYPC execute code to identify bad address.
<j_> Problem: <—>
1. Watchdog timer times out due to unterminated bus

_> NOTE: The watchdo% timer IRQ should
be set to the highestlevel in the system.

Software
watchdog B E—
timer IRQ Timeout

2. Watchdog timer interrupt cannot be serviced duelto hung bus
cycle. Wait for another timeout before setting SYPGR[SWTA].

\ 3. TA held until another

bus cycle starts

Software
watchdog -~
timer TA Timeout

SYPCR[SWTAVAL] '

\
*/H

T SWTAVAL is set if watchdog timer TA is asserted. Watchdog timer
IACK cycle

Figure 6-4. MCF5407 Embedded System Recovery from Unterminated Access

When the watchdog timer times out and SYPCR[SWRI] is programmed for a software
reset, an internal reset is asserted and RSR[SWTR] is set.

To prevent the watchdog timer from interrupting or resetting, the SWSR must be serviced
by performing the following sequence:

1. Write 0x55 to SWSR.
2. Write OxAA to the SWSR.

Both writes must occur in order before the timeout, but any number of instructions or
SWSR accesses can be executed between the two writes. This order allows interrupts and
exceptions to occur, if necessary, between the two writes.

Caution should be exercised when changing SYPCR values after the software watchdog
timer has been enabled with the setting of SYPCR[SWE], because it is difficult to
determine the state of the watchdog timer while it is running. The countdown value is
constantly compared with the timeout period specified by SYPCR[SWP,SWT]. Therefore,
altering SWP and SWT improperly causes unpredictable processor behavior. The following
steps must be taken to change SWP or SWT:

@ MOTOROLA Chapter 6. SIM Overview 6-7

jramming Model

1. Disable the software watchdog timer by clearing SYPCR[SWE].

2. Reset the counter by writing 0x55 and then OxAA to SWSR.

3. Update SYPCR[SWT,SWP].

4. Reenable the watchdog timer by setting SYPCR[SWE]. This can be done in step 3.

6.2.5 System Protection Control Register (SYPCR)

The SYPCR, Figure 6-5, controls the software watchdog timer, timeout periods, and
software watchdog timer transfer acknowledge. The SYPCR can be read at any time, but
can be written only if a software watchdog timer IRQ is not pending. At system reset, the
software watchdog timer is disabled.

7 6 5 4 3 2 1 0
Field] SWE ‘ SWRI ‘ SWP ‘ SWT ‘ SWTA ‘SWTAVAL‘ —
Reset 0000_0000
R/W R/W
Address MBAR + 0x01

Figure 6-5. System Protection Control Register (SYPCR)

Table 6-4 describes SYPCR fields.
Table 6-4. SYPCR Field Descriptions

Bits Name Description

7 SWE Software watchdog timer enable
0 Software watchdog timer disabled
1 Software watchdog timer enabled

6 SWRI Software watchdog reset/interrupt select

0 If a timeout occurs, the watchdog timer generates an interrupt to the core processor at the
level programmed into ICROJIL].

1 The software watchdog timer causes soft reset to be asserted for all modules of the part
except for the PLL (reset mode selects, such as PP_RESET_SEL or chip-select settings,
should not change).

5 SWP Software watchdog prescaler. This bit interacts with SYPCR[SWT].
0 Software watchdog timer clock not prescaled.
1 Software watchdog timer clock prescaled by 8192.

4-3 SWT Software watchdog timing delay. SWT and SWP select the timeout period for the watchdog
timer. At system reset, the software watchdog timer is set to the minimum timeout period.

SWP =0 SWP =1

00 2%system frequency 00 22?/system frequency
01 2''/system frequency 01 2%%/system frequency
10 2'3/system frequency 10 2%/system frequency
11 2'%/system frequency 11 228/system frequency

Note that if SWP and SWT are modified to select a new software timeout, the software service
sequence must be performed (0x55 followed by 0xAA written to the SWSR) before the new
timeout period takes effect.

6-8 MCF5407 User’s Manual (M) moToroLa

Programming Model

Table 6-4. SYPCR Field Descriptions (Continued)

Bits Name Description

2 SWTA | Software watchdog transfer acknowledge enable

0 SWTA transfer acknowledge disabled

1 SWTA asserts transfer acknowledge enabled. After one timeout period of the unacknowledged
assertion of the software watchdog timer interrupt, the software watchdog transfer
acknowledge asserts, which allows the watchdog timer to terminate a bus cycle and allow the
IACK to occur.

1 SWTAVAL | Software watchdog transfer acknowledge valid
0 SWTA transfer acknowledge has not occurred.
1 SWTA transfer acknowledge has occurred. Write a 1 to clear this flag bit.

6.2.6 Software Watchdog Interrupt Vector Register (SWIVR)

The SWIVR, shown in Figure 6-6, contains the 8-bit interrupt vector (SWIV) that the SIM
returns during an interrupt-acknowledge cycle in response to a software watchdog
timer-generated interrupt. SWIVR is set to the uninitialized vector OxOF at system reset.

7 0
Field SWIV
Reset 0000_1111
R/W Supervisor write only
Address MBAR + 0x002

Figure 6-6. Software Watchdog Interrupt Vector Register (SWIVR)

Note that the software watchdog interrupt cannot be autovectored.

6.2.7 Software Watchdog Service Register (SWSR)

The SWSR, shown in Figure 6-7, is where the software watchdog timer servicing sequence
should be written. To prevent a watchdog timer timeout, the software service sequence must
be performed (0x55 followed by OxAA written to the SWSR). Both writes must be
performed in order before the timeout, but any number of instructions or accesses to the
SWSR can be executed between the two writes. If the timer has timed out, writing to SWSR
does not cancel the interrupt (that is, IPRISWT] remains set). The interrupt is cancelled
(and SWT is cleared) automatically when the IACK cycle is run.

7 0
Field SWSR
Reset Undetermined
R/W Supervisor write only
Address MBAR + 0x003

Figure 6-7. Software Watchdog Service Register (SWSR)

@ MOTOROLA Chapter 6. SIM Overview 6-9

h -

k jramming Model

6.2.8 PLL Clock Control for CPU STOP Instruction

The SIM contains the PLL clock control register, which is described in detail in
Section 7.2.4, “PLL Control Register (PLLCR).” PLLCR[ENBSTOPPLLIPL] are
significant to the operation of the SIM, and are described as follows:

e PLLCR[ENBSTOP] must be set for the ColdFire CPU STOP instruction to be
acknowledged. This bit is cleared at reset and must be set for the MCF5407 to enter
low-power modes. The CPU STOP instruction stops only clocks to the core
processor. All internal modules remain clocked and can generate interrupts to restart
the ColdFire core. For example, the on-chip timer can be used to interrupt the
processor after a given timer countdown.

e PLLCR[PLLIPL] determines the minimum level at which an interrupt (decoded as
an interrupt priority level or IPL) must occur to awaken the PLL. The PLL then turns
clocks back on to the core processor and interrupt exception processing takes place.
Table 6-5 describes PLLIPL settings to be compared against the interrupt ranges that
awaken the core processor from a CPU STOP instruction.

Table 6-5. PLLIPL Settings

PLLIPL Description
000 Any interrupts can wake core
001 Interrupts 2-7
010 Interrupts 3-7
011 Interrupts 4-7
100 Interrupts 5-7
101 Interrupts 6-7
110 Interrupt 7 only
111 No interrupts can wake core

6.2.9 Pin Assignment Register (PAR)

The pin assignment register (PAR), Figure 6-8, allows the selection of pin assighments.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Field| PAR15|PAR14|PAR13|PAR12|PAR11|PAR10|PAR9| PARS | PAR7| PAR6 | PAR5 |PAR4| PAR3 | PAR2 |PAR1|PARO
PARn = 0| PP15 | PP14 | PP13 | PP12 | PP11 | PP10 | PP9 | PP8 | PP7 | PP6 | PP5 | PP4| PP3 | PP2 | PP1|PPO
PARn=1| A31 | A30 | A29 | A28 | A27 | A26 | A25 | A24 | TIP |DREQO|DREQT| TM2 | TM1/ | TMO/ | TT1 | TTO

DACK1|DACKO

Reset|Determined by driving D4/ADDR_CONFIG with a 1 or 0 when RSTI negates. The system is configured as PP[15:0] if

D4 is low; otherwise alternate pin functions selected by PAR = 1 are used.

R/W R/W

Address Address MBAR + 0x004

Figure 6-8. Pin Assignment Register (PAR)

6-10 MCF5407 User’s Manual (M) moToroLa

Programming Model

6.2.10 Bus Arbitration Control

This section describes the bus arbitration register and the four arbitration schemes.

6.2.10.1 Default Bus Master Park Register (MPARK)

The MPARK, shown in Figure 6-9, determines the default bus master arbitration between
internal transfers (core and DMA module) and between internal and external transfers to
internal resources. This arbitration is needed because external masters can access internal
registers within the MCF5407 peripherals.

7 6 5 4 3 2 0
Field PARK ‘ IARBCTRL ‘EARBCTRL‘SHOWDATA‘ —_
Reset 0000_0000
R/W R/W
Address MBAR + 0x0C

Figure 6-9. Default Bus Master Register (MPARK)

Table 6-6 describes MPARK bits.
Table 6-6. MPARK Field Descriptions

Bits Name Description

7-6 PARK Park. Indicates the arbitration priority of internal transfers among MCF5407 resources.
00 Round-robin between DMA and ColdFire core

01 Park on master ColdFire core

10 Park on master DMA module

11 Park on current master

Use of this field is described in detail in Section 6.2.10.1.1, “Arbitration for Internally
Generated Transfers (MPARK[PARK]).”

5 IARBCTRL | Internal bus arbitration control. Controls external device access to the MCF5407 internal bus.

0 Arbitration disabled (single-master system)

1 Arbitration enabled. IARBCTRL must be set if external masters are using internal
resources like the DRAM controller or chip selects.

Use of this bit depends on whether the system has single or multiple masters, as follows:

* In a single-master system, IARBCTRL should stay cleared, disabling internal arbitration
by external masters. In this scenario, MPARK[PARK] applies only to priority of internal
masters over one another. Note that the internal DMA (master 3) has priority over the
ColdFire core (master 2), if internal DMA bandwidth is at its maximum (BWC = 000).

¢ In multiple master systems that expect to use internal resources like the DRAM controller
or chip selects, internal arbitration should be enabled. The external master defaults to the
highest priority internal master anytime BG is negated.

4 EARBCTRL | External bus arbitration control. Enables internal register memory space to external bus
arbitration. Internal registers are those accessed at offsets to the MBAR. These include the
SIM, DMA, chip selects, timers, UARTS, I2C, and parallel port registers. These registers do
not include the MBAR; only the core can access the MBAR.

0 Arbitration disabled

1 Arbitration enabled

The use of this field is described in detail in Section 6.2.10.1.2, “Arbitration between Internal
and External Masters for Accessing Internal Resources.”

(M) moToroLA Chapter 6. SIM Overview 6-11

k jramming Model

Table 6-6. MPARK Field Descriptions (Continued)

Bits

Name Description

SHOWDATA | Enable internal register data bus to be driven on external bus. EARBCTRL must be set for
this function to work. Section 6.2.10.1.2, “Arbitration between Internal and External Masters
for Accessing Internal Resources,” describes the proper use of SHOWDATA.

0 Do not drive internal register data bus values to external bus.

1 Drive internal register data bus values to external bus.

2-0

— Reserved, should be cleared.

6.2.10.1.1 Arbitration for Internally Generated Transfers (MPARK[PARK])

MPARKI[PARK] prioritizes internal transfers, which can be initiated by the core and the
on-chip DMA module, which contains all four DMA channels. Priority among the four
DMA channels in the module is determined by the BWC bits in their respective DMA
control registers (see Chapter 12, “DMA Controller Module”).

The four arbitration schemes for internally generated transfers are described as follows:

6-12

Round-robin scheme (PARK = 00)—Figure 6-10 shows round-robin arbitration
between the core and DMA module. Bus mastership alternates between the core and
DMA module.

Internal Bus Mastership
(Alternates between Core and DMA Module)

DMA MODULE

CORE h Channel 0
5t c E Channel 1

3rd 4th Channel 2

Channel 3

2nd
1st

Figure 6-10. Round Robin Arbitration (PARK = 00)

The DMA module presents only the highest-priority DMA request, and bus
mastership alternates between the core and DMA channel as long as both are
requesting bus mastership. Section 12.5.4.1, “External Request and Acknowledge
Operation,” includes a timing diagram showing a lower-priority DMA transfer.

When the processor is initialized, the core has first priority. If DMA channels 0 and
1 (both set to BWC =010) assert an internal bus request during a core-generated bus
transfer, DMA channel 0 would gain bus mastership next. However, if the core
requests the bus during this DMA transfer, bus mastership returns to the core rather
than being granted to DMA channel 1.

Note that the internal DMA has higher priority than the core if the internal DMA has
its bandwidth BWC bits set to 000 (maximum bandwidth).

MCF5407 User’s Manual (M) moToroLa

Programming Model

* Park on master core priority (PARK =01)—The core retains bus mastership as long
as it needs it. After it negates its internal bus request, the core does not have to
rearbitrate for the bus unless the DM A module has requested the bus when it is idle.
The DMA module can be granted bus mastership only when the core is not asserting
its bus request. See Figure 6-11.

Core BR negated

Core BR negated
DMA module BR negated DMA module BR asserted

(7

DMA Module

Core BR asserted
DMA module BR negated/asserted

Figure 6-11. Park on Master Core Priority (PARK = 01)

* Park on master DMA priority (PARK = 10)—The DMA module retains bus
mastership as long as it needs it. After it negates its internal bus request, the DMA
module does not have to rearbitrate for the bus unless the core has requested the bus
when it is idle. The core can be granted bus mastership only when the DM A module
is not asserting its bus request. See Figure 6-12.

DMA module BR asserted

BR DMA BR negated
Core BR negated/asserted Core BR negated

DMA Module

Core BR asserted
DMA module BR negated

Figure 6-12. Park on DMA Module Priority (PARK = 10)

(M) moToroLA Chapter 6. SIM Overview 6-13

3
4

y
A

jramming Model

* Park on current master priority (PARK = 11)—The current bus master retains
mastership as long as it needs the bus. The other device can become the bus master
only when the bus is idle. For example, if the core is bus master out of reset, it retains
mastership as long as it needs the bus. It loses mastership only when it negates its
bus request signal and the DMA asserts its internal bus request signal. At this point
the DMA module is the bus master, and retains bus mastership as long as it needs
the bus. See Figure 6-13.

Core BR negated DMA module BR asserted
DMA module BR negated Core BR negated

(/
-

Core BR asserted DMA module BR asserted

BR Core BR asserted BR
DMA module BR asserted DMA module BR negated Core BR asserted

Figure 6-13. Park on Current Master Priority (PARK = 01)

DMA module BR negated
Core BR negated

DMA Module

6.2.10.1.2 Arbitration between Internal and External Masters for
Accessing Internal Resources

If an external device is programmed to access internal MCF5407 resources
(EARBCTRL = 1), the external device can gain bus mastership only when BG is negated.
This means neither the core nor the DMA controller can access the external bus until the
external device asserts BG. After the external master finishes its bus transfer and asserts
BG, the core has priority on the next available bus cycle regardless of the value of PARK.
Thus if the core asserts its internal bus request on this first bus cycle, it executes a bus cycle
even if PARK indicates the DMA should have priority. Then, after the bus transfer, the
PARK scheme returns to programmed functioning and the DMA is given bus mastership.

NOTE:

In all arbitration modes, if BG is negated, the external master
interface has highest priority. In this case, the ColdFire core has
second-highest priority, until the internal bus grant is asserted.

* In a single-master system, the setting of EARBCTRL does not affect arbitration
performance. Typically, BG is tied low and the MCF5407 always owns the external
bus and internal register transfers are already shown on the external bus. In a system
where MCF5407 is the only master, this bit may remain cleared.

If the system needs external visibility of the data bus values during internal register
transfers for system debugging, both EARBCTRL and SHOWDATA must be set.

Note that when an internal register transfer is driven externally, TA becomes an
output, which is asserted (normally an input) to prevent external devices and

6-14 MCF5407 User’s Manual (M) moToroLa

Programming Model

memories from responding to internal register transfers that go to the external bus.
The AS signal and all chip-select-related strobe signals are not asserted.

Do not immediately follow a cycle in which SHOWDATA is set with a cycle using
fast termination.

* In multiple-master systems, disabling arbitration with EARBCTRL allows
performance improvement because internal register bus transfer cycles do not
interfere with the external bus.

Having internal transfers go external may affect performance in two ways:

— If the internal device does not control the bus immediately, the core stalls until it
wins arbitration of the external bus.

— If the core wins arbitration instantly, it may kick the external master off of the
external bus unnecessarily for a transfer that did not need the external bus. For
debug, where this performance penalty is not a concern, setting EARBCTRL and
SHOWDATA provides external visibility of the internal bus cycles.

(M) moToroLA Chapter 6. SIM Overview 6-15

h -

g |

jramming Model

6-16

MCF5407 User’s Manual

@ MOTOROLA

Chapter 7
Phase-Locked Loop (PLL)

This chapter describes configuration and operation of the phase-locked loop (PLL) module.
It describes in detail the registers and signals that support the PLL implementation.

7.1 Overview

The basic features of the MCF5407 PLL implementation are as follows:

* The MCF5407 PLL is enhanced to support faster processor clock (PCLK)
frequencies than the MCF5307. It also offers a wider range of clock input ratios.

* A buffered processor status clock (PSTCLK) is half the PCLK frequency, as
indicated in Figure 7-1. This signal is made available for system development.
The PLL module has the following three modes of operation:

* Reset mode—In reset mode, the core/bus frequency ratio and other configuration
information is sampled. At reset, the PLL asserts the reset out signal, RSTO.

* Normal mode—During normal operations, the divide ratio is programmed at reset
and is clock-multiplied to provide the processor clock frequency. These frequencies
are described in the electrical specifications.”

* Reduced-power mode —In reduced-power mode, the high-speed processor core
clocks are turned off without losing the register contents so that the system can be
reenabled by an unmasked interrupt or reset.

Figure 7-1 shows the frequency relationships of PLL module clock signals.

CLKIN (to on-chip peripherals)
BCLKO

CLKIN ' = PCLK (to core)

DIVIDE[2:0] —» PLL Debug&/lodule

RSTI —»»| —» RSTO

PSTCLK (= PCLK/2)
Figure 7-1. PLL Module Block Diagram

(M) moToroLA Chapter 7. Phase-Locked Loop (PLL) 7-1

h -

Operation

Motorola recommends using CLKIN for the system clock. BCLKO is provided only for
compatibility with slower MCF5307 designs. Regardless of the CLKIN frequency driven
at power-up, CLKIN (and BCLKO) have the same ratio value to the PCLK. Although either
signal can be used as a clock reference, CLKIN leaves more room to meet the bus
specifications than BCLKO, which is generated as a phase-aligned signal to CLKIN.

7.1.1 PLL:PCLK Ratios

The PLL for the MCF5407 is enhanced to support faster processor clock (PCLK)
frequencies. While the MCF5307 supports various PCLK frequencies listed in the electrical
specifications with a clock input (CLKIN) of 1/2 PCLK, the MCF5407 offers a wider range
of clock input ratios and a higher performance processor clock.

Like the MCF5307, the MCF5407 samples clock ratio encodings on the lower data bus bits
at reset to determine the CLKIN-to-PCLK ratio. These bits are DIVIDE[1:0] on the
MCF5307 and are multiplexed with data bits D[1:0]. Because the MCF5407 offers more
divide ratio than the MCF5307, three bits, D[2:0]/DIVIDE[2:0], are provided to offer more
programming options at reset. Also, note that only specific CLKIN ranges are allowed for
each divide ratio on the MCF5407. Table 7-1 shows MCF5407 divide ratio encodings.

Table 7-1. Divide Ratio Encodings

D[2:0)/DIVIDE[2:0] Multiplier
00x-010 Reserved

011 3

100 4

101 5

110 6
111 Reserved

7.2 PLL Operation

The following sections provide detailed information about the three PLL modes.

7.2.1 Reset/Initialization

The PLL receives RSTI as an input directly from the pin. Additionally, signals are
multiplexed with D[2:0]/DIVIDE[2:0] while RSTT is asserted. These signals are sampled
during reset and registered by the PLL on the negation of RSTI to provide initialization
information. DIVIDE[2:0] are used by the PLL to set the CLKIN/PCLK ratio.

7.2.2 Normal Mode
CLKIN should be used as the system bus clock in 5407 systems. The CLKIN frequency is

7-2 MCF5407 User’s Manual (M) moToroLa

PLL Operation

multiplied up as determined by the logic level of the multiplexed D[2:0]/DIVIDE[2:0] pins
during reset to create PCLK.

7.2.3 Reduced-Power Mode

The PCLK can be turned off in a predictable manner to conserve system power. To allow
fast restart of the MCF5407 processor core, the PLL continues to operate at the frequency
configured at reset. PCLK is disabled using the CPU STOP instruction and resumes normal
operation on interrupt, as described in Section 7.2.4, “PLL Control Register (PLLCR).”

7.2.4 PLL Control Register (PLLCR)
The PLL control register (PLLCR), Figure 7-2, provides control over the PLL.

7 6 5 4 3 2 1 0
Field ENBSTOP‘ PLLIPL ‘DISBCLKO‘ —
Reset 0000_0000
R/W R/W
Address MBAR + 0x08

Figure 7-2. PLL Control Register (PLLCR)
Table 7-2 describes PLLCR bits.
Table 7-2. PLLCR Field Descriptions

Bit Name Description

7 | ENBSTOP | Enable CPU STOP instruction. Must be set for the ColdFire CPU STOP instruction to be
acknowledged. Cleared at reset and must be subsequently set for the processor to enter
low-power modes. Only clocks to the core are turned off because of the CPU STOP instruction.
Internal modules remain clocked and can generate interrupts to restart the ColdFire core.

0 Disable CPU STOP

1 Enable CPU STOP; STOP instruction turns off clocks to the ColdFire core.

6-4 PLLIPL PLL interrupt priority level to wake up from CPU STOP. Determines the minimum level an
interrupt (decoded as an interrupt priority level) must be to waken the PLL. The PLL then turns
clocks back on to the core processor and interrupt exception processing occurs.

000 Any interrupts can wake core

001 Interrupts 2—7

010 Interrupts 3—7

011 Interrupts 4-7

100 Interrupts 5-7

101 Interrupts 6-7

110 Interrupt 7 only

111 No interrupts can wake core. Any reset, including a watchdog reset, can wake the core.
No PLL phase lock time is required.

3 | DISBCLKO | BCLKO disable. Determines whether BCLKO is driven.
0 BCLKO is driven.
1 BCLKO is three-stated. BCLKO can be reenabled only by a reset.

2-0 — Reserved, should be cleared.

(M) moToroLA Chapter 7. Phase-Locked Loop (PLL) 7-3

Port List

7.3 PLL Port List

Table 7-3 describes PLL module inputs.
Table 7-3. PLL Module Input Signals

Signal Description

CLKIN Input clock to the PLL. Input frequency must not be changed during operation. Changes are
recognized only at reset.

RSTI Active-low asynchronous input that, when asserted, indicates PLL is to enter reset mode. As long as
RSTI is asserted, the PLL is held in reset and does not begin to lock.

DIVIDE[2:0] | TheMCF5407 samples clock ratio encodings on the lower data bits of the bus to determine the
CLKIN-to-processor clock ratio. D[2:0]/DIVIDE[2:0] support the divide-ratio combinations. Note that
only specific CLKIN ranges are allowed for each divide ratio on the MCF5407. See the electrical
specifications for valid frequencies.

Table 7-4 describes PLL module outputs.
Table 7-4. PLL Module Output Signals

Output Description

BCLKO This bus clock output provides a divided version of the processor clock frequency, determined by
DIVIDE[2:0]. BCLKO is provided for MCF5307 compatibility (slower-speed designs).

PSTCLK Provides a buffered processor status clock. PSTCLK is half the frequency of PCLK. See Section 7.4.1,
“PCLK, PSTCLK, and BCLKO,” and Figure 7-1.

RSTO This output provides an external reset for peripheral devices.

7.4 Timing Relationships

The MCF5407 CLKIN frequency can be 1/3, 1/4, 1/5, or 1/6 the processor clock. In this
document, bus timings are referenced from CLKIN.

Regardless of the CLKIN frequency driven at power-up, CLKIN and BCLKO have the
same ratio value to the PCLK. Although either signal can be used as a clock reference,
CLKIN leaves more room to meet the bus specifications than BCLKO, which is generated
as a phase-aligned signal to CLKIN.

Although the CLKIN duty cycle remains the same for the MCF5307 and MCF5407,
caution should be used when interfacing signals on the falling edge of CLKIN with only a
4-nS window to work from at high frequencies. Also, note that the MCF5407 CLKIN rise
time is reduced to 2 nS (5 nS in the MCF5307).

If signals are referenced from CLKIN only, setting PLLCR[DISBCLKO] and disabling
BCLKO reduces power consumption. See Section 7.2.4, “PLL Control Register (PLLCR).”

7.4.1 PCLK, PSTCLK, and BCLKO
Figure 7-3 shows the frequency relationships between PCLK, PSTCLK, and the four

7-4 MCF5407 User’s Manual (M) moToroLa

Timing Relationships

possible versions of CLKIN/BCLKO. This figure does not show the skew between CLKIN
and PCLK, PSTCLK, and BCLKO. PSTCLK is half the frequency of PCLK. Similarly, the
skew between PCLK and BCLKO is unspecified.

PCLK \ \ \ \ \ \
\ \ \ \ \ \ \

PSTCLK ‘ ‘ ‘
\ \

\
CLKIN/BCLKO (/3) \ \ \ \
\ \ \
CLKIN/BCLKO (4) /| /| \ \

| \

CLKIN/BCLKO (/5) /| \ \ \

| [\

CLKIN/BCLKO (/6) /| \ \ /|
| | | |

NOTE: The clock signals are shown with edges aligned to show frequency relationships only.
Actual signal edges have some skew between them.

Figure 7-3. CLKIN, PCLK, PSTCLK, and BCLKO Timing

\
\ -\

7.4.2 RSTI Timing

Figure 7-4 shows PLL timing during reset. As shown, RSTI must be asserted for at least 16
CLKIN cycles to give the MCF5407 time to begin its initialization sequence. At this time,
the configuration pins should be asserted (D[2:0] for DIVIDE[2:0]), meeting the minimum
setup and hold times to RSTI given in Chapter 20, “Electrical Specifications.”

On the rising edge of CLKIN before the rising edge of RSTI, the data on D[7:0] is latched
and the PLL begins ramping to its final operating frequency. During this ramp and lock
time, BCLKO and PSTCLK are held low. The PLL locks in about 2 mS or less depending
on the CLKIN frequency, at which time BCLKO begins normal operation in the specified
mode. The PLL requires 50,000 CLKIN cycles to guarantee PLL lock. To allow for reset
of external peripherals requiring a clock source, RSTO remains asserted for a number of
CLKIN cycles, as shown in Figure 7-4. PSTCLK will begin oscillating a minimum of10
clock cycles after RSTO is negated.

(M) moToroLA Chapter 7. Phase-Locked Loop (PLL) 7-5

Power Supply Filter Circuit

50K CLKIN
[« >t6ciks —|=— 2 ook Time —== >10CLks —|

CLKIN||_||7/ |_||_//J|_|_||_//j

oo [[[| [1 A I_LJ

PSTCLK
RSTI o
53 N

D[7:0]
7

RSTO

Figure 7-4. Reset and Initialization Timing

7.5 PLL Power Supply Filter Circuit

To ensure PLL stability, the power supply to the PLL power pin should be filtered using a
circuit similar to the one in Figure 7-5. The circuit should be placed as close as possible to
the PLL power pin to ensure maximum noise filtering.

10 Q

Vdd © i

i O PLL power pin

Figure 7-5. PLL Power Supply Filter Circuit

7-6 MCF5407 User’s Manual (M) moToroLa

Chapter 8
I°C Module

This chapter describes the MCF5407 I>’C module, including 1’C protocol, clock
synchronization, and the registers in the 1’C programing model. It also provides extensive
programming examples.

8.1 Overview

IC is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices. This bus is suitable for
applications requiring occasional communications over a short distance between many
devices. The flexible I°C allows additional devices to be connected to the bus for expansion
and system development.

The I°C system is a true multiple-master bus including arbitration and collision detection
that prevents data corruption if multiple devices attempt to control the bus simultaneously.
This feature supports complex applications with multiprocessor control and can be used for
rapid testing and alignment of end products through external connections to an
assembly-line computer.

Note that I>C is defined for 5-V operation and the MCF5407 is a 3.3-V device. Care must
be taken to interface to 5-V peripherals.

8.2 Interface Features

The I°C module has the following key features:

 Compatibility with I’C bus standard

* Support for 3.3-V tolerant devices

* Multiple-master operation

* Software-programmable for one of 64 different serial clock frequencies

* Software-selectable acknowledge bit

e Interrupt-driven, byte-by-byte data transfer

* Arbitration-lost interrupt with automatic mode switching from master to slave

* Calling address identification interrupt

(M) moToroLA Chapter 8. I2C Module 8-1

h -

face Features

e Start and stop signal generation/detection
* Repeated START signal generation
* Acknowledge bit generation/detection

* Bus-busy detection

Figure 8-1 is a block diagram of the I>C module.

Internal Bus
MNra Address Data |
A
r— - — — — —_ —_ - — — — — — - - - - — — - — — — — — |\ — — |
Registers and ColdFire Interface

Address Decode > Data MUX

| '

\
\
\
\
A \ \
\
\
\
\

A
Y

A
Y

A
Y

A Y Y Y Y Y Y

\
\
[
\
\
\
\
\
\
L***? 77777 |- == = x——— — — A — — — — — — - = =

I°C Frequency I2C Control I°C Status I°C Data I°C Address
Divider Register Register Register 1/0 Register Register
(IFDR) (I2CR) (12SR) (12DR) (IADR)
¥ Y
- r In/Out
Clock > Data
Control | < | shif - >
Start, Stop, Register
and
Arbitration
Control
Input | > Address [
Sync] - Compare |

A*

v

SCL SDA
Figure 8-1. 1°C Module Block Diagram

Figure 8-1 shows the relationships of the 1’C registers, listed below:
o I2C address register (IADR)

. IC frequency divider register (IFDR)
 12C control register (I2CR)

¢ 12C status register (I2SR)

e I’C data I/O register (I2DR)

8-2 MCF5407 User’s Manual (M) moToroLa

12C System Configuration

These registers are described in Section 8.5, “Programming Model.”

8.3 12C System Configuration

The I2C module uses a serial data line (SDA) and a serial clock line (SCL) for data transfer.
For I°C compliance, all devices connected to these two signals must have open drain or
open collector outputs. (There is no such requirement for inputs.) The logic AND function
is exercised on both lines with external pull-up resistors.

Out of reset, the IC default is as slave receiver. Thus, when not programmed to be a master
or responding to a slave transmit address, the 12C module should return to the default slave
receiver state. See Section 8.6.1, “Initialization Sequence,” for exceptions.

NOTE:

The I°C module is designed to be compatible with the Philips
I2C bus protocol. For information on system configuration,

protocol, and restrictions, see The PPC Bus Specification,
Version 2.1.

8.4 12C Protocol

Normally, a standard communication is composed of the following parts:

1. START signal—When no other device is bus master (both SCL and SDA lines are
at logic high), a device can initiate communication by sending a START signal (see
A in Figure 8-2). A START signal is defined as a high-to-low transition of SDA
while SCL is high. This signal denotes the beginning of a data transfer (each data
transfer can be several bytes long) and awakens all slaves.

- -~
@ START Calling Address RW ACK @ Data Byte No STOP

Signal © Bit@ A%iﬁ Signal
Figure 8-2. I2C Standard Communication Protocol

2. Slave address transmission—The master sends the slave address in the first byte
after the START signal (B). After the seven-bit calling address, it sends the R/W bit
(C), which tells the slave data transfer direction.

(M) moToroLA Chapter 8. I2C Module 8-3

>rotocol

Each slave must have a unique address. An I>C master must not transmit an address
that is the same as its slave address; it cannot be master and slave at the same time.

The slave whose address matches that sent by the master pulls SDA low at the ninth
clock (D) to return an acknowledge bit.

3. Data transfer— When successful slave addressing is achieved, the data transfer can
proceed (E) on a byte-by-byte basis in the direction specified by the R/W bit sent by
the calling master.

Data can be changed only while SCL is low and must be held stable while SCL is
high, as Figure 8-2 shows. SCL is pulsed once for each data bit, with the msb being
sent first. The receiving device must acknowledge each byte by pulling SDA low at
the ninth clock; therefore, a data byte transfer takes nine clock pulses.

If it does not acknowledge the master, the slave receiver must leave SDA high. The
master can then generate a STOP signal to abort the data transfer or generate a
START signal (repeated start, shown in Figure 8-3) to start a new calling sequence.

If the master receiver does not acknowledge the slave transmitter after a byte
transmission, it means end-of-data to the slave. The slave releases SDA for the
master to generate a STOP or START signal.

4. STOP signal —The master can terminate communication by generating a STOP
signal to free the bus. A STOP signal is defined as a low-to-high transition of SDA
while SCL is at logical high (F). Note that a master can generate a STOP even if the
slave has made an acknowledgment, at which point the slave must release the bus.

Instead of signalling a STOP, the master can repeat the START signal, followed by a calling
command, (A in Figure 8-3). A repeated START occurs when a START signal is generated
without first generating a STOP signal to end the communication.

| | | | | | | |
| | | | | | | | |
o | rorpogfodoipododbo

-« >
START Calling Address R/W ACK Repeated New Calling Address RW No STOP
Signal Bit SL.FART ACK Signal
Signal @ Bit
Stop

Figure 8-3. Repeated START

The master uses a repeated START to communicate with another slave or with the same
slave in a different mode (transmit/receive mode) without releasing the bus.

8.4.1 Arbitration Procedure

If multiple devices simultaneously request the bus, the bus clock is determined by a

8-4 MCF5407 User’s Manual (M) moToroLa

I2C Protocol

synchronization procedure in which the low period equals the longest clock-low period
among the devices and the high period equals the shortest. A data arbitration procedure
determines the relative priority of competing devices. A device loses arbitration if it sends
logic high while another sends logic low; it immediately switches to slave-receive mode
and stops driving SDA. In this case, the transition from master to slave mode does not
generate a STOP condition. Meanwhile, hardware sets I2SR[IAL] to indicate loss of
arbitration.

8.4.2 Clock Synchronization

Because wire-AND logic is used, a high-to-low transition on SCL affects devices
connected to the bus. Devices start counting their low period when the master drives SCL
low. When a device clock goes low, it holds SCL low until the clock high state is reached.
However, the low-to-high change in this device clock may not change the state of SCL if
another device clock is still in its low period. Therefore, the device with the longest low
period holds the synchronized clock SCL low. Devices with shorter low periods enter a high
wait state during this time (See Figure 8-4). When all devices involved have counted off
their low period, the synchronized clock SCL is released and pulled high. There is then no
difference between device clocks and the state of SCL, so all of the devices start counting
their high periods. The first device to complete its high period pulls SCL low again.

I ' owait ! / Start counting high period
' ¥

(

:

I
I
I
\ I
I
I
!

(

1 Internal Counter Reset 1

Figure 8-4. Synchronized Clock SCL

8.4.3 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfers. Slave
devices can hold SCL low after completing one byte transfer (9 bits). In such a case, the
clock mechanism halts the bus clock and forces the master clock into wait states until the
slave releases SCL.

8.4.4 Clock Stretching

Slaves can use the clock synchronization mechanism to slow down the transfer bit rate.
After the master has driven SCL low, the slave can drive SCL low for the required period
and then release it. If the slave SCL low period is longer than the master SCL low period,

(M) moToroLA Chapter 8. I2C Module 8-5

h -

jramming Model
the resulting SCL bus signal low period is stretched.
8.5 Programming Model

Table 8-1 lists the configuration registers used in the 1°C interface.

Table 8-1. 12C Interface Memory Map

g':;? [31:24] [23:16] [15:8] [7:0]
0x280 | IC address register (IADR) [p. 8-6] Reserved
0x284 | I2C frequency divider register (IFDR) [p. 8-6] Reserved
0x288 | I2C control register (I2CR) [p. 8-7] Reserved
0x28C | I°C status register (I12SR) [p. 8-8] Reserved
0x290 | I2C data I/O register (I2DR) [p. 8-9] Reserved
NOTE:

External masters cannot access the MCF5407’s on-chip
memories or MBAR, but can access any 1°C module register.

8.5.1 12C Address Register (IADR)

The IADR holds the address the 1>C responds to when addressed as a slave. Note that it is
not the address sent on the bus during the address transfer.

7 6 5 4 3 2 1 0
Field ADR —
Reset 0000_0000
R/W Read/Write
Address MBAR + 0x280

Figure 8-5. I>C Address Register (IADR)
Table 8-2 describes IADR fields.
Table 8-2. 1°C Address Register Field Descriptions

Bits Name Description

7-1 ADR Slave address. Contains the specific slave address to be used by the I°C module. Slave mode is
the default I°C mode for an address match on the bus.

0 — Reserved, should be cleared.

8.5.2 12C Frequency Divider Register (IFDR)

The IFDR, Figure 8-6, provides a programmable prescaler to configure the clock for

8-6 MCF5407 User’s Manual (M) moToroLa

Programming Model

bit-rate selection.

7 6 5 4 3 2 1 0
Field — IC
Reset 0000_0000
R/W Read/Write
Address MBAR + 0x284

Figure 8-6. I2C Frequency Divider Register (IFDR)
Table 8-3 describes IFDRJ[IC].
Table 8-3. IFDR Field Descriptions

Bits | Name Description

7-6 | — Reserved, should be cleared.

5-0 |IC I2C clock rate. Prescales the clock for bit-rate selection. Due to potentially slow SCL and SDA rise and

fall times, bus signals are sampled at the prescaler frequency. The serial bit clock frequency is equal to
CLKIN divided by the divider shown below. Note that IC can be changed anywhere in a program.
IC Divider IC Divider IC Divider IC Divider

0x00 28 0x10 288 0x20 20 0x30 160
0x01 30 0x11 320 0x21 22 0x31 192
0x02 34 0x12 384 0x22 24 0x32 224
0x03 40 0x13 480 0x23 26 0x33 256
0x04 44 0x14 576 0x24 28 0x34 320
0x05 48 0x15 640 0x25 32 0x35 384
0x06 56 0x16 768 0x26 36 0x36 448
0x07 68 0x17 960 0x27 40 0x37 512
0x08 80 0x18 1152 0x28 48 0x38 640
0x09 88 0x19 1280 0x29 56 0x39 768
O0x0A 104 Ox1A 1536 0x2A 64 0x3A 896
0x0B 128 0x1B 1920 0x2B 72 0x3B 1024
0x0C 144 0x1C 2304 0x2C 80 0x3C 1280
0x0D 160 0x1D 2560 0x2D 96 0x3D 1536
OxO0E 192 Ox1E 3072 0x2E 112 Ox3E 1792
0xOF 240 Ox1F 3840 0x2F 128 0x3F 2048

8.5.3 12C Control Register (I12CR)

The I2CR is used to enable the I*C module and the I>C interrupt. It also contains bits that
govern operation as a slave or a master.

(M) moToroLA Chapter 8. I2C Module 8-7

k jramming Model

7 6 5 4 3 2 1 0
Field| IEN ‘ IIEN ‘ MSTA ‘ MTX ‘ TXAK ‘ RSTA ‘ —
Reset 0000_0000
R/W Read/Write
Address MBAR + 0x288

Figure 8-7. I2C Control Register (I2CR)

Table 8-4 describes I2CR fields.

Table 8-4. I12CR Field Descriptions

Bits | Name Description

7 IEN I°C enable. Controls the software reset of the entire I2C module. If the module is enabled in the
middle of a byte transfer, slave mode ignores the current bus transfer and starts operating when the
next start condition is detected. Master mode is not aware that the bus is busy; so initiating a start
cycle may corrupt the current bus cycle, ultimately causing either the current master or the 12C
module to lose arbitration, after which bus operation returns to normal.
0 The module is disabled, but registers can still be accessed.
1 The I°C module is enabled. This bit must be set before any other I2CR bits have any effect.

6 IIEN | I2C interrupt enable.
0 I2C module interrupts are disabled, but currently pending interrupt condition are not cleared.
1 12C module interrupts are enabled. An 1’c interrupt occurs if I2SRJIIF] is also set.

5 MSTA | Master/slave mode select bit. If the master loses arbitration, MSTA is cleared without generating a
STOP signal.
0 Slave mode. Changing MSTA from 1 to O generates a STOP and selects slave mode.
1 Master mode. Changing MSTA from 0 to 1 signals a START on the bus and selects master mode.

4 MTX | Transmit/receive mode select bit. Selects the direction of master and slave transfers.
0 Receive
1 Transmit. When a slave is addressed, software should set MTX according to I2SR[SRW]. In

master mode, MTX should be set according to the type of transfer required. Therefore, for address
cycles, MTX is always 1.

3 TXAK | Transmit acknowledge enable. Specifies the value driven onto SDA during acknowledge cycles for
both master and slave receivers. Note that writing TXAK applies only when the I2C bus is a receiver.
0 An acknowledge signal is sent to the bus at the ninth clock bit after receiving one byte of data.
1 No acknowledge signal response is sent (that is, acknowledge bit = 1).

2 RSTA | Repeat start. Always read as 0. Attempting a repeat start without bus mastership causes loss of
arbitration.
0 No repeat start
1 Generates a repeated START condition.

1-0 — Reserved, should be cleared.

8.5.4 I2C Status Register (12SR)

This I2SR contains bits that indicate transaction direction and status.

MCF5407 User’s Manual (M) moToroLa

Programming Model

7 6 5 4 3 2 1 0
Field ICF ‘ IAAS ‘ IBB ‘ IAL ‘ — ‘ SRW ‘ IIF ‘ RXAK
Reset 1000_0001
RIW R | Rw | R | Rw | R
Address MBAR + 0x28C

Figure 8-8. I2CR Status Register (12SR)

Table 8-5 describes I2SR fields.

Table 8-5. 12SR Field Descriptions

Bits

Name

Description

ICF

Data transferring bit. While one byte of data is transferred, ICF is cleared.
0 Transfer in progress
1 Transfer complete. Set by the falling edge of the ninth clock of a byte transfer.

IAAS

I°C addressed as a slave bit. The CPU is interrupted if I2CR[IIEN] is set. Next, the CPU must check
SRW and set its TX/RX mode accordingly. Writing to I2CR clears this bit.

0 Not addressed.

1 Addressed as a slave. Set when its own address (IADR) matches the calling address.

IBB

I2C bus busy bit. Indicates the status of the bus.
0 Bus is idle. If a STOP signal is detected, IBB is cleared.
1 Bus is busy. When START is detected, IBB is set.

IAL

Arbitration lost. Set by hardware in the following circumstances. (IAL must be cleared by software by
writing zero to it.)

* SDA sampled low when the master drives high during an address or data-transmit cycle.

» SDA sampled low when the master drives high during the acknowledge bit of a data-receive

cycle.

. Aystart cycle is attempted when the bus is busy.

* A repeated start cycle is requested in slave mode.

* A stop condition is detected when the master did not request it.

Reserved, should be cleared.

SRW

Slave read/write. When IAAS is set, SRW indicates the value of the R/W command bit of the calling
address sent from the master. SRW is valid only when a complete transfer has occurred, no other
transfers have been initiated, and the I2C module is a slave and has an address match.

0 Slave receive, master writing to slave.

1 Slave transmit, master reading from slave.

IIF

I2C interrupt. Must be cleared by software by writing a zero to it in the interrupt routine.
0 No I2C interrupt pending
1 An interrupt is pending, which causes a processor interrupt request (if IIEN = 1). Set when one of
the following occurs:
* Complete one byte transfer (set at the falling edge of the ninth clock)
* Reception of a calling address that matches its own specific address in slave-receive mode
* Arbitration lost

RXAK

Received acknowledge. The value of SDA during the acknowledge bit of a bus cycle.
0 An acknowledge signal was received after the completion of 8-bit data transmission on the bus
1 No acknowledge signal was detected at the ninth clock.

8.5.5 I12C Data I/O Register (12DR)

In master-receive mode, reading the I2DR, Figure 8-9, allows a read to occur and initiates

(M) moToroLA Chapter 8. I2C Module 8-9

V¥ ¢

‘ k >rogramming Examples

next byte data receiving. In slave mode, the same function is available after it is addressed.

7 6 5 4 3 2 1 0
Field D
Reset 0000_0000
R/W Read/Write
Address MBAR + 0x290

Figure 8-9. I2C Data I/O Register (12DR)

8.6 1°C Programming Examples

The following examples show programming for initialization, signalling START,
post-transfer software response, signalling STOP, and generating a repeated START.

8.6.1 Initialization Sequence

Before the interface can transfer serial data, registers must be initialized, as follows:

1. Set IFDRJIC] to obtain SCL frequency from the system bus clock. See
Section 8.5.2, “I2C Frequency Divider Register (IFDR).”

2. Update the IADR to define its slave address.

3. Set I2CR[IEN] to enable the I°C bus interface system.
4. Modify the I2CR to select master/slave mode, transmit/receive mode, and
interrupt-enable or not.

NOTE:

If IBSR[IBB] when the I2C bus module is enabled, execute the
following code sequence before proceeding with normal
initialization code. This issues a STOP command to the slave
device, placing it in idle state as if it were just power-cycled on.

I2CR = 0x0
I2CR = O0xA
dummy read of I2DR
IBSR = 0x0
I2CR = 0x0

8.6.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting
the master transmitter mode. On a multiple-master bus system, IBSR[IBB] must be tested
to determine whether the serial bus is free. If the bus is free (IBB = 0), the START signal
and the first byte (the slave address) can be sent. The data written to the data register
comprises the address of the desired slave and the Isb indicates the transfer direction.

8-10 MCF5407 User’s Manual (M) moToroLa

12C Programming Examples

The free time between a STOP and the next START condition is built into the hardware that
generates the START cycle. Depending on the relative frequencies of the system clock and
the SCL period, it may be necessary to wait until the 1C is busy after writing the calling
address to the I2DR before proceeding with the following instructions.

The following example signals START and transmits the first byte of data (slave address):

CHFLAG MOVE.B I2SR,-(A0);Check I2SR[MBB]
BTST.B #5, (A0)+

BNE.S CHFLAG;If I2SR[MBB] = 1, wait until it is clear
TXSTART MOVE.B I2CR,-(A0);Set transmit mode

BSET.B #4, (A0)

MOVE.B (A0)+, I2CR

MOVE.B I2CR, -(A0);Set master mode

BSET.B #5, (A0);Generate START condition

MOVE.B (A0)+, I2CR

MOVE.B CALLING,-(A0);Transmit the calling address, DO=R/W

MOVE.B (A0)+, I2DR
IFREE MOVE.B I2SR,-(A0);Check I2SR[MBB]

;sIf it is clear, wait until it is set.
BTST.B #5, (A0)+;
BEQ.S IFREE;

8.6.3 Post-Transfer Software Response

Sending or receiving a byte sets the I2SR[ICF], which indicates one byte communication
is finished. I2SR[IIF] is also set. An interrupt is generated if the interrupt function is
enabled during initialization by setting I2CR[IIEN]. Software must first clear IIF in the
interrupt routine. ICF is cleared either by reading from I2DR in receive mode or by writing
to I2DR in transmit mode.

Software can service the I°C I/O in the main program by monitoring IIF if the interrupt
function is disabled. Polling should monitor IIF rather than ICF because that operation is
different when arbitration is lost.

When an interrupt occurs at the end of the address cycle, the master is always in transmit
mode; that is, the address is sent. If master receive mode is required (I2ZDR[R/W],
[2CR[MTX] should be toggled.

During slave-mode address cycles (I2SR[IAAS] = 1), I2SR[SRW] is read to determine the
direction of the next transfer. MTX is programmed accordingly. For slave-mode data cycles
(IAAS = 0), SRW is invalid. MTX should be read to determine the current transfer
direction.

The following is an example of a software response by a master transmitter in the interrupt
routine (see Figure 8-10).

I2SR LEA.L I2SR,-(A7);Load effective address
BCLR.B #1,(A7)+;Clear the IIF flag
MOVE.B I2CR,-(A7);Push the address on stack,
BTST.B #5, (A7)+;check the MSTA flag
BEQ.S SLAVE;Branch if slave mode
MOVE.B I2CR,-(A7);Push the address on stack
BTST.B #4, (A7)+;check the mode flag

(M) moToroLA Chapter 8. I2C Module 8-11

>rogramming Examples

BEQ.S RECEIVE;Branch if in receive mode

MOVE.B I2SR,-(A7);Push the address on stack,

BTST.B #0, (A7)+;check ACK from receiver

BNE.B END;If no ACK, end of transmission
TRANSMITMOVE.B DATABUF,-(A7);Stack data byte

MOVE.B (A7)+, I2DR;Transmit next byte of data

8.6.4 Generation of STOP

A data transfer ends when the master signals a STOP, which can occur after all data is sent,
as in the following example.

MASTX MOVE.B I2SR, -(A7);If no ACK, branch to end
BTST.B #0, (A7)+
BNE.B END
MOVE.B TXCNT,D0O;Get value from the transmitting counter
BEQ.S END;If no more data, branch to end
MOVE.B DATABUF,-(A7);Transmit next byte of data
MOVE.B (A7)+,I2DR
MOVE.B TXCNT,DO;Decrease the TXCNT
SUBQ.L #1,D0
MOVE.B DO, TXCNT
BRA.S EMASTX;Exit

END LEA.L I2CR,-(A7);Generate a STOP condition
BCLR.B #5, (A7)+
EMASTX RTE;Return from interrupt

For a master receiver to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last data byte. This is done by setting [2CR[TXAK] before reading the
next-to-last byte. Before the last byte is read, a STOP signal must be generated, as in the
following example.

MASR MOVE.B RXCNT,DO0;Decrease RXCNT
SUBQ.L #1,D0
MOVE.B DO,RXCNT
BEQ.S ENMASR;Last byte to be read
MOVE.B RXCNT,D1l;Check second-to-last byte to be read
EXTB.L D1
SUBI.L #1,D1;
BNE.S NXMAR;Not last one or second last
LAMAR BSET.B #3,I2CR;Disable ACK
BRA NXMAR

ENMASR BCLR.B #5,I2CR;Last one, generate STOP signal
NXMAR MOVE.B I2DR,RXBUF;Read data and store RTE

8.6.5 Generation of Repeated START

After the data transfer, if the master still wants the bus, it can signal another START
followed by another slave address without signalling a STOP, as in the following example.

RESTART MOVE.B I2CR,-(A7);Repeat START (RESTART)
BSET.B #2, (A7)
MOVE.B (A7)+, I2CR
MOVE.B CALLING,-(A7);Transmit the calling address, DO=R/W-
MOVE.B CALLING,-(A7);
MOVE.B (A7)+, I2DR

8-12 MCF5407 User’s Manual (M) moToroLA

12C Programming Examples

8.6.6 Slave Mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be
tested to check if a calling of its own address has just been received. If IAAS is set, software
should set the transmit/receive mode select bit (I2CR[MTX]) according to the I2SR[SRWT].
Writing to the I2CR clears the IAAS automatically. The only time IAAS is read as set is
from the interrupt at the end of the address cycle where an address match occurred;
interrupts resulting from subsequent data transfers will have IAAS cleared. A data transfer
can now be initiated by writing information to I2DR for slave transmits, or read from I2DR
in slave-receive mode. A dummy read of I2DR in slave/receive mode releases SCL,
allowing the master to send data.

In the slave transmitter routine, I2SR[RXAK] must be tested before sending the next byte
of data. Setting RXAK means an end-of-data signal from the master receiver, after which
software must switch it from transmitter to receiver mode. Reading I2DR then releases SCL
so that the master can generate a STOP signal.

8.6.7 Arbitration Lost

If several devices try to engage the bus at the same time, one becomes master. Hardware
immediately switches devices that lose arbitration to slave receive mode. Data output to
SDA stops, but SCL is still generated until the end of the byte during which arbitration is
lost. An interrupt occurs at the falling edge of the ninth clock of this transfer with
I2SR[IAL] = 1 and I2CR[MSTA] = 0.

If a device that is not a master tries to transmit or do a START, hardware inhibits the
transmission, clears MSTA without signalling a STOP, generates an interrupt to the CPU,
and sets IAL to indicate a failed attempt to engage the bus. When considering these cases,
the slave service routine should first test IAL and software should clear it if it is set.

(M) moToroLa Chapter 8. I2C Module 8-13

>rogramming Examples

Clear
IIF

Y. Master N
Mode?

Y
Clear IAL

ast Byte
Transmitted
?

Y
Cycle
RX
/
Write Next _ Generate
Byte to 12DR || St TXAK=1 || STOP Signal
\—><—‘ Y
. Read Data
Write Data from 12DR
and Store
Y Y
Switch to Set RX Switch to
Rx Mode Mode Rx Mode
Y Y Y Y Y
Dummy Read Generate Ifqrg%dlgta)tlg Dummy Read | | [Dummy Read
from I12DR STOP Signal And Store from 12DR from I2DR
v v v v v 'R

8-14

RTE

Figure 8-10. Flow-Chart of Typical I2C Interrupt Routine

MCF5407 User’s Manual

@ MOTOROLA

Chapter 9
Interrupt Controller

This chapter describes the operation of the interrupt controller portion of the system
integration module (SIM). It includes descriptions of the registers in the interrupt controller
memory map and the interrupt priority scheme.

9.1 Overview

The SIM provides a centralized interrupt controller for all MCF5407 interrupt sources,
which consist of the following:

External interrupts
Software watchdog timer

Timer modules

I2C module
UART modules
DMA module

Figure 9-1 is a block diagram of the interrupt controller.

System Integration Module (SIM) | Dpma
— Four
[| Channels
Software
Interrupt Controller —{ Watchdog
12 ICRs IRQPAR [| |ZC Module
IPR |
IMR [|Two UARTs
AVR
L 1 Two
—{ General-
% 4 “— Purpose
| Timers
IRQ[1,3,5,7]

Figure 9-1. Interrupt Controller Block Diagram

@ MOTOROLA Chapter 9. Interrupt Controller 9-1

‘rupt Controller Registers

The SIM provides the following registers for managing interrupts:

* Each potential interrupt source is assigned one of the 10 interrupt control registers

(ICRO-ICRY), which are used to prioritize the interrupt sources.

* The interrupt mask register (IMR) provides bits for masking individual interrupt
sources.

* The interrupt pending register (IPR) provides bits for indicating when an interrupt
request is being made (regardless of whether it is masked in the IMR).

* The autovector register (AVEC) controls whether the SIM supplies an autovector or

executes an external interrupt acknowledge cycle for each IRQ.

» The interrupt port assignment register (IRQPAR) provides the level assignment of
the primary external interrupt pins—IRQS5, IRQ3, and IRQI1.

9.2 Interrupt Controller Registers

The interrupt controller register portion of the SIM memory map is shown in Table 9-2.

Table 9-1. Interrupt Controller Registers

gg::: [31:24] [23:16] [15:8] [7:0]
0x040 Interrupt pending register (IPR) [p. 9-6]
0x044 Interrupt mask register (IMR) [p. 9-6]
0x048 Reserved Autovector register
(AVR) [p. 9-5]
Interrupt Control Registers (ICRs) [p. 9-3]
0x04C Software watchdog Timer0 (ICR1) [p. 9-3] Timer1 (ICR2) [p. 9-3] [2C (ICR3) [p. 9-3]
timer (ICRO) [p. 9-3]
0x050 UARTO (ICR4) [p. 9-3] | UART1 (ICR5) [p. 9-3] DMAO (ICR®) [p. 9-3] DMAT1 (ICR7) [p. 9-3]
0x054 DMA2 (ICR8) [p. 9-3] DMA3 (ICR9) [p. 9-3] Reserved

Each internal interrupt source has its own interrupt control register ICR0O-ICR9), shown in
Table 9-2 and described in Section 9.2.1, “Interrupt Control Registers (ICRO-ICR9).”

Table 9-2. Interrupt Control Registers

9-2

MBAR Offset | Register Name
0x04C ICRO Software watchdog timer
0x04D ICR1 Timer0
0x04E ICR2 Timer1
0x04F ICR3 |I2C
0x050 ICR4 UARTO
0x051 ICR5 UART1
0x052 ICR6 DMAO

MCF5407 User’s Manual

@ MOTOROLA

Interrupt Controller Registers

Table 9-2. Interrupt Control Registers (Continued)

MBAR Offset | Register Name
0x053 ICR7 DMA1
0x054 ICR8 DMA2
0x055 ICR9 DMAS3

Internal interrupts are programmed to a level and priority. Each internal interrupt has a
unique ICR. Each of the 7 interrupt levels has 5 priorities, for a total of 35 possible priority
levels, encompassing internal and external interrupts. The four external interrupt pins offer

seven possible settings at a fixed interrupt level and priority.

The IRQPAR determines these settings for external interrupt request levels. External
interrupts can be programmed to supply an autovector or execute an external interrupt
acknowledge cycle. This is described in Section 9.2.2, “Autovector Register (AVR).”

9.2.1 Interrupt Control Registers (ICR0-ICR9)

The interrupt control registers ICRO-ICR9) provide bits for defining the interrupt level and
priority for the interrupt source assigned to the ICR, shown in Table 9-2.

7 6 5 4 3 2 1 0
Field| AVEC — IL IP
Reset 0 — 0_00 00
R/W R/W
Address MBAR + 0x04C (ICRO); 0x04D (ICR1); 0x04E (ICR2); 0x04F (ICR3); 0x050 (ICR4); 0x051 (ICR5);
0x052 (ICR6); 0x053 (ICR7); 0x054 (ICR8); 0x055 (ICR9)

Figure 9-2. Interrupt Control Registers (ICR0-ICR9)
Table 9-3 describes ICR fields.

Table 9-3. ICRn Field Descriptions

Bits | Field Description
7 AVEC | Autovector enable. Determines whether the interrupt-acknowledge cycle input (for the internal
interrupt level indicated in IL for each interrupt) requires an autovector response.
0 Interrupting source returns vector during interrupt-acknowledge cycle.
1 SIM generates autovector during interrupt acknowledge cycle.
6-5 | — Reserved, should be cleared.
4-2 |IL Interrupt level. Indicates the interrupt level assigned to each interrupt input. See Table 9-4.
1-0 |IP Interrupt priority. Indicates the interrupt priority for internal modules within the interrupt-level
assignment. See Table 9-4.
00 Lowest
01 Low
10 High
11 Highest
@ MOTOROLA Chapter 9. Interrupt Controller 9-3

‘rupt Controller Registers

NOTE:

Assigning the same interrupt level and priority to multiple
ICRs causes unpredictable system behavior.

Table 9-4 shows possible priority schemes for internal and external sources of the
MCF5407. The internal module interrupt source in this table can be any internal interrupt
source programmed to the given level and priority.

This table shows how external interrupts are prioritized with respect to internal interrupt
sources within the same level. For example, UARTO and UART1 sources are programmed
to IL = 110; in this case, UARTO is given lower priority than UART1, so ICR4[IP] =01 and
the ICR5[IP] = 10. IRQ3 is programmed to level 6. If all three assert an interrupt request at
the same time, they are serviced in the following order:
1. ICRS[IL] = 110 and ICRS[IP] = 10, so UART1 is serviced first (priority 7 in
Table 9-4).

2. External interrupt IRQ3, set to level 6, is serviced next (priority 8).
3. ICRA4[IL] = 110 and ICRS[IP] = 01, so UARTO is serviced last (priority 9).
Table 9-4. Interrupt Priority Scheme

Priority Inlt_(:::Ipt ILICR - Interrupt Source IRQPAR[IRQPAR]
1 7 111 | 11 | Internal module XXX
2 111 10 XXX
3 XXX xx | External interrupt pin IRQ7 XXX
4 111 | 01 |Internal module XXX
5 111 00 XXX
6 6 110 | 11 | Internal module XXX
7 110 | 10 XXX
8 xxx | xx | Externalinterrupt pin IRQ3 (programmed as IRQ6) x1x
9 110 | 01 |Internal module XXX
10 110 | 00 XXX
11 5 101 11 | Internal module XXX
12 101 10 XXX
13 XXX xx | External interrupt pin IRQ5 0xx
14 101 01 | Internal module XXX
15 101 | 00 XXX
9-4 MCF5407 User’s Manual (M) moToroLa

Interrupt Controller Registers

Table 9-4. Interrupt Priority Scheme (Continued)

Priority '"I‘_‘:U;pt 'R Interrupt Source IRQPAR[IRQPAR]
IL IP
16 4 100 | 11 | Internal module XXX
17 100 | 10 XXX
18 XXX xx | External interrupt pin IRQ5 (programmed as IRQ4) 1xx
19 100 | 01 |Internal module XXX
20 100 | 00 XXX
21 3 011 11 | Internal module XXX
22 011 10 XXX
23 xxx | xx | External interrupt pin IRQ3 x0x
24 011 | 01 | Internal module XXX
25 011 | 00 XXX
26 2 010 | 11 | Internal module XXX
27 010 | 10 XXX
28 xxx | xx | External interrupt pin IRQ1 (programmed as IRQ2) xx1
29 010 | 01 | Internal module XXX
30 010 | 00 XXX
31 1 001 11 | Internal module XXX
32 001 10 XXX
33 xxx | xx | External interrupt pin IRQ1 xx0
34 001 | 01 | Internal module XXX
35 001 | 00 XXX

9.2.2 Autovector Register (AVR)

The autovector register (AVR), shown in Figure 9-3, enables external interrupt sources to
be autovectored, using the vector offset defined in Table 2-19 in Section 2.8, “Exception
Processing Overview.” Note that the autovector enable for internal interrupt sources applies
for respective ICRs.

7 6 5 4 3 2 1 0
Field AVEC BLK
Reset 0000_0000
R/W R/W
Address MBAR + 0x04B

Figure 9-3. Autovector Register (AVR)
Table 9-5 describes AVR fields.

@ MOTOROLA Chapter 9. Interrupt Controller 9-5

‘rupt Controller Registers

Table 9-5. AVR Field Descriptions

Bit Name Description

7-1 | AVEC | Autovector control. Determines whether the external interrupt at that level is autovectored.
0 Interrupting source returns vector during interrupt-acknowledge cycle.
1 SIM generates autovector during interrupt-acknowledge cycle.

0 BLK | Block address strobe (AS) for external AVEC access. Available for users who use AS as a global
chip select for peripherals and do not want to enable them during an AVEC cycle.

0 Do not block address strobe.

1 Block address strobe from asserting.

Table 9-6 shows the correlation between AVR[AVEC] and the external interrupts. Note that

an AVECnr bit is valid only when the corresponding external interrupt request level is
enabled in the IRQPAR.

Table 9-6. Autovector Register Bit Assignments

Autovector Interrupt Source Autovector Register Bit Location Vector Offset
External interrupt request 1 AVEC1 0x64
External interrupt request 2 AVEC2 0x68
External interrupt request 3 AVEC3 0x6C
External interrupt request 4 AVEC4 0x70
External interrupt request 5 AVECS5 0x74
External interrupt request 6 AVEC6 0x78
External interrupt request 7 AVEC7 0x7C

9.2.3 Interrupt Pending and Mask Registers (IPR and IMR)

The interrupt pending register (IPR), Figure 9-4, makes visible the interrupt sources that
have an interrupt pending. The interrupt mask register (IMR), also shown in Figure 9-4, is
used to mask the internal and external interrupt sources.

NOTE:

To mask interrupt sources, first set the core’s status register
interrupt mask level to that of the source being masked in the
IMR. Then, the IMR bit can be masked.

An interrupt is masked by setting, and enabled by clearing, the corresponding IMR bit.
When a masked interrupt occurs, the corresponding IPR bit is still set, but no interrupt
request is passed to the core.

9-6 MCF5407 User’s Manual (M) moToroLa

Interrupt Controller Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Field — DMA3|DMA2
Reset — 1 1
R/W Read-only (IPR); R/W (IMR)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field| DMA1 ‘DMAO‘UART1 ‘UARTO 12C ‘TIMERZ‘TIMER1 ‘SWT EINT7‘EINT6‘EINT5‘EINT4 EINT3|EINT2|EINT1| —

Reset 1111 1111 1111 1 1 1 —
R/W Read-only (IPR); R/W (IMR)
Addr MBAR + 0x040 (IPR); + 0x044 (IMR)

Figure 9-4. Interrupt Pending Register (IPR) and Interrupt Mask Register (IMR)
Table 9-7 describes IPR and IMR fields.
Table 9-7. IPR and IMR Field Descriptions

Bits Name Description
31-18 — Reserved, should be cleared.
171 See | Interrupt pending/mask. Each bit corresponds to an interrupt source defined by the ICR. The

Figure | corresponding IMR bit determines whether an interrupt condition can generate an interrupt. At
9-4 | every clock, the IPR samples the signal generated by the interrupting source. The corresponding

IPR bit reflects the state of the interrupt signal even if the corresponding IMR bit is set.

0 The corresponding interrupt source is not masked (IMR) and has no interrupt pending (IPR).

1 The corresponding interrupt source is masked (IMR) and has an interrupt pending (IPR)

9.2.4 Interrupt Port Assignment Register (IRQPAR)

The interrupt port assignment register (IRQPAR), shown in Figure 9-5, provides the level
assignment of the primary external interrupt pins—IRQS5, IRQ3, and IRQ1. The setting of
IRQPAR2-IRQPARO determines the interrupt level of these external interrupt pins.

7 6 5 4 3 2 1 0
Field| IRQPAR2 ‘ IRQPART1 ‘ IRQPARO ‘ — ‘ENBDACK1‘ENBDACKO
Reset 0000_0000
R/W R/W
Address MBAR + 0x06

Figure 9-5. Interrupt Port Assignment Register (IRQPAR)
Table 9-8 describes IRQPAR fields.

@ MOTOROLA Chapter 9. Interrupt Controller 9-7

‘rupt Controller Registers

Table 9-8. IRQPAR Field Descriptions

Bits Name Description
7-5 IRQPARN Configures the IRQ pin assignments and priorities
IRQPARN External Pin IRQPARNn =0 IRQPARN = 1
IRQPAR2 IRQ5 Level 5 Level 4
IRQPAR1 IRQ3 Level 3 Level 6
IRQPARO IRQ1 Level 1 Level 2
4-2 — Reserved, should be cleared.
1-0 ENBDACKn | Enable DACK1 and DACKO. Determines the functionality of the respective TMn/DACKn pins.
0 TM1 and TMO are driven instead of DACK1 and DACKO.
1 If the PAR register is programmed to enable TMn, the DACKn signal for DMA channel n is
driven in place of TMn for DMA transfers.
9-8 MCF5407 User’s Manual (M) moToroLA

Chapter 10
Chip-Select Module

This chapter describes the MCF5407 chip-select module, including the operation and
programming model of the chip-select registers, which include the chip-select address,
mask, and control registers.

10.1 Overview

The following list summarizes the key chip-select features:

 Eight independent, user-programmable chip-select signals (CS[7:0]) that can
interface with SRAM, PROM, EPROM, EEPROM, Flash, and peripherals

e Address masking for 64-Kbyte to 4-Gbyte memory block sizes

* Programmable wait states and port sizes

» External master access to chip selects

10.2 Chip-Select Module Signals

Table 10-1 lists signals used by the chip-select module.

Table 10-1. Chip-Select Module Signals

Signal Description

Chip Selects | Each CSn can be independently programmed for an address location as well as for masking, port

(CS[7:0)) size, read/write burst-capability, wait-state generation, and internal/external termination. Only CS0
is initialized at reset when it acts as a global chip select that allows boot ROM to be at any defined
address space. Port size and termination (internal versus external) and byte enables for CS0 are
configured by the logic levels of D[7:5] when RSTI negates.

Output Interfaces to memory or to peripheral devices and enables a read transfer. It is asserted and

Enable (OE) | negated on the falling edge of the clock. OE is asserted only when one of the chip selects matches
for the current address decode.

Byte Enables/ | These multiplexed signals are individually programmed through the byte enable mode bit,

Byte Write CSCRnN[BEM], described in Section 10.4.1.3, “Chip-Select Control Registers (CSCR0-CSCR?7).”

Enables These generated signals provide byte data select signals, which are decoded from the transfer

(BE[3:0)/ size, A1, and AO signals in addition to the programmed port size and burstability of the memory

BWE[3:0]) accessed, as Table 10-2 shows.

Table 10-2 shows the interaction of the byte enable/byte-write enables with related signals.

(M) moToroLA Chapter 10. Chip-Select Module 10-1

1-Select Operation

Table 10-2. Byte Enables/Byte Write Enable Signal Settings

BEO/BWEO | BE1/BWE1 | BE2/BWE2 | BE3/BWE3
Transfer Size | Port Size Al A0
D[31:24] D[23:16] D[15:8] D[7:0]
Byte 8-bit 0 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 0 1 1 1
16-bit 0 0 0 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 1 0 1 1
32-bit 0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0
Word 8-bit 0 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 0 1 1 1
16-bit 0 0 0 0 1 1
1 0 0 0 1 1
32-bit 0 0 0 0 1 1
1 0 1 1 0 0
Longword 8-bit 0 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 0 1 1 1
16-bit 0 0 0 0 1 1
1 0 0 0 1 1
32-bit 0 0 0 0 0 0
Line 8-bit 0 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 0 1 1 1
16-bit 0 0 0 0 1 1
1 0 0 0 1 1
32-bit 0 0 0 0 0 0

10.3 Chip-Select Operation

Each chip select has a dedicated set of the following registers for configuration and control.

10-2

Chip-select address registers (CSAR#) control the base address space of the chip
select. See Section 10.4.1.1, “Chip-Select Address Registers (CSARO-CSAR?7).”

MCF5407 User’s Manual

@ MOTOROLA

Chip-Select Operation

* Chip-select mask registers (CSMRn) provide 16-bit address masking and access
control. See Section 10.4.1.2, “Chip-Select Mask Registers (CSMR0O-CSMR7).”

* Chip-select control registers (CSCRn) provide port size and burst capability
indication, wait-state generation, and automatic acknowledge generation features.
See Section 10.4.1.3, “Chip-Select Control Registers (CSCRO-CSCR?7).”

Each CSn can assert during specific CPU space accesses such as interrupt-acknowledge
cycles and each can be accessed by an external master. CSO is a global chip select after reset
and provides relocatable boot ROM capability.

10.3.1 General Chip-Select Operation

When a bus cycle is initiated, the MCF5407 first compares its address with the base address
and mask configurations programmed for chip selects 0—7 (configured in CSCRO-CSCR?7)
and DRAM block O and 1 address and control registers (configured in DACRO and
DACR1). If the driven address matches a programmed chip select or DRAM block, the
appropriate chip select is asserted or the DRAM block is selected using the specifications
programmed in the respective configuration register. Otherwise, the following occurs:

e [f the address and attributes do not match in CSCR or DACR, the MCF5407 runs an
external burst-inhibited bus cycle with a default of external termination on a 32-bit
port.

* Should an address and attribute match in multiple CSCRs, the matching chip-select
signals are driven; however, the MCF5407 runs an external burst-inhibited bus cycle
with external termination on a 32-bit port.

¢ Should an address and attribute match both DACRs or a DACR and a CSCR, the
operation is undefined.

Table 10-3 shows the type of access as a function of match in the CSCRs and DACRs.

Table 10-3. Accesses by Matches in CSCRs and DACRs

Number of CSCR Matches Number of DACR Matches Type of Access

0 0 External

1 0 Defined by CSCR

Multiple 0 External, burst-inhibited, 32-bit
0 1 Defined by DACRs

1 1 Undefined

Multiple 1 Undefined

0 Multiple Undefined

1 Multiple Undefined

Multiple Multiple Undefined

(M) moToroLA Chapter 10. Chip-Select Module 10-3

1-Select Operation

10.3.1.1 8-, 16-, and 32-Bit Port Sizing

Static bus sizing is programmable through the port size bits, CSCR[PS]. See
Section 10.4.1.3, “Chip-Select Control Registers (CSCRO-CSCR7).” Figure 10-1 shows
the correspondence between data byte lanes and the external chip-select memory. Note that
all lanes are driven, although unused lines are undefined.

BEO BET BE2 BE3
External ; . . .
qapoe. | D[31:24] | D[23:16] | D[15:8] [D[7:0] |
32-bit port
merr?ory l Byte 0 I Byte 1 I Byte 2 I Byte 3 ‘
16-bit port

Byte O Byte 1
memory yte yie Driven, undefined
Byte 2 Byte 3

'

8-bit port
memory Byte 0
Byte 1 . .
Driven, undefined
Byte 2
Byte 3

Figure 10-1. Connections for External Memory Port Sizes

10.3.1.2 Global Chip-Select Operation

CS0, the global (boot) chip select, allows address decoding for boot ROM before system
initialization. Its operation differs from other external chip-select outputs after system reset.

After system reset, CSO is asserted for every external access. No other chip-select can be
used until the valid bit, CSMRO[V], is set, at which point CSO functions as configured and
CS[7:1] can be used. At reset, the port size, byte enable, and automatic acknowledge
functions of the global chip-select are determined by the logic levels of the inputs on
D[7:5,3]. Table 10-4 through Table 10-6 list the various reset encodings for the
configuration signals multiplexed with D[7:5,3].

Table 10-4. D7/AA, Automatic Acknowledge of Boot CS0

D7/AA Boot CS0 AA Configuration at Reset
0 Disabled
1 Enable with 15 wait states

10-4 MCF5407 User’s Manual (M) moToroLa

Chip-Select Registers

Table 10-5. D[6:5)/PS[1:0], Port Size of Boot CS0

D[6:5)/PS[1:0]

Boot CSO0 Port Size at Reset

00 32-bit port
01 8-bit port
1x 16-bit port

Table 10-6. D3/BE_CONFIGO0, BE[3:0] Boot Configuration

D3/BE_CONFIGO

Configuration of Byte Enables for Boot CS0

0

E[3:0] is enabled as byte write enables only.

1

BE[3:0] is enabled as byte enables for reads and writes.

Provided the required address range is in the chip-select address register (CSARO), CSO can
be programmed to continue decoding for a range of addresses after the CSMRO[V] is set,
after which the global chip-select can be restored only by a system reset.

10.4 Chip-Select Registers

Table 10-7 is the chip-select register memory map. Reading reserved locations returns

Zeros.
Table 10-7. Chip-Select Registers

“o"::g [31:24] [23:16] [15:8] [7:0]

0x080 Chip-select address register—bank 0 (CSARO) [p. 10-6] Reserved!

0x084 Chip-select mask register—bank 0 (CSMRO) [p. 10-7]

0x088 Reserved’ Chip-select control register—bank 0
(CSCRO) [p. 10-8]

0x08C Chip-select address register—bank 1 (CSAR1) [p. 10-6] Reserved'

0x090 Chip-select mask register—bank 1 (CSMR1) [p. 10-7]

0x094 Reserved' Chip-select control register—bank 1
(CSCR1) [p. 10-8]

0x098 Chip-select address register—bank 2 (CSAR2) [p. 10-6] Reserved'

0x09C Chip-select mask register—bank 2 (CSMR2) [p. 10-7]

0x0AO0 Reserved’ Chip-select control register—bank 2
(CSCR2) [p. 10-8]

0x0A4 Chip-select address register—bank 3 (CSAR3) [p. 10-6] Reserved!'

0x0A8 Chip-select mask register—bank 3 (CSMRS3) [p. 10-7]

0x0AC Reserved’ Chip-select control register—bank 3
(CSCR3) [p. 10-8]

0x0B0 Chip-select address register—bank 4 (CSAR4) [p. 10-6] Reserved'

0x0B4 Chip-select mask register—bank 4 (CSMR4) [p. 10-7]

@ MOTOROLA

Chapter 10. Chip-Select Module

10-5

1-Select Registers

Table 10-7. Chip-Select Registers (Continued)

MBAR

Offset [31:24] [23:16] [15:8] [7:0]

0x0B8 Reserved’ Chip-select control register—bank 4
(CSCR4) [p. 10-8]

0x0BC Chip-select address register—bank 5 (CSARS5) [p. 10-6] Reserved!'

0x0CO0 Chip-select mask register—bank 5 (CSMRS5) [p. 10-7]

0x0C4 Reserved Chip-select control register—bank 5
(CSCR5) [p. 10-8]

0x0C8 Chip-select address register—bank 6 (CSARS) [p. 10-6] Reserved'

0x0CC Chip-select mask register—bank 6 (CSMR6) [p. 10-7]

0x0DO Reserved' Chip-select control register—bank 6
(CSCRS) [p. 10-8]

0x0D4 Chip-select address register—bank 7 (CSAR?7) [p. 10-6] Reserved'

0x0D8 Chip-select mask register—bank 7 (CSMR7) [p. 10-7]

0x0DC Reserved’ Chip-select control register—bank 7
(CSCR?7) [p. 10-8]

T Addresses not assigned to a register and undefined register bits are reserved for expansion. Write accesses to
these reserved address spaces and reserved register bits have no effect.

NOTE:

External masters cannot access MCF5407 on-chip memories or
MBAR, but can access any of the chip-select module registers.

10.4.1 Chip-Select Module Registers

The chip-select module is programmed through the chip select address registers
(CSARO-CSAR?7), chip select mask registers (CSMRO-CSMR7), and the chip select
control registers (CSCRO-CSCR7).

10.4.1.1 Chip-Select Address Registers (CSAR0-CSAR?7)

Chip select address registers, Figure 10-2, specify the chip select base addresses.

15 0
Field BA
Reset Uninitialized
R/W R/W

Addr| 0x080 (CSARO); 0x08C (CSAR1); 0x098 (CSAR2); 0x0A4 (CSARS);
0x0BO (CSAR4); 0xOBC (CSARS); 0x0C8 (CSARB); 0x0D4 (CSAR?)

Figure 10-2. Chip Select Address Registers (CSAR0-CSAR?7)
Table 10-8 describes CSAR[BA].

10-6 MCF5407 User’s Manual (M) moToroLa

Chip-Select Registers

Table 10-8. CSARN Field Description

Bits | Name Description

15-0 BA | Base address. Defines the base address for memory dedicated to chip select CS[7:0]. BA is compared
to bits 31—16 on the internal address bus to determine if chip-select memory is being accessed.

10.4.1.2 Chip-Select Mask Registers (CSMR0-CSMR?7)

The chip select mask registers, Figure 10-3, are used to specify the address mask and
allowable access types for the respective chip selects.

31 16 15 98 7 6 5 4 3 2 10
Field BAM — |we|—|am|cnlsc|sp|uc|up| v
Reset Unitialized
RW RW
Addr 0x084 (CSMRO); 0x090 (CSMR1); 0x09C (CSMR2); 0x0A8 (CSMR3);

0x0B4 (CSMR4): 0x0CO (CSMR5); 0xOCC (CSMRE); 0x0D8 (CSMR?7)

Figure 10-3. Chip Select Mask Registers (CSMRn)
Table 10-9 describes CSMR fields.
Table 10-9. CSMRn Field Descriptions

Bits Name Description

31-16 | BAM | Base address mask. Defines the chip select block by masking address bits. Setting a BAM bit
causes the corresponding CSAR bit to be ignored in the decode.

0 Corresponding address bit is used in chip-select decode.

1 Corresponding address bit is a don’t care in chip-select decode.

The block size for CS[7:0] is 2"; n = (number of bits set in respective CSMR[BAM]) + 16.

So, if CSARO = 0x0000 and CSMRO[BAM] = 0x0008, CS0 would address two discontinuous
64-Kbyte memory blocks: one from 0x0000-0xFFFF and one from 0x8_0000-0x8_FFFF.
Likewise, for CS0 to access 32 Mbytes of address space starting at location 0x0, CS1 must begin
at the next byte after CSO0 for a 16-Mbyte address space. Then CSARO = 0x0000,

CSMRO[BAM] = 0x01FF, CSAR1 = 0x0200, and CSMR1[BAM] = 0x00FF.

8 WP | Write protect. Controls write accesses to the address range in the corresponding CSAR.
Attempting to write to the range of addresses for which CSARN[WP] = 1 results in the appropriate
chip select not being selected. No exception occurs.

0 Both read and write accesses are allowed.

1 Only read accesses are allowed.

7 — Reserved, should be cleared.

6 AM | Alternate master. When AM = 0 during an external master or DMA access, SC, SD, UC, and UD
are don’t cares in the chip-select decode.

(M) moToroLA Chapter 10. Chip-Select Module 10-7

1-Select Registers

Table 10-9. CSMRn Field Descriptions (Continued)

Bits Name Description

5-1 C/l, | Address space mask bits. These bits determine whether the specified accesses can occur to the
SC, | address space defined by the BAM for this chip select.
SD,

uc C/I CPU space and interrupt acknowledge cycle mask
UD‘ SC Supervisor code address space mask
SD Supervisor data address space mask
UC User code address space mask
UD User data address space mask

0 The address space assigned to this chip select. is available to the specified access type.

1 The address space assigned to this chip select. is not available (masked) to the specified access
type. If this address space is accessed, chip select is not activated and a regular external bus
cycle occurs.

Note that if if AM = 0, SC, SD, UC, and UD are ignored in the chip select decode on external

master or DMA access.

0 \Y Valid bit. Indicates whether the corresponding CSAR, CSMR, and CSCR contents are valid.
Programmed chip selects do not assert until V is set (except for CS0, which acts as the global chip
select). Reset clears each CSMRn[V].

0 Chip select invalid

1 Chip select valid

10.4.1.3 Chip-Select Control Registers (CSCR0-CSCR7)

Each chip-select control register, Figure 10-4, controls the auto acknowledge, external
master support, port size, burst capability, and activation of each chip select. Note that to
support the global chip select, CSO, the CSCRO reset values differ from the other CSCRs.
CSO0 allows address decoding for boot ROM before system initialization.

15 14 13 10 9 8 7 6 5 4 3 2 0
Field — WS — | AA |PS1|PS0|BEM BSTR‘ BSTW ‘ —
Reset: CSCRO — 11_11 — | D7 | D6 | D5 | D3 —
Reset: Other CSCRs Unitialized
R/W R/W
Address 0x08A (CSCRO); 0x096 (CSCR1); 0x0A2 (CSCR2); OXOAE (CSCR3);
0xOBA (CSCR4); 0x0C6 (CSCR5); 0x0D2 (CSCR6); 0xODE (CSCR7)

Figure 10-4. Chip-Select Control Registers (CSCR0-CSCR?7)

Table 10-10 describes CSCR~ fields.
Table 10-10. CSCRn Field Descriptions

Bits | Name Description

15-14 — Reserved, should be cleared.

13-10| WS | Wait states. The number of wait states inserted before an internal transfer acknowledge is generated
(WS = 0 inserts zero wait states, WS = OxF inserts 15 wait states). If AA = 0, TA must be asserted by
the external system regardless of the number of wait states generated. In that case, the external
transfer acknowledge ends the cycle. An external TA supersedes the generation of an internal TA.

9 — Reserved, should be cleared.

10-8 MCF5407 User’s Manual (M) moToroLa

Chip-Select Registers

Table 10-10. CSCRn Field Descriptions

Bits

Name

Description

AA

Auto-acknowledge enable. Determines the assertion of the internal transfer acknowledge for

accesses specified by the chip-select address.

0 No internal TA is asserted. Cycle is terminated externally. o

1 Internal TA is asserted as specified by WS. Note that if AA = 1 for a corresponding CSn and the
external system asserts an external TA before the wait-state countdown asserts the internal TA, the
cycle is terminated. Burst cycles increment the address bus between each internal termination.

PS

Port size. Specifies the width of the data associated with each chip select. It determines where data
is driven during write cycles and where data is sampled during read cycles. See Section 10.3.1.1,
“8-, 16-, and 32-Bit Port Sizing.”

00 32-bit port size. Valid data sampled and driven on D[31:0]

01 8-bit port size. Valid data sampled and driven on D[31:24]

1x 16-bit port size. Valid data sampled and driven on D[31:16]

BEM

Byte enable mode. Specifies the byte enable operation. Certain SRAMs have byte enables that must
be asserted during reads as well as writes. BEM can be set in the relevant CSCR to provide the
appropriate mode of byte enable in support of these SRAMs.

0 Neither BE nor BWE is asserted for read. BWE is generated for data write only.

1 BE is asserted for read; BWE is asserted for write.

BSTR

Burst read enable. Specifies whether burst reads are used for memory associated with each CSn.

0 Data exceeding the specified port size is broken into individual, port-sized non-burst reads. For
example, a longword read from an 8-bit port is broken into four 8-bit reads.

1 Enables data burst reads larger than the specified port size, including longword reads from 8- and
16-bit ports, word reads from 8-bit ports, and line reads from 8-, 16-, and 32-bit ports.

BSTW

Burst write enable. Specifies whether burst writes are used for memory associated with each CSn.

0 Break data larger than the specified port size into individual port-sized, non-burst writes. For
example, a longword write to an 8-bit port takes four byte writes.

1 Enables burst write of data larger than the specified port size, including longword writes to 8 and
16-bit ports, word writes to 8-bit ports and line writes to 8-, 16-, and 32-bit ports.

2-0

Reserved, should be cleared.

10.4.1.4 Code Example

The code below provides an example of how to initialize the chip-selects. Only chip selects
0, 1, 2, and 3 are programmed here; chip selects 4, 5, 6, and 7 are left invalid. MBARX
defines the base of the module address space.

CSARO
CSMRO
CSCRO

CSAR1
CSMR1
CSCR1

CSAR2
CSMR2
CSCR2

CSAR3
CSMR3
CSCR3

CSAR4
CSAR4
CSMR4

EQU MBARx+0x080 ;Chip select 0 address register
EQU MBARx+0x084 ;Chip select 0 mask register
EQU MBARx+0x08A ;Chip select 0 control register
EQU MBARx+0x08C ;Chip select 1 address register
EQU MBARx+0x090 ;Chip select 1 mask register
EQU MBARx+0x096 ;Chip select 1 control register
EQU MBARx+0x098 ;Chip select 2 address register
EQU MBARx+0x09C ;Chip select 2 mask register
EQU MBARx+0x0A2 ;Chip select 2 control register
EQU MBARx+0x0A4 ;Chip select 3 address register
EQU MBARx+0x0A8 ;Chip select 3 mask register
EQU MBARx+0x0AE ;Chip select 3 control register
EQU MBARx+0x0BO0 ;Chip select 4 address register
EQU MBARx+0x0B4 ;Chip select 4 mask register
EQU MBARx+0x0BA ;Chip select 4 control register

@ MOTOROLA

Chapter 10. Chip-Select Module

1-Select Registers

CSAR5
CSMR5
CSCR5

CSAR6
CSMR6
CSCR6

CSAR7
CSMR7
CSCR7

; ALl

; Program Chip Select 3

move.w
move.w

move.w
move.w

move.l
move.l

; Program Chip Select 2

move.w
move.w

move.w
move.w

move.l
move.l

; Program Chip Select 1

move.w
move.w

move.w
move.w

move.l
move.l

; Program Chip Select 0

move.w
move.w

move.w
move.w

; Program Chip Select 0

move.l
move.l

10-10

EQU MBARx+0x0BC
EQU MBARx+0x0CO
EQU MBARx+0x0C6

EQU MBARx+0x0C8
EQU MBARx+0x0CC
EQU MBARx+0x0D2

EQU MBARx+0x0D4
EQU MBARx+0x0D8
EQU MBARx+0x0DE

;Chip select
;Chip select
;Chip select

;Chip select
;Chip select
;Chip select

;Chip select
;Chip select
;Chip select

5
5
5
6
6
6
7
7
7

address register
mask register
control register

address register
mask register
control register

address register
mask register
control register

other chip selects should be programmed and made valid before global
; chip select is de-activated by validating CS0

#0x0040,D0
DO, CSAR3

#0x00A0, DO
DO, CSCR3

#0x001F016B,D0
D0, CSMR3

#0x0020,D0
DO, CSAR2

#0x0538,D0
DO, CSCR2

#0x001F0001,DO0
DO, CSMR2

#0x0000,D0
DO, CSAR1

#0x09B0, DO
DO, CSCR1

#0x801F0001,D0
DO, CSMR1

#0x0080,D0
DO, CSARO

#0x0D80, DO
DO, CSCRO

#0x001F0001,D0
DO, CSMRO

Registers

;CSAR3 base address 0x00400000

;CSCR3 = no wait states, AA=0, PS=16-bit, BEM=1,

;BSTR=0, BSTW=0

;Address range from 0x00400000 to OxO0O0S5FFFFF
;WP,EM,C/I,SD,UD,V=1; SC,UC=0

Registers

;CSAR2 base address 0x00200000 (to O0x003FFFFF)

;CSCR2 = 1 wait state, AA=1, PS=32-bit, BEM=1,

;BSTR=1, BSTW=1

;Address range from 0x00200000 to 0x003FFFFF
;WP,EM,C/I,SC,SD,UC,UD=0; V=1

Registers

;CSAR1 base addresses 0x00000000 (to OxO001lFFFFF)
;and 0x80000000 (to Ox801FFFFF)

;CSCR1 = 2 wait states, AA=1, PS=16-bit, BEM=1,

;BSTR=1, BSTW=0

;Address range from 0x00000000 to O0x001FFFFF and
;0x80000000 to Ox801FFFFF

;Wp, EM, C/I, sC, SD, UC, UD=0, V=1

Registers

;CSARO base address 0x00800000 (to OxO009FFFFF)

;CSCR0O = three wait states, AA=1, PS=16-bit, BEM=0,

;BSTR=0, BSTW=0

Mask Register (validate chip selects)

;Address range from 0x00800000 to Ox009FFFFF
;WP,EM,C/I,SC,SD,UC,UD=0; V=1

MCF5407 User’s Manual

@ MOTOROLA

Chapter 11
Synchronous/Asynchronous DRAM
Controller Module

This chapter describes configuration and operation of the synchronous/asynchronous
DRAM controller component of the system integration module (SIM). It begins with a
general description and brief glossary, and includes a description of signals involved in
DRAM operations. The remainder of the chapter consists of the two following parts:

Section 11.3, “Asynchronous Operation,” describes the programming model and
signal timing for the four basic asynchronous modes.

— Non-page mode

— Burst page mode

— Continuous page mode
— Extended data-out mode

Section 11.4, “Synchronous Operation,” describes the programming model and
signal timing, as well as the command set required for synchronous operations. This
section also includes extensive examples the designer can follow to better
understand how to configure the DRAM controller for synchronous operations.

11.1 Overview

The DRAM controller module provides glueless integration of DRAM with the ColdFire
product. The key features of the DRAM controller include the following:

Support for two independent blocks of DRAM

Interface to standard synchronous/asynchronous dynamic random access memory
(ADRAM/SDRAM) components

Programmable SRAS, SCAS, and refresh timing
Support for page mode
Support for 8-, 16-, and 32-bit wide DRAM blocks

Support for synchronous and asynchronous DRAMs, including EDO DRAM,
SDRAM, and fast page mode

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-1

rview

11.1.1 Definitions

The following terminology is used in this chapter:

* A/SDRAM block— Any group of DRAM memories selected by one of the
MCF5407 RASJ[1:0] signals. Thus, the MCF5407 can support two independent
memory blocks. The base address of each block is programmed in the DRAM
address and control registers (DACRO and DACR1).

* SDRAM —RAMs that operate like asynchronous DRAMs but with a synchronous
clock, a pipelined, multiple-bank architecture, and faster speed.

e SDRAM bank— An internal partition in an SDRAM device. For example, a 64-Mbit
SDRAM component might be configured as four 512K x 32 banks. Banks are
selected through the SDRAM component’s bank select lines.

11.1.2 Block Diagram and Major Components
The basic components of the DRAM controller are shown in Figure 11-1.

DRAM Controller Module

A[31:0], Address

dress L |
Internal | Multiplexing | A[31:0]
Bus ﬁ
| . \
> Pi%&?" > ControIdLogic \
an >

State Machine RAS[1:0]

CAS[3:0]
DRAMW
SCAS] These signals

Y

Memory Block 0 Hit Logic
DRAM Address/Control Register 0
(DACRO)

Y

SRAS are used for

\
\
\
\
Register (DCR) | SCKE
\
\
\
\

[— DRAM Control SDRAM only
— L 1
Memory Block 1 Hit Logic Refresh Countt
DRAM Address/Control Register 1 eiresh Lounter
— (DACR1) o R
1
L — — — — — -

Figure 11-1. Asynchronous/Synchronous DRAM Controller Block Diagram

The DRAM controller’s major components, shown in Figure 11-1, are described as
follows:

* DRAM address and control registers (DACRO and DACR1)—The DRAM
controller consists of two configuration register units, one for each supported
memory block. DACRO is accessed at MBAR + 0x0108; DACRI1 is accessed at
0x010. The register information is passed on to the hit logic.

11-2 MCF5407 User’s Manual (M) moToroLa

DRAM Controller Operation

e Control logic and state machine—Generates all DRAM signals, taking bus cycle
characteristic data from the block logic, along with hit information to generate
DRAM accesses. Handles refresh requests from the refresh counter.

— DRAM control register (DCR)—Contains data to control refresh operation of
the DRAM controller. Both memory blocks are refreshed concurrently as
controlled by DCR[RC].

— Refresh counter—Determines when refresh should occur, determined by the
value of DCR[RC]. It generates a refresh request to the control block.
* Hit logic—Compares address and attribute signals of a current DRAM bus cycle to
both DACRs to determine if a DRAM block is being accessed. Hits are passed to the
control logic along with characteristics of the bus cycle to be generated.

* Page hit logic—Determines if the next DRAM access is in the same DRAM page as
the previous one. This information is passed on to the control logic.

* Address multiplexing— Multiplexes addresses to allow column and row addresses
to share pins. This allows glueless interface to DRAMs.

11.2 DRAM Controller Operation

The DRAM controller mode is programmed through DCR[SO]. Asynchronous mode
(SO =0) includes support for page mode and EDO DRAMs. Synchronous mode is
designed to work with industry-standard SDRAMs. These modes act very differently from
one another, especially regarding the use of DRAM registers and pins. Memory blocks
cannot operate in different modes; both are either synchronous or asynchronous.

11.2.1 DRAM Controller Registers

The DRAM controller registers memory map, Table 11-1, is the same regardless of whether
asynchronous or synchronous DRAM is used, although bit configurations may vary.

Table 11-1. DRAM Controller Registers

ngf:g [31:24] [23:16] [15:8] [7:0]
0x100 DRAM control register (DCR) [p. 11-4] Reserved
0x104 Reserved
0x108 DRAM address and control register 0 (DACRO) [p. 11-5]
0x10C DRAM mask register block 0 (DMRO) [p. 11-7]
0x110 DRAM address and control register 1 (DACR1) [p. 11-5]
0x114 DRAM mask register block 1 (DMR1) [p. 11-7]
NOTE:

External masters cannot access MCF5407 on-chip memories or
MBAR, but they can access DRAM controller registers.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-3

1chronous Operation

11.3 Asynchronous Operation

The DRAM controller supports asynchronous DRAMs for cost-effective systems. Typical
access times for the DRAM controller interfacing to ADRAM are 4-3-3-3. The DRAM
controller supports the following four asynchronous modes:

* Non-page mode

* Burst page mode

* Continuous page mode

» Extended data-out mode
In asynchronous mode, RAS and CAS always transition at the falling clock edge. As
summarized previously, operation and timing of each ADRAM block is controlled by
separate registers, but refresh is the same for both. All ADRAM accesses should be
terminated by the DRAM controller. There is no priority encoding between memory

blocks, so programming blocks to overlap with other blocks or with other internal resources
causes undefined behavior.

11.3.1 DRAM Controller Signals in Asynchronous Mode

Table 11-2 summarizes DRAM signals used in asynchronous mode.
Table 11-2. SDRAM Signal Summary

Signal Description

RAS[1:0] Row address strobes. Interface to RAS inputs on industry-standard ADRAMs. When SDRAMSs are used,
these signals interface to the chip-select lines within an SDRAM’s memory block. Thus, there is one RAS
line for each of the two blocks.

CAS[3:0] Column address strobes. Interface to CAS inputs on industry-standard DRAMs. These provide CAS for
a given ADRAM block. When SDRAMSs are used, CAS[3:0] control the byte enables (DQMx) for standard
SDRAMs. CAS[3:0] strobes data in least-to-most significant byte order (CASO is MSB).

DRAMW DRAM read/write. Asserted when a DRAM write cycle is underway. Negated for read bus cycles.

11.3.2 Asynchronous Register Set

The following register configurations apply when DCR[SO] is 0, indicating the DRAM
controller is interfacing to asynchronous DRAMs.

11.3.2.1 DRAM Control Register (DCR) in Asynchronous Mode

The DCR provides programmable options for the refresh logic as well as the control bit to
determine if the module is operating with synchronous or asynchronous DRAMs. The DCR
is shown in Figure 11-2.

114 MCF5407 User’s Manual (M) moToroLa

Asynchronous Operation

15 14 13 12 11 10 9 8 0
Field| SO | — ‘ NAM ‘ RRA ‘ RRP ‘ RC
Reset| 0 Uninitialized
R/W R/W
Address MBAR + 0x100

Figure 11-2. DRAM Control Register (DCR) (Asynchronous Mode)

Table 11-3 describes DCR fields.
Table 11-3. DCR Field Descriptions (Asynchronous Mode)

Bits | Name Description

15 SO | Synchronous operation. Selects synchronous or asynchronous mode. A DRAM controller in
synchronous mode can be switched to ADRAM mode only by resetting the MCF5407.

0 Asynchronous DRAMSs. Default at reset.

1 Synchronous DRAMs

14 — Reserved, should be cleared.

13 NAM | No address multiplexing. Some implementations require external multiplexing. For example, when
linear addressing is required, the DRAM should not multiplex addresses on DRAM accesses.

0 The DRAM controller multiplexes the external address bus to provide column addresses.

1 The DRAM controller does not multiplex the external address bus to provide column addresses.

12-11 | RRA | Refresh RAS asserted. Determines how long RAS is asserted during a refresh operation.
00 2 clocks
01 3 clocks
10 4 clocks
11 5 clocks

10-9 RRP | Refresh RAS precharge. Controls how many clocks RAS is precharged after a refresh operation
before accesses are allowed to DRAM.

00 1 clock

01 2 clocks

10 3 clocks

11 4 clocks

8-0 RC | Refresh count. Controls refresh frequency. The number of bus clocks between refresh cycles is
(RC + 1) * 16. Refresh can range from 16—-8192 bus clocks to accommodate both standard and
low-power DRAMs with bus clock operation from less than 2 MHz to greater than 50 MHz.

The following example calculates RC for an auto-refresh period for 4096 rows to receive 64 mS of
refresh every 15.625 ps for each row (625 bus clocks at 40 MHz).

of bus clocks = 625 = (RC field + 1) * 16

RC = (625 bus clocks/16) -1 = 38.06, which rounds to 38; therefore, RC = 0x26.

11.3.2.2 DRAM Address and Control Registers (DACR0/DACR1)

DACRO and DACRI, Figure 11-3, contain the base address compare value and the control
bits for memory blocks 0 and 1. Address and timing are also controlled by these registers.
Memory areas defined for each block should not overlap; operation is undefined for
accesses in overlapping regions.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-5

1chronous Operation

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Field BA — | RE —‘CAS‘ RP ‘ RNCN ‘ RCD ‘—‘ EDO ‘ PS ‘ PM ‘ —
Reset Unitialized 0 Unitialized
R/W R/W
Addr MBAR + 0x10C (DACRO0); 0x110 (DACR1)
Figure 11-3. DRAM Address and Control Registers (DACR0/DACR1)
Table 11-4 describes DACR# fields.
Table 11-4. DACR0/DACR1 Field Description
Bits | Name Description
31-18 BA | Base address. Used with DMR[BAM] to determine the address range in which the associated
DRAM block is located. Each BA bit is compared with the corresponding address of the bus cycle in
progress. If each bit matches, or if bits that do not match are masked in the BAM, the address
selects the associated DRAM block.
17-16 — Reserved, should be cleared.
15 RE | Refresh enable. Determines whether the DRAM controller generates a refresh to the associated
DRAM block. DRAM contents are not preserved during hard reset or software watchdog reset.
0 Do not refresh associated DRAM block. (Default at reset)
1 Refresh associated DRAM block.
14 — Reserved, should be cleared.
13-12 | CAS | CAS timing. Determines how long CAS is asserted during a DRAM access.
00 1 clock cycle
01 2 clock cycles
10 3 clock cycles
11 4 clock cycles
11-10 | RP | RAS precharge timing. Determines how long RAS is precharged between accesses. Note that RP
is different from DCR[RRP].
00 1 clock cycle
01 2 clock cycles
10 3 clock cycles
11 4 clock cycles
9 RNCN | RAS-negate-to-CAS-negate. Controls whether RAS and CAS negate concurrently or one clock
apart. RNCN is ignored if CAS is asserted for only one clock and both RAS and CAS are negated.
RNCN is used only for non-page-mode accesses and single accesses in page mode.
0 RAS negates concurrently with CAS.
1 RAS negates one clock before CAS.
8 RCD | RAS-to-CAS delay. Determines the number of system clocks between assertions of RAS and CAS.
0 1 clock cycle
1 2 clock cycles
7 — Reserved, should be cleared.
6 EDO | Extended data out. Determines whether the DRAM block operates in a mode to take advantage of
industry-standard EDO DRAMs. Do not use EDO mode with non-EDO DRAM.
0 EDO operation disabled.
1 EDO operation enabled.
11-6 MCF5407 User’s Manual (M) moToroLa

Asynchronous Operation

Table 11-4. DACRO/DACR1 Field Description (Continued)

Bits | Name Description

5-4 PS | Port size. Determines the port size of the associated DRAM block. For example, if two 16-bit wide
DRAM components form one DRAM block, the port size is 32 bits. Programming PS allows the
DRAM controller to execute dynamic bus sizing for associated accesses.

00 32-bit port

01 8-bit port

1x 16-bit port

3-2 PM | Page mode. Configures page-mode operation for the memory block.
00 No page mode

01 Burst page mode (page mode for bursts only)

10 Reserved

11 Continuous page mode

1-0 — Reserved, should be cleared.

11.3.2.3 DRAM Controller Mask Registers (DMR0O/DMR1)

The DRAM controller mask registers (DMRO and DMR1), shown in Figure 11-4, include
mask bits for the base address and for address attributes.

31 18 17 9 8 7 6 5 4 3 2 1 0
Field BAM ‘ — ‘WP‘— ‘C/I‘AM‘SC‘SD‘UC‘UD Vv
Reset Uninitialized

R/W R/W

Addr MBAR + 0x10C (DMRO0), 0x114 (DMR1)

Figure 11-4. DRAM Controller Mask Registers (DMRO and DMR1)

Table 11-5 describes DMR# fields.
Table 11-5. DMRO/DMR1 Field Descriptions

Bits | Name Description

31-18 | BAM | Base address mask. Masks the associated DACRn[BA]. Lets the DRAM controller connect to various
DRAM sizes. Mask bits need not be contiguous (see Section 11.5, “SDRAM Example.”)

0 The associated address bit is used in decoding the DRAM hit to a memory block.

1 The associated address bit is not used in the DRAM hit decode.

17-9 — Reserved, should be cleared.

8 WP | Write protect. Determines whether the associated block of DRAM is write protected.

0 Allow write accesses

1 Ignore write accesses. The DRAM controller ignores write accesses to the memory block and an
address exception occurs. Write accesses to a write-protected DRAM region are compared in the
chip select module for a hit. If no hit occurs, an external bus cycle is generated. If this external bus
cycle is not acknowledged, an access exception occurs.

7 — Reserved, should be cleared.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-7

1chronous Operation

Table 11-5. DMRO/DMR1 Field Descriptions (Continued)

Bits | Name Description
6-1 AMx | Address modifier masks. Determine which accesses can occur in a given DRAM block.
0 Allow access type to hit in DRAM
1 Do not allow access type to hitin DRAM
Bit Associated Access Type Access Definition
C/I | CPU spacef/interrupt acknowledge | MOVEC instruction or interrupt acknowledge cycle
AM | Alternate master External or DMA master
SC | Supervisor code Any supervisor-only instruction access
SD | Supervisor data Any data fetched during the instruction access
UC | User code Any user instruction
UD | User data Any user data
0 \Y Valid. Cleared at reset to ensure that the DRAM block is not erroneously decoded.

0 Do not decode DRAM accesses.
1 Registers controlling the DRAM block are initialized; DRAM accesses can be decoded.

11.3.3 General Asynchronous Operation Guidelines

The DRAM controller provides control for RAS, CAS, and DRAMW signals, as well as
address multiplexing and bus cycle termination. Whether the mode is synchronous or
asynchronous determines signal control and termination. To reduce complexity,
multiplexing is the same for both modes. Table 11-6 shows the scheme for DRAM
configurations. This scheme works for symmetric configurations (in which the number of
rows equals the number of columns) as well as asymmetric configurations (in which the
number of rows and columns are different).

Table 11-6. Generic Address Multiplexing Scheme

Address Pin | Row Address | Column Address Notes Relating to Port Sizes

17 17 0 8-bit port only

16 16 1 8- and 16-bit ports only

15 15 2

14 14 3

13 13 4

12 12 5

11 11 6

10 10 7

9 9 8

17 17 16 32-bit port only

18 18 17 16-bit port only or 32-bit port with only 8 column address lines

19 19 18 16-bit port only when at least 9 column address lines are used
11-8 MCF5407 User’s Manual @ MOTOROLA

Asynchronous Operation

Table 11-6. Generic Address Multiplexing Scheme (Continued)

Address Pin | Row Address | Column Address Notes Relating to Port Sizes
20 20 19
21 21 20
22 22 21
23 23 22
24 24 23
25 25 24

Note the following:

e FEach MCF5407 address bit drives both a row address and a column address bit.

As the user upgrades ADRAM, corresponding MCF5407 address bits must be
connected. This multiplexing scheme allows various memory widths to be
connected to the address bus.

Some differences exist for each of the three possible port sizes. Note that only 8-bit
ports use an AQ address from the MCF5407. Because 16- and 32-bit ports issue
either words or longwords when accessed, they do not use the MCF5407 AO signal.

Likewise, the configuration for 32-bit ports uses neither AO or Al. This presents a
slight problem because DRAM address signal A0 is issued on physical pin A17 of
the MCF5407 along with the ADRAM address signal A17. Although AO is not used
for larger ports, A17 is still needed. The MCF5407 DRAM controller provides for
this by changing the column address that appears on physical pin A17 of the
processor whenever an 8-bit port is not selected. This is determined by the
DACR~n[PS] settings. For 8-bit ports, MCF5407 physical pin A17 drives logical
address AO during the CAS cycle. When 16- or 32-bit port sizes are programmed,
the CAS cycle pin A17 drives logical address A16, as indicated in the generic
connection scheme.

If a 32-bit port is used with only eight column address lines, A18 must drive DRAM
address bit A18. Otherwise, in 32-bit port configurations, the MCF5407 physical
address line is not connected with more than eight column address lines.

All ADRAM blocks have a fixed page size of 512 bytes for page-mode operation.
The addresses are connected differently for various width combinations.

Table 11-7, Table 11-8, and Table 11-9 show how 8-, 16-, and 32-bit symmetrical ADRAM
memories are connected to the address bus. The memory sizes show what DRAM size is
accessed if the corresponding bits are connected to the memory. In each case, there is a base
memory size. This limitation exists to allow simple page-mode multiplexing. Notice also
that MCF5407 pin 17 is treated differently in byte-wide operations. In byte-wide
operations, address bits 16 and 17 are driven on MCF5407 physical address pins 16 and 17,
rather than the two bits being driven solely on A17, as they are for 32-wide memories.

@ MOTOROLA

Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-9

1chronous Operation

Table 11-7. DRAM Addressing for Byte-Wide Memories

17 17 0 Base memory size of
16 16 1 256 Kbytes
15 15 2

14 14 3

13 13 4

12 12 5

11 11 6

10 10 7

9 9 8

19 19 18 1 Mbyte
21 21 20 4 Mbytes
23 23 22 16 Mbytes
25 25 24 64 Mbytes

Note that in Table 11-8, MCF5407 pin A19 is not connected because DRAM address bit 18
is already provided on MCF5407 pin A18; thus, the next MCF5407 pin used should be A20.

Table 11-8. DRAM Addressing for 16-Bit Wide Memories

16 16 1 Base memory size of
15 15 > 128 Kbytes
14 14 3

13 13 4

12 12 5

11 11 6

10 10 7

9 9 8

18 18 17 512 Kbytes
20 20 19 2 Mbytes
22 22 21 8 Mbytes
24 24 23 32 Mbytes

11-10 MCF5407 User’s Manual @ MOTOROLA

Asynchronous Operation

Table 11-9. DRAM Addressing for 32-Bit Wide Memories

MCF5407. Address MCF5fIO7 Address Bit | MCF5407 Addl:ess Bit Driven Memory Size

Pin Driven for RA when CAS is Asserted

15 15 2

14 14 3

13 13 4

12 12 5 Base Memory Size of
1 1 6 64 Kbytes
10 10 7

9 9 8

17 17 16 256 Kbytes
19 19 18 1 Mbyte

21 21 20 4 Mbytes
23 23 22 16 Mbytes
25 25 24 64 Mbytes

11.3.3.1 Non-Page-Mode Operation

In non-page mode, the simplest mode, the DRAM controller provides termination and runs
a separate bus cycle for each data transfer. Figure 11-5 shows a non-page-mode access in
which a DRAM read is followed by a write. Addresses for a new bus cycle are driven at the
rising clock edge.

For a DRAM block hit, the associated RAS is driven at the next falling edge. Here
DACRn[RCD] = 0, so the address is multiplexed at the next rising edge to provide the
column address. The required CAS signals are then driven at the next falling edge and
remain asserted for the period programmed in DACRn[CAS]. Here, DACR#[RNCN] =1,
so it is precharged one clock before CAS is negated. On a read, data is sampled on the last
rising edge of the clock that CAS is valid.

R 1
A[31:0] D< "Row | >< -~ | columnl | >< ; >< ; ; ;
3 | 3 ‘ : ! 3 ! 3 | : | ‘ |
RAS[1]or[o] | | : | : | | |
\ | ¢ ‘ |
CAS[3:0] | \ \ ‘ ‘
1 1 | DA Rn[C‘AS] 01 1 [|
| | ‘ | ‘ ‘ ‘
DRAVW. | | | | | | | | |
! ' | ‘ | ‘ ! | \ | | |
oot (T]

Figure 11-5. Basic Non-Page-Mode Operation RCD = 0, RNCN = 1 (4-4-4-4)

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-11

1chronous Operation

Figure 11-6 shows a variation of the basic cycle. In this case, RCD is 1, so there are two
clocks between RAS and CAS. Note that the address is multiplexed on the rising clock
immediately before CAS is asserted. Because RNCN = 0, RAS and CAS are negated
together. The next bus cycle is initiated, but because DACRn[RP] requires RAS to be
precharged for two clocks, RAS is delayed for a clock in the bus cycle. Note that this does
not delay the address signals, only RAS.

CLKIN

‘
‘
Column|

‘ | ! | ! | : | : | : | ! |
A[31:0] D<3wa3 \X | ‘>< BN ‘>< REEE
| ; | ; | ; ; omplon L
— ‘ : : T\
AASHIOr[Ol v A ¢ | ‘ ‘ L 1\1 S S J/T
| RCDE 1 | | RNCN=0| '« | ' | ' | | & |
cAsmol L TR eas-ep | L0 DL /]
: I Lo T T
[| | | Lo T I R I
DRAMW | /| | | | AU I N S S B
I | [I [T N B
. [N | /TN T T
D[31:0] e | . | . | SN/ | ! | ! : ! : ! : ! . |

Figure 11-6. Basic Non-Page-Mode Operation RCD = 1, RNCN = 0 (5-5-5-5)

11.3.3.2 Burst Page-Mode Operation

Burst page-mode operation (DACRn[PM] = 01) optimizes memory accesses in page mode
by allowing a row address to remain registered in the DRAM while accessing data in
different columns. This eliminates the setup and hold times associated with the need to
precharge and assert RAS. Therefore, only the first bus cycle in the page takes the full
access time; subsequent accesses are streamlined. Single accesses look the same as
non-page-mode accesses.

Burst page-mode accesses of any size—byte, word, longword, or line—are assumed to
reside in the same page. In this mode, the DRAM controller generates a burst transfer only
when the operand is larger than the DRAM block port size (such as, a line transfer to a
32-bit port or a longword transfer to an 8-bit port). The primary cycle asserts RAS and
CAS; subsequent cycles assert only CAS. At the end of the access, RAS is precharged. The
DRAM controller increments addresses between cycles.

Figure 11-7 shows a read access in burst page mode. Four accesses take place, which could
be a 32-bit access to an 8-bit port or a line access to a 32-bit port. Other burst page-mode
operations may be from 2 to 16 accesses long, depending on the access and port sizes. In
those cases, timing is similar with more or fewer accesses.

11-12 MCF5407 User’s Manual @ MOTOROLA

Asynchronous Operation

S S O Y I S S

A[31:0] \Columh v >< 1| Column >< i Colump >< . |Colump
T ! ! ! ! ! ! ! !

: : N

— 3 ‘ L T e R R e
RAST or 0] S Y S S N B

\ lRCD=b + I L o

oASiz0l | Coszor/)\ L N /1

I ST T T T T T

(BN e T S R B b

DRAVW | o I I e e R IR

| I N N I R I

P L /TN L /TN L /TN | . @ L

D[31'O]_/1 Y 2 Y A Y A Lo

Figure 11-7. Burst Page-Mode Read Operatlon (4-3-3-3)

CLKIN

| o |

\ | | |
| \ \ \ \
AS[3:0] ! ‘ I \ \ \ \
A i \ \ \ \
W | \ \ \ \ \ \ \ \
DRAMW |\ . | . | \ \ \ \ \ \ \ \
IR \ \ | | \ \
oo Dt S AR MERE

Figure 11-8. Burst Page-Mode Write Operation (4-3-3-3)

11.3.3.3 Continuous Page Mode

Continuous page mode (DACRn[PM] = 11) is a type of page mode that balances
performance, complexity, and size. In typical page-mode implementations, sequential
addresses are checked for multiple hits in a DRAM block. On a hit, RAS remains asserted
and CAS is asserted with the new column address. On a miss, RAS must be precharged
again before the bus cycle begins.

Continuous page mode supports page-mode operation without requiring an address holding
register per memory block and eliminates the delay for a miss-to-precharge RAS for the
upcoming bus cycle. Because the internal MCF5407 address bus is pipelined, addresses for

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-13

1chronous Operation

the next bus cycle are often available before the current cycle completes. The two addresses
are compared at the end of the cycle to determine if the next address hits the same page. If
so, RAS remains asserted. If not, or if no access is pending, RAS is precharged before the
next bus cycle is active on the external bus. As a result, a page miss suffers no penalty.
Single accesses not followed by a hit in the page look like non-page-mode accesses.

Figure 11-9 shows a write cycle followed by a read cycle in continuous page mode. The
read hits in the same page as the write so RAS is not negated before the second cycle. Note
that the row address does not appear on the pins for a bus cycle that hits in the page. Column
addresses are immediately multiplexed onto the pins. The third bus cycle is a page miss, so
RAS is precharged before the end of the bus cycle and no extra precharge delay is incurred.

CLKIN

! ! Lo
A31:00 | X Row ><: \cmumn\ : \><

| \ lPage th

RASJ[1] or [0] :

CAS[3:0]

DRAMW

\
| ‘ |
Co
Ve
N

\

\

\

‘ I
D[31:0] D

Figure 11-9. Continuous Page-Mode Operation

If a write cycle hits in the page, CAS must be delayed by one clock to allow data to become
valid, as shown in Figure 11-10.

11-14 MCF5407 User’s Manual @ MOTOROLA

Asynchronous Operation

CLKIN

A[31:0]

AS[1] or [0]

CAS[3:0]

DRAMW

D[31:0]

. I . I . I . . . I . .
F Bus Cycle 1 HF Bus Cycle 2 —

Figure 11-10. Write Hit in Continuous Page Mode

11.3.3.4 Extended Data Out (EDO) Operation

EDO is a variation of page mode that allows the DRAM to continue driving data out of the
device while CAS is precharging. To support EDO DRAMs, the DRAM controller delays
internal termination of the cycle by one clock so data can continue to be captured as CAS
is being precharged. For data to be driven by the DRAMs, RAS is held after CAS is
negated. EDO operation does not affect write operations. EDO DRAMs can be used in
continuous page or burst page modes. Single accesses not followed by a hit in the page look
like non-page-mode accesses.

Figure 11-11 shows four consecutive EDO accesses. Note that data is sampled after CAS
is negated and that on the last page access, CAS is held until after data is sampled to assure
that the data is driven. This allows RAS to be precharged before the end of the cycle.

CLKIN

A[31:0] D<
—
\
\
\
\
|
\
}_\
L/

RAS[1] or [0]

CAS[3:0]

DRAMW

D[31:0] —

Figure 11-11. EDO Read Operation (3-2-2-2)

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-15

shronous Operation

11.3.3.5 Refresh Operation

The DRAM controller supports CAS-before-RAS refresh operations that are not
synchronized to bus activity. A special DRAMW pin is provided so refresh can occur
regardless of the state of the processor bus.

When the refresh counter rolls over, it sets an internal flag to indicate that a refresh is
pending. If that happens during a continuous page-mode access, the page is closed (RAS
precharged) when the data transfer completes to allow the refresh to occur. The flag is
cleared when the refresh cycle is run. Both memory blocks are simultaneously refreshed as
determined by the DCR. DRAM accesses are delayed during refresh. Only an active bus
access to a DRAM block can delay refresh.

Figure 11-12 shows a bus cycle delayed by a refresh operation. Notice that DRAMW is
forced high during refresh. The row address is held until the pending DRAM access.

CLKIN

A[31:0]

RAS[1] or [0]

CAS[3:0]

DRAMW | /|

Figure 11-12. DRAM Access Delayed by Refresh

11.4 Synchronous Operation

By running synchronously with the system clock instead of responding to asynchronous
control signals, SDRAM can (after an initial latency period) be accessed on every clock;
5-1-1-1 is a typical MCF5407 burst rate to SDRAM.

Note that because the MCF5407 cannot have more than one page open at a time, it does not
support interleaving.

SDRAM controllers are more sophisticated than asynchronous DRAM controllers. Not
only must they manage addresses and data, but they must send special commands for such
functions as precharge, read, write, burst, auto-refresh, and various combinations of these
functions. Table 11-10 lists common SDRAM commands.

11-16 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

Table 11-10. SDRAM Commands

Command Definition

ACTV Activate. Executed before READ or WRITE executes; SDRAM registers and decodes row address.

MRS Mode register set.

NOP No-op. Does not affect SDRAM state machine; DRAM controller control signals negated; RAS asserted.

PALL Precharge all. Precharges all internal banks of an SDRAM component; executed before new page is
opened.

READ Read access. SDRAM registers column address and decodes that a read access is occurring.

REF Refresh. Refreshes internal bank rows of an SDRAM component.

SELF Self refresh. Refreshes internal bank rows of an SDRAM component when it is in low-power mode.

SELFX Exit self refresh. This command is sent to the DRAM controller when DCR[IS] is cleared.

WRITE Write access. SDRAM registers column address and decodes that a write access is occurring.

SDRAMs operate differently than asynchronous DRAMs, particularly in the use of data
pipelines and commands to initiate special actions. Commands are issued to memory using
specific encodings on address and control pins. Soon after system reset, a command must
be sent to the SDRAM mode register to configure SDRAM operating parameters. Note that,
after synchronous operation is selected by setting DCR[SO], DRAM controller registers
reflect the synchronous operation and there is no way to return to asynchronous operation
without resetting the processor.

11.4.1 DRAM Controller Signals in Synchronous Mode

Table 11-11 shows the behavior of DRAM signals in synchronous mode.
Table 11-11. Synchronous DRAM Signal Connections

Signal Description

SRAS Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched
by the SDRAM. SRAS should be connected to the corresponding SDRAM SRAS. Do not confuse SRAS
with the DRAM controller's RAS[1:0], which should not be interfaced to the SDRAM SRAS signals.

SCAS Synchronous column address strobe. Indicates a valid column address is present and can be latched by
the SDRAM. SCAS should be connected to the corresponding signal labeled SCAS on the SDRAM. Do
not confuse SCAS with the DRAM controller's CAS[3:0] signals.

DRAMW | DRAM read/write. Asserted for write operations and negated for read operations.

RAS[1:0] | Row address strobe. Select each memory block of SDRAMs connected to the MCF5407. One RAS
signal selects one SDRAM block and connects to the corresponding CS signals.

SCKE Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs.
Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down
mode where operations are suspended or they can enter self-refresh mode. SCKE functionality is
controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SCKE to provide
command-bit functionality.

@

AS[3:0] | Column address strobe. For synchronous operation, CAS[3:0] function as byte enables to the SDRAMSs.
They connect to the DQM signals (or mask qualifiers) of the SDRAMs.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 1117

shronous Operation

Table 11-11. Synchronous DRAM Signal Connections (Continued)

Signal Description

CLKIN Bus clock output. Connects to the CLK input of SDRAMSs.

EDGESEL | Synchronous edge select. Provides additional output hold time for signals that interface to external
SDRAMs. EDGESEL supports the three following modes for SDRAM interface signals:

* Tied high. Signals change on the rising edge of CLKIN.

 Tied low. Signals change on the falling edge of CLKIN.

» Tied to buffered CLKIN. Signals change on the rising edge of the buffered clock.
EDGESEL can provide additional output hold time for SDRAM interface signals, however the SDRAM
clock and CLKIN frequencies must be the same. See Section 11.4.2, “Using Edge Select (EDGESEL)”

Figure 11-13 shows a typical signal configuration for synchronous mode.

MCF5407 SDRAM
A[31:0] > ADDRESS
D[31:0] | > DATA

CAS > DQM
DRAMW > WE
SCAS > CAS
SRAS > RAS
SCKE > CKE
1

e = S e —ce— P

CLKIN #

CLKIN
" Trace length from buffer to CLK must equal length from buffer to EDGESEL.

Figure 11-13. MCF5407 SDRAM Interface

11.4.2 Using Edge Select (EDGESEL)

EDGESEL can ease system-level timings (note that the optional buffer in Figure 11-13 is
for memories that need extra delay). The clock at the input to the SDRAM is monitored and
data is held until the next edge of the bus clock, adding required output hold time to the
address, data, and control signals.

To generate SDRAM interface timing, address, data, and control signals are clocked
through a two-stage shift register. The first stage is clocked on the rising edge of CLKIN;
the second is clocked on the falling edge. This makes the signal available for up to an
additional half bus clock cycle, of which only a small amount is needed for proper timing.

Using the connection shown in Figure 11-13 ensures that data remains held for a longer
time after the rising edge of the SDRAM clock input. This helps to match the MCF5407
output timing with the SDRAM clock.

Figure 11-14 shows the output wave forms for the interface signals changing on the rising
edge (A) and falling edge (B) of CLKIN as determined by whether EDGESEL is tied high
or low. It also shows timing (C) with EDGESEL tied to buffered CLKIN.

11-18 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

CLKIN CLKIN N
A\ NG T\t /T
Adaress! ><)</ALID)X vaLD X VALID) VALID, Addigsst | ¥vaup Y vaup X vaup X |
I . | . | . | . | | . | . | . | . I
A: Address and Data Timing with EDGESEL Tied High B: Address and Data Timing with EDGESEL Tied Low
Buffer Delay
CLKIN | /
ST I I IR
Buffered ‘ ‘ ‘ ‘
CLKIN L[] - : : :
I
Address/ | Y yaLib >< VALID >< vALID >< vALID

C: Address and Data Timing with EDGESEL Tied to Buffered Clock
Figure 11-14. Using EDGESEL to Change Signal Timing

11.4.3 Synchronous Register Set

The memory map in Table 11-1 is the same for both synchronous and asynchronous
operation. However, some bits are different, as noted in the following sections.

11.4.3.1 DRAM Control Register (DCR) in Synchronous Mode
The DRAM control register (DCR), Figure 11-15, controls refresh logic.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field| sO | — ‘NAM ‘ coc‘ IS ‘ RTIM ‘ RC
Reset| 0 Uninitialized
RW R/W
Addr MBAR + 0x100

Figure 11-15. DRAM Control Register (DCR) (Synchronous Mode)

Table 11-12 describes DCR fields.
Table 11-12. DCR Field Descriptions (Synchronous Mode)

Bits | Name Description

15 SO | Synchronous operation. Selects synchronous or asynchronous mode. When in synchronous mode,
the DRAM controller can be switched to ADRAM mode only by resetting the MCF5407.

0 Asynchronous DRAMs. Default at reset.

1 Synchronous DRAMs

14 — Reserved, should be cleared.

13 NAM | No address multiplexing. Some implementations require external multiplexing. For example, when
linear addressing is required, the DRAM should not multiplex addresses on DRAM accesses.

0 The DRAM controller multiplexes the external address bus to provide column addresses.

1 The DRAM controller does not multiplex the external address bus to provide column addresses.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-19

'

k shronous Operation

Table 11-12. DCR Field Descriptions (Synchronous Mode) (Continued)

Bits

Name

Description

12

coc

Command on SDRAM clock enable (SCKE). Implementations that use external multiplexing

(NAM = 1) must support command information to be multiplexed onto the SDRAM address bus.

0 SCKE functions as a clock enable; self-refresh is initiated by the DRAM controller through DCRIS].

1 SCKE drives command information. Because SCKE is not a clock enable, self-refresh cannot be
used (setting DCRIIS]). Thus, external logic must be used if this functionality is desired. External
multiplexing is also responsible for putting the command information on the proper address bit.

11

Initiate self-refresh command.

0 Take no action or issue a SELFX command to exit self refresh.

1 If DCR[COC] = 0, the DRAM controller sends a SELF command to both SDRAM blocks to put them
in low-power, self-refresh state where they remain until IS is cleared, at which point the controller
sends a SELFX command for the SDRAMSs to exit self-refresh. The refresh counter is suspended
while the SDRAMs are in self-refresh; the SDRAM controls the refresh period.

RTIM

Refresh timing. Determines the timing operation of auto-refresh in the DRAM controller. Specifically,
it determines the number of clocks inserted between a REF command and the next possible ACTV
command. This same timing is used for both memory blocks controlled by the DRAM controller. This
corresponds to tgg in the SDRAM specifications.

00 3 clocks

01 6 clocks

1x 9 clocks

RC

Refresh count. Controls refresh frequency. The number of bus clocks between refresh cycles is
(RC + 1) * 16. Refresh can range from 16—-8192 bus clocks to accommodate both standard and
low-power DRAMs with bus clock operation from less than 2 MHz to greater than 50 MHz.

The following example calculates RC for an auto-refresh period for 4096 rows to receive 64 mS of
refresh every 15.625 ps for each row (625 bus clocks at 40 MHz). This operation is the same as in
asynchronous mode.

of bus clocks = 625 = (RC field + 1) * 16

RC = (625 bus clocks/16) -1 = 38.06, which rounds to 38; therefore, RC = 0x26.

11.4.3.2 DRAM Address and Control Registers (DACR0/DACR1) in
Synchronous Mode

The DRAM address and control registers (DACRO and DACR1), shown in Figure 11-16,
contain the base address compare value and the control bits for both memory blocks 0 and
1 of the DRAM controller. Address and timing are also controlled by bits in DACRx.

Field
Reset
R/W
Addr

11-20

31

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

BA — RE —‘CASL‘—‘ CBM ‘— IMRS PS‘IP‘PM‘—

Uninitialized 0 Uninitialized 0 Uninitialized

R/W

MBAR+0x108 (DACRO); 0x110(DACR1)

Figure 11-16. DACRO and DACR1 Registers (Synchronous Mode)

MCF5407 User’s Manual (M) moToroLA

Synchronous Operation

Table 11-13 describes DACRn# fields.
Table 11-13. DACRO0/DACR1 Field Descriptions (Synchronous Mode)

Bit | Name Description
31-18 BA | Base address register. With DCMR[BAM], determines the address range in which the associated
DRAM block is located. Each BA bit is compared with the corresponding address of the current bus
cycle. If all unmasked bits match, the address hits in the associated DRAM block. BA functions the
same as in asynchronous operation.
17-16 — Reserved, should be cleared.
15 RE | Refresh enable. Determines when the DRAM controller generates a refresh cycle to the DRAM
block.
0 Do not refresh associated DRAM block
1 Refresh associated DRAM block
14 — Reserved, should be cleared.
13-12 | CASL | CAS latency. Affects the following SDRAM timing specifications. Timing nomenclature varies with
manufacturers. Refer to the SDRAM specification for the appropriate timing nomenclature:
Number of Bus Clocks
Parameter
CASL=00 | CASL=01 | CASL=10 | CASL=11
taco—SRAS assertion to SCAS assertion 1 2 3 3
tcasc—SCAS assertion to data out 1 2 3 3
tras—ACTV command to precharge command 2 4 6 6
tgp—Precharge command to ACTV command 1 2 3 3
trwi tror—Last data input to precharge 1 1 1 1
command
tep—Last data out to precharge command) 1 1 1 1
11 — Reserved, should be cleared.
10-8 CBM | Command and bank MUX [2:0]. Because different SDRAM configurations cause the command and

bank select lines to correspond to different addresses, these resources are programmable. CBM
determines the addresses onto which these functions are multiplexed.
CBM Command Bit Bank Select Bits

000 17 18 and up
001 18 19 and up
010 19 20 and up
011 20 21 and up
100 21 22 and up
101 22 23 and up
110 23 24 and up
111 24 25 and up

This encoding and the address multiplexing scheme handle common SDRAM organizations. Bank
select bits include a base bit and all address bits above for SDRAMs with multiple bank select bits.

Reserved, should be cleared.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-21

|
y

'
A

shronous Operation

Table 11-13. DACR0/DACR1 Field Descriptions (Synchronous Mode) (Continued)

Bit | Name Description

6 IMRS | Initiate mode register set (MRs) command. Setting IMRS generates a MRS command to the
associated SDRAMSs. In initialization, IMRS should be set only after all DRAM controller registers are
initialized and PALL and REFRESH commands have been issued. After IMRS is set, the next access to
an SDRAM block programs the SDRAM’s mode register. Thus, the address of the access should be
programmed to place the correct mode information on the SDRAM address pins. Because the
SDRAM does not register this information, it doesn’t matter if the IMRS access is a read or a write or
what, if any, data is put onto the data bus. The DRAM controller clears IMRS after the MRS command
finishes.

0 Take no action

1 Initiate MRS command

5-4 PS | Port size. Indicates the port size of the associated block of SDRAM, which allows for dynamic sizing
of associated SDRAM accesses. PS functions the same in asynchronous operation.

00 32-bit port

01 8-bit port

1x 16-bit port

3 IP Initiate precharge all (PALL) command. The DRAM controller clears IP after the PALL command is

finished. Accesses via IP should be no wider than the port size programmed in PS.

0 Take no action.

1 A PALL command is sent to the associated SDRAM block. During initialization, this command is
executed after all DRAM controller registers are programmed. After IP is set, the next write to an
appropriate SDRAM address generates the PALL command to the SDRAM block.

2 PM | Page mode. Indicates how the associated SDRAM block supports page-mode operation.

0 Page mode on bursts only. The DRAM controller dynamically bursts the transfer if it falls within a
single page and the transfer size exceeds the port size of the SDRAM block. After the burst, the
page closes and a precharge is issued.

1 Continuous page mode. The page stays open and only SCAS needs to be asserted for sequential
SDRAM accesses that hit in the same page, regardless of whether the access is a burst.

1-0 — Reserved, should be cleared.

11.4.3.3 DRAM Controller Mask Registers (DMR0O/DMR1)

The DMR#, Figure 11-17, include mask bits for the base address and for address attributes.
They are the same as in asynchronous operation.

31 18 17 9 8 7 6 5 4 3 2 1 0
Field BAM — ‘WP‘— ‘C/I‘AM‘SC‘SD‘UC‘UD \
Reset Uninitialized

R/W R/W

Addr MBAR + 0x10C (DMRO0), 0x114 (DMR1)

Figure 11-17. DRAM Controller Mask Registers (DMRO and DMR1)
Table 11-14 describes DMR# fields.

11-22 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

Table 11-14. DMRO/DMR1 Field Descriptions

Bits Name Description

31-18 | BAM | Base address mask. Masks the associated DACRNn[BA]. Lets the DRAM controller connect to various
DRAM sizes. Mask bits need not be contiguous (see Section 11.5, “SDRAM Example.”)

0 The associated address bit is used in decoding the DRAM hit to a memory block.

1 The associated address bit is not used in the DRAM hit decode.

17-9 — Reserved, should be cleared.

8 WP | Write protect. Determines whether the associated block of DRAM is write protected.

0 Allow write accesses

1 Ignore write accesses. The DRAM controller ignores write accesses to the memory block and an
address exception occurs. Write accesses to a write-protected DRAM region are compared in the
chip select module for a hit. If no hit occurs, an external bus cycle is generated. If this external bus
cycle is not acknowledged, an access exception occurs.

7 — Reserved, should be cleared.

6-1 AMx | Address modifier masks. Determine which accesses can occur in a given DRAM block.
0 Allow access type to hitin DRAM
1 Do not allow access type to hit in DRAM

Bit Associated Access Type Access Definition
C/I | CPU spacef/interrupt acknowledge | MOVEC instruction or interrupt acknowledge cycle
AM | Alternate master External or DMA master
SC | Supervisor code Any supervisor-only instruction access
SD | Supervisor data Any data fetched during the instruction access
UC | User code Any user instruction
UD | User data Any user data
0 Vv Valid. Cleared at reset to ensure that the DRAM block is not erroneously decoded.

0 Do not decode DRAM accesses.
1 Registers controlling the DRAM block are initialized; DRAM accesses can be decoded.

11.4.4 General Synchronous Operation Guidelines

To reduce system logic and to support a variety of SDRAM sizes, the DRAM controller
provides SDRAM control signals as well as a multiplexed row address and column address
to the SDRAM.

When SDRAM blocks are accessed, the DRAM controller can operate in either burst or
continuous page mode. The following sections describe the DRAM controller interface to
SDRAM, the supported bus transfers, and initialization.

11.4.4.1 Address Multiplexing

Table 11-6 shows the generic address multiplexing scheme for SDRAM configurations. All
possible address connection configurations can be derived from this table.

The following tables provide a more comprehensive, step-by-step way to determine the
correct address line connections for interfacing the MCF5407 to SDRAM. To use the

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-23

shronous Operation

tables, find the one that corresponds to the number of column address lines on the SDRAM
and to the port size as seen by the MCF5407, which is not necessarily the SDRAM port
size. For example, if two 1M x 16-bit SDRAM:s together form a 2M x 32-bit memory, the
port size is 32 bits. Most SDRAM s likely have fewer address lines than are shown in the
tables, so follow only the connections shown until all SDRAM address lines are connected.

Table 11-15. MCF5407 to SDRAM Interface (8-Bit Port, 9-Column Address Lines)

MCF5407 [A17|A16|A15|A14|A13|A12|A11|A10| A9 |[A18|A19|A20|A21|A22|A23|A24|A25|A26|A27|A28|A29|A30|A31
Pins

Row 17 (16 |15 14 (1312|1110 | 9 |18 19|20 |21 |22 |23 |24 |25 |26|27 |28 |29 |30 | 31

Column [0 | 1|2 |3|4|5|6|7]8

SDRAM | A0 | A1 |A2 | A3 | A4 | A5 | A6 | A7 | A8| A9 |A10|A11|A12|A13|A14|A15|A16|A17|A18|A19|A20(A21|A22
Pins

Table 11-16. MCF5407 to SDRAM Interface (8-Bit Port,10-Column Address Lines)

MCF5407|A17|A16|A15|A14|A13|A12|A11|A10| A9 [A19|A20|A21|A22|A23|A24|A25|A26|A27|A28|A29|A30|A31
Pins

Row 17116 | 15|14 |13 |12 (11| 10| 9 [19|20 |21 |22 |23 |24 | 25|26 |27 |28 |29 |30 | 31
Column | O | 1|2 |3|4|5|6|7]|8/18

SDRAM | A0 |A1|A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 |[A10|A11|A12|A13|A14|A15|A16|A17|A18|A19|A20|A21
Pins

Table 11-17. MCF5407 to SDRAM Interface (8-Bit Port,11-Column Address
Lines)

MCF5407|A17|A16|A15|A14|A13|A12|A11|A10| A9 [A19|A21|A22|A23|A24|A25|A26|A27 |A28|A29|A30|A31
Pins

Row 17116 | 15|14 |13 |12 (11 [10| 9 [19|21 |22 |23 (24|25 (26|27 |28 |29 |30 | 31
Column | O | 1|2 |3|4|5|6|7]|8]|18|20

SDRAM | A0 |A1|A2 | A3| A4 | A5 | A6 | A7 | A8 | A9 |[A10|A11|A12|A13|A14|A15|A16|A17|A18|A19|A20
Pins

Table 11-18. MCF5407 to SDRAM Interface (8-Bit Port,12-Column Address Lines)

MCF5407|A17|A16|A15|A14|A13|A12|A11|A10| A9 |A19|A21|A23|A24|A25|A26|A27 |A28|A29|A30|A31
Pins

Row 17 (16 | 15|14 (13 |12 |11 10| 9 [1921 |23 |24 |25 |26 |27 |28 |29 | 30 | 31
Column | O | 1|2 |3 |4 |5|6 |78/ 182022

SDRAM | A0 |A1|A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 |[A10|A11|A12|A13|A14|A15|A16|A17|A18|A19
Pins

11-24 MCF5407 User’s Manual @ MOTOROLA

Table 11-19. MCF5407 to SDRAM Interface (8-Bit Port,13-Column Address

Synchronous Operation

MCF5407 to SDRAM Interface (16-Bit Port, 8-Column Address Lines)

A30(A31

30 | 31

A21|A22

MCF5407 to SDRAM Interface (16-Bit Port, 9-Column Address Lines)

A30|A31

30 | 31

A20(A21

1-22. MCF5407 to SDRAM Interface (16-Bit Port, 10-Column Address Lines)

A30|A31

31

A19|A20

Table 11-23. MCF5407 to SDRAM Interface (16-Bit Port, 11-Column Address Lines)

A31

31

MCF5407 |A17|A16
Pins

Row 17 | 16
Column | O | 1
SDRAM | AO | A1
Pins

Table 11-20.
MCF5407 |A16|A15
Pins

Row 16 | 15
Column | 1 | 2
SDRAM | A0 | A1
Pins

Table 11-21.
MCF5407 | A16|A15
Pins

Row 16 | 15
Column 1 2
SDRAM | A0 | A1
Pins

Table 1
MCF5407|A16|A15
Pins

Row 16 | 15
Column 1 2
SDRAM | AO | A1
Pins

MCF5407 | A16|A15
Pins

Row 16 | 15
Column 1 2
SDRAM | AO | A1
Pins

A19

@ MOTOROLA

Chapter 11. Synchronous/Asynchronous DRAM Controller Module

11-25

shronous Operation

Table 11-24. MCF5407 to SDRAM Interface (16-Bit Port, 12-Column Address Lines)

'I\:icr:§5407 A16 [A15| A14 | A13|A12 | A11 | A10| A9 | A18 | A20 | A22 | A24 | A25 | A26 | A27 | A28 | A29 | A30 | A31
Row 16 |15 (14 |13 |12 |11 | 10| 9 |18 |20 |22 |24 |25 | 26 | 27 | 28 | 29 | 30 | 31

Column 1 2 3 4 5 6 7 8 |17 |19 |21 | 23

SDRAM

Pins AO | A1 | A2 | A3 | A4 | A5 | A6 | A7 | AB | A9 |A10|A11|A12|A13|A14|A15|A16|A17 |A18

Table 11-25. MCF5407 to SDRAM Interface (16-Bit Port, 13-Column-Address Lines)

MCF5407| A16 | A15 | A14 | A13 | A12 | A11 | A10 | A9 | A18 | A20 | A22 | A24 | A26 | A27 | A28 | A29 | A30 | A31
Pins

Row 16 |15 | 14 |13 |12 | 11 | 10| 9 18 | 20 | 22 | 24 | 26 | 27 | 28 | 29 | 30 | 31
Column 1 2 3 4 5 6 7 8 17 |19 | 21 | 23 | 25

SDRAM | AO | A1 | A2 | AB | A4 | A5 | A6 | A7 | A8 | A9 |A10|A11|A12 | A13 | A14| A15| Al6 | A17
Pins

Table 11-26. MCF5407 to SDRAM Interface (32-Bit Port, 8-Column Address Lines)

MCF5407 | A15|A14|A13|A12|A11|A10| A9 |A17|A18|A19|A20|A21|A22|A23|A24|A25|A26|A27|A28|A29|A30|A31
Pins

Row 1514 (13|12 |11 (10| 9 |17 |18 |19 |20 |21 |22 |23 |24 (25|26 |27 |28 |29 |30 |31

Column | 2 |3 |4 |5|6|7]|8]|16

SDRAM | AO [A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 |A10|A11|A12|A13|A14|A15|A16|A17|A18|A19|A20(A21
Pins

Table 11-27. MCF5407 to SDRAM Interface (32-Bit Port, 9-Column Address Lines)

MCF5407|A15{A14|A13|A12|A11|A10| A9 [A17|A19|A20|A21|A22|A23|A24|A25|A26|A27 |A28|A29 | A30|A31
Pins

Row 1514 |13 |12 (11 [10| 9 |17 19|20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 | 31
Column | 2 | 3| 4|5 |6 |7 | 8]|16]18

SDRAM | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 |[A10|A11]|A12|A13|A14|A15/A16|A17|A18|A19|A20
Pins

Table 11-28. MCF5407 to SDRAM Interface (32-Bit Port, 10-Column Address Lines)

MCF5407| A15|A14|A13|A12|A11|A10| A9 [A17|A19|A21|A22|A23|A24|A25|A26|A27 | A28 |A29 | A30 |A31
Pins

Row 15 (14 (13 (12|11 |10| 9 |17 |19 |21 |22 |23 |24 |25 |26 |27 | 28 |29 | 30 | 31
Column | 2 | 3| 4 |5 |6 |7 |8 /(16|18 |20

SDRAM | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | AB | A9 |A10|A11|A12|A13|A14|A15|A16|A17|A18|A19
Pins

11-26 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

Table 11-29. MCF5407 to SDRAM Interface (32-Bit Port, 11-Column Address Lines)

MCF5407| A15 | A14 |A13 |A12 |A11| A10| A9 |A17|A19| A21| A23 | A24 | A25| A26 | A27 | A28 | A29 | A30 | A31
Pins

Row 15114 |13 |12 |11 | 10| 9 (17|19 |21 |23 |24 |25 |26 |27 |28 | 29 | 30 | 31

Column | 2 3 4 5 6 7 8 | 16 | 18 | 20 | 22

SDRAM | A0 | A1 | A2 | AB | A4 | A5 | A6 | A7 | A8 | A9 |A10|A11|A12|A13|A14 | A15|A16 |A17 |A18
Pins

Table 11-30. MCF5407 to SDRAM Interface (32-Bit Port, 12-Column Address Lines)

MCF5407| A15 | A14 | A13 | A12 | A11 | A10 | A9 | A17 | A19 | A21 | A23 | A25 | A26 | A27 | A28 | A29 | A30 | A31
Pins

Row 1514 |13 |12 | 11 | 10 | 9 17 |19 | 21 | 23 | 25 | 26 | 27 | 28 | 29 | 30 | 31
Column 2 3 4 5 6 7 8 16 | 18 | 20 | 22 | 24

SDRAM | AO | A1 | A2 | AB | A4 | A5 | A6 | A7 | A8 | A9 | A10|A11|A12 | A13 | A14 | A15 | A16 | A17
Pins

11.4.4.2 Interfacing Example

The tables in the previous section can be used to configure the interface in the following
example. To interface one 2M x 32-bit x 4 bank SDRAM component (8 columns) to the
MCF5407, the connections would be as shown in Table 11-31.

Table 11-31. SDRAM Hardware Connections

SDRAM AO Al | A2 | AB | Ad | A5 | A6 | A7 | A8 | A9 A10=CMD BAO | BA1
Pins
MCF5407 | A15 | A14 | A13 | A12 | A11 | A10 | A9 | A17 | A18 | A19 A20 A21 A22
Pins

11.4.4.3 Burst Page Mode

SDRAM can efficiently provide data when an SDRAM page is opened. As soon as SCAS
is issued, the SDRAM accepts a new address and asserts SCAS every clock for as long as
accesses are in that page. In burst page mode, there are multiple read or write operations for
every ACTV command in the SDRAM if the requested transfer size exceeds the port size of
the associated SDRAM. The primary cycle of the transfer generates the ACTV and READ or
WRITE commands; secondary cycles generate only READ or WRITE commands. As soon as
the transfer completes, the PALL command is generated to prepare for the next access.

Note that in synchronous operation, burst mode and address incrementing during burst
cycles are controlled by the MCF5407 DRAM controller. Thus, instead of the SDRAM
enabling its internal burst incrementing capability, the MCF5407 controls this function.
This means that the burst function that is enabled in the mode register of SDRAMs must be
disabled when interfacing to the MCF5407.

Figure 11-18 shows a burst read operation. In this example, DACR[CASL] = 01, for an
SRAS-to-SCAS delay (tgcp) of 2 CLKIN cycles. Because tgp is equal to the read CAS

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-27

shronous Operation

latency (SCAS assertion to data out), this value is also 2 CLKIN cycles. Notice that NOPs
are executed until the last data is read. A PALL command is executed one cycle after the last
data transfer.

CLKIN

el
A[31:0] D< I&owi ;><Cblunw‘n><(.%olun}?n><(30|u‘

[P
n‘1n>< ‘Colu‘fnn :

|

|

| | |

B |

\ 1 \ I \

SCAS 1 1 ;
L e |

DRAMW | A \
T N I B |

, —/ T T |

DI3T:0] 1>:<:>:<1>:<1 o |
- \ | \ 1 \ — ‘ : |
RAS[0] or [1] R | |
B |

CAS[3:0] [N T R \
I \

' 1 NOP | NOP | PALL | [

Figure 11-18. Burst Read SDRAM Access

Figure 11-19 shows the burst write operation. In this example, DACR[CASL] = 01, which
creates an SRAS-to-SCAS delay (tgcp) of 2 CLKIN cycles. Note that data is available
upon SCAS assertion and a burst write cycle completes two cycles sooner than a burst read
cycle with the same tgcp The next bus cycle is initiated sooner, but cannot begin an
SDRAM cycle until the precharge-to-ACTV delay completes.

11-28 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

CLKIN

S S R I I \
A[31:0] b< .| Row, ><C}olumri ><QOIumh ><Qo|umm >< !
‘ ‘ 1] 1 1

\
Colump ! \ >< o
w \

|
|
| | |
SRAS | \ \ \ \ \
| | | | | |
_ : 2 T e B S —
SCAS 1 T Sy A o
1 R R S A]
orAamw |/ T\ L = e R
| A e e ‘ o o
3 : — : — ol
D[31:0] 1 1 AN 1 L T ‘
| o | LS —
L JoN
| | | | |
| | |

\

\ \

1

Co

RAS[0] or [1] R L ! !
o |

cAsigop | L T\

| | ! -

ACTV NOP WRITE NOP PALL

Figure 11-19. Burst Write SDRAM Access

Accesses in synchronous burst page mode always cause the following sequence:
1. ACTV command

2. NOP commands to assure SRAS-to-SCAS delay (if CAS latency is 1, there are no
NOP commands).

3. Required number of READ or WRITE commands to service the transfer size with the
given port size.

4. Some transfers need more NOP commands to assure the ACTV-to-precharge delay.
5. PALL command
6. Required number of idle clocks inserted to assure precharge-to-ACTV delay.

11.4.4.4 Continuous Page Mode

Continuous page mode is identical to burst page mode, except that it allows the processor
core to handle successive bus cycles that hit the same page without having to close the page.
When the current bus cycle finishes, the MCF5407 core internal pipelined bus can predict
whether the upcoming cycle will hit in the same page.

» If the next bus cycle is not pending or misses in the page, the PALL command is
generated to the SDRAM.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-29

shronous Operation

» If the next bus cycle is pending and hits in the page, the page is left open, and the
next SDRAM access begins with a READ or WRITE command. Because of the nature
of the internal CPU pipeline this condition does not occur often, however, the use of
continuous page mode is recommended because it can provide a slight performance
increase.

Figure 11-20 shows two read accesses in continuous page mode. Note that there is no
precharge between the two accesses. Also notice that the second cycle begins with a read
operation with no ACTV command.

CLKIN [; |
LAJ ‘t44~ L‘4~ L‘4~ ngj LAA‘ LAAL ng‘ LAA‘ ||

— i | N
A[31:0] D< i ‘Row | >< i | CoI’Jmn | | >< . CPIumn |) |) |
S %\f \ — 1 1 — It
SRAS 1\ I I I o N
| \ | | | | : | : | | | | : | : | : |
SCAS | . SR N S ép I
| megp=2 N LT e
. | C 1 | tcas =2 — | toasy=2> : N |
D[31:0] : : : : : : : : :
I I Y
RASIOjor(1] |\ I A
| ettt —t—
- i i U i i T By R —
CASE | \ \ | \ \ [A R
| ACTV | NOP | READ . I NOP | | READ | NOP | NOP | PALL |

Figure 11-20. Synchronous, Continuous Page-Mode Access—Consecutive Reads

Figure 11-21 shows a write followed by a read in continuous page mode. Because the bus
cycle is terminated with a WRITE command, the second cycle begins sooner after the write
than after the read. A read requires data to be returned before the bus cycle can terminate.
Note that in continuous page mode, secondary accesses output the column address only.

11-30 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

CLKIN ‘ ;
| o | | |
>< ' Cblumn!

DRAMW

D[31:0]
RAS[0] or [1 |
[0 or 1] R

\
CAS[3:0] |
\
|

! T ‘ ‘ |
, NOP | READ , NOP | NOP |, NOP | PALL

Figure 11-21. Synchronous, Continuous Page-Mode Access—Read after Write

WRITE

11.4.4.5 Auto-Refresh Operation

The DRAM controller is equipped with a refresh counter and control. This logic is
responsible for providing timing and control to refresh the SDRAM. Once the refresh
counter is set, and refresh is enabled, the counter counts to zero. At this time, an internal
refresh request flag is set and the counter begins counting down again. The DRAM
controller completes any active burst operation and then performs a PALL operation. The
DRAM controller then initiates a refresh cycle and clears the refresh request flag. This
refresh cycle includes a delay from any precharge to the auto-refresh command, the
auto-refresh command, and then a delay until any ACTV command is allowed. Any SDRAM
access initiated during the auto-refresh cycle is delayed until the cycle is completed.

Figure 11-22 shows the auto-refresh timing. In this case, there is an SDRAM access when
the refresh request becomes active. The request is delayed by the precharge to ACTV delay
programmed into the active SDRAM bank by the CAS bits. The REF command is then
generated and the delay required by DCR[RTIM] is inserted before the next ACTV
command is generated. In this example, the next bus cycle is initiated, but does not generate
an SDRAM access until Ty is finished. Because both chip selects are active during the REF
command, it is passed to both blocks of external SDRAM.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-31

CLKINl—‘ ’—’ |] ’—‘_J—’

|

L f] L L
S S SO N S \ \ | 1
astol | X | | o |
e Lo \ \ I |
smas |\ L/ TN S . b |
‘ i ! | s | trc=6 | \y \
SIS C I i ; ; —
SCAS ‘ 3\\%\L>3 | 3 ‘ ‘ ‘ ‘ ' ‘ ' ‘
R T N N | | | | |
DRAMW | \ o \ \ \ \ ‘
| | I | | | | |
msoen T\ T\ LT T T T
PALL NOP REF ‘ NbP ‘ ACTV ‘

Figure 11-22. Auto-Refresh Operation
11.4.4.6 Self-Refresh Operation

Self-refresh is a method of allowing the SDRAM to enter into a low-power state, while at
the same time to perform an internal refresh operation and to maintain the integrity of the
data stored in the SDRAM. The DRAM controller supports self-refresh with DCRI[IS].
When IS is set, the SELF command is sent to the SDRAM. When IS is cleared, the SELFX
command is sent to the DRAM controller. Figure 11-23 shows the self-refresh operation.

CLKIN

\

\
BRAMW |
i
RAS[0] or [1] |
\

SCKE |+
(DCR[COC] = 0) ! ! ‘
' | ' | '
PALL NOP SELF

1 1 ‘ ! ‘ " First
Self- gELFX NOP Possible
efresh ACTV
Active

Figure 11-23. Self-Refresh Operation

11.4.5 Initialization Sequence

Synchronous DRAMs have a prescribed initialization sequence. The DRAM controller

11-32 MCF5407 User’s Manual @ MOTOROLA

Synchronous Operation

supports this sequence with the following procedure:

1. SDRAM control signals are reset to idle state. Wait the prescribed period after reset
before any action is taken on the SDRAMSs. This is normally around 100 ps.

2. Initialize the DCR, DACR, and DMR in their operational configuration. Do not yet
enable PALL or REF commands.

3. Issue a PALL command to the SDRAMs by setting DCR[IP] and accessing a
SDRAM location. Wait the time (determined by tgp) before any other execution.

4. Enable refresh (set DACR[RE]) and wait for at least 8 refreshes to occur.

5. Before issuing the MRS command, determine if the DMR mask bits need to be
modified to allow the MRS to execute properly

6. Issue the MRS command by setting DACR[IMRS] and accessing a location in the
SDRAM. Note that mode register settings are driven on the SDRAM address bus, so
care must be taken to change DMR[BAM] if the mode register configuration does
not fall in the address range determined by the address mask bits. After the mode
register is set, DMR mask bits can be restored to their desired configuration.

11.4.5.1 Mode Register Settings

It is possible to configure the operation of SDRAMs, namely their burst operation and CAS
latency, through the SDRAM component’s mode register. CAS latency is a function of the
speed of the SDRAM and the bus clock of the DRAM controller. The DRAM controller
operates at a CAS latency of 1, 2, or 3.

Although the MCF5407 DRAM controller supports bursting operations, it does not use the
bursting features of the SDRAMs. Because the MCF5407 can burst operand sizes of 1, 2,
4, or 16 bytes long, the concept of a fixed burst length in the SDRAMs mode register
becomes problematic. Therefore, the MCF5407 DRAM controller generates the burst
cycles rather than the SDRAM device. Because the MCF5407 generates a new address and
a READ or WRITE command for each transfer within the burst, the SDRAM mode register
should be set either to a burst length of one or to not burst. This allows bursting to be
controlled by the MCF5407 instead.

The SDRAM mode register is written by setting the associated block’s DACR[IMRS].
First, the base address and mask registers must be set to the appropriate configuration to
allow the mode register to be set. Note that improperly set DMR mask bits may prevent
access to the mode register address. Thus, the user should determine the mapping of the
mode register address to the MCF5407 address bits to find out if an access is blocked. If the
DMR setting prohibits mode register access, the DMR should be reconfigured to enable the
access and then set to its necessary configuration after the MRS command executes.

The associated CBM bits should also be initialized. After DACR[IMRS] is set, the next
access to the SDRAM address space generates the MRS command to that SDRAM. The
address of the access should be selected to place the correct mode information on the
SDRAM address pins. The address is not multiplexed for the MRS command. The MRS

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-33

AM Example

access can be a read or write. The important thing is that the address output of that access
needs the correct mode programming information on the correct address bits.

Figure 11-24 shows the MRS command, which occurs in the first clock of the bus cycle.

CLKIN

A[31:0]

SRAS, SCAS

DRAMW

D[31:0]

|

RAS[1]or[0] |
s ! !
Figure 11-24. Mode Register Set (Mrs) Command

11.5 SDRAM Example

This example interfaces a 2M x 32-bit x 4 bank SDRAM component to a MCF5407
operating at 40 MHz. Table 11-32 lists design specifications for this example.

Table 11-32. SDRAM Example Specifications

-l e

| |

Parameter Specification

Speed grade (-8E) 40 MHz (25-nS period)

10 rows, 8 columns

Two bank-select lines to access four internal banks

ACTV-to-read/write delay (tgcp) 20 nS (min.)
Period between auto refresh and ACTV command (tgc) 70 nS

ACTV command to precharge command (tgas) 48 nS (min.)
Precharge command to ACTV command (tgp) 20 nS (min.)

Last data input to PALL command (tgwi) 1 bus clock (25 nS)
Auto refresh period for 4096 rows (tgeg) 64 mS

11.5.1 SDRAM Interface Configuration

To interface this component to the MCF5407 DRAM controller, use the connection table
that corresponds to a 32-bit port size with 8 columns (Table 11-26). Two pins select one of
four banks when the part is functional. Table 11-33 shows the proper hardware hook-up.

11-34 MCF5407 User’s Manual @ MOTOROLA

SDRAM Example

Table 11-33. SDRAM Hardware Connections

MCF5407 A15 | A14 | A13 | A12 | A11 | A10 | A9 | A17 | A18 | A19 A20 A21 | A22
Pins

SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10=CMD | BAO | BA1
Pins

11.5.2 DCR Initialization

At power-up, the DCR has the following configuration if synchronous operation and
SDRAM address multiplexing is desired.

15 14 13 12 11 10 9 8 0
Field| SO | res |[NAM|COC| IS RTIM RC

Setting1X0000000‘0‘1‘0 0‘1‘1‘0
(hex) 8 0 2 6

Figure 11-25. Initialization Values for DCR
This configuration results in a value of 0x8026 for DCR, as shown in Table 11-34.
Table 11-34. DCR Initialization Values

Bits | Name | Setting Description
15 SO 1 Indicating synchronous operation
14 — X Don't care (reserved)
13 NAM 0 Indicating SDRAM controller multiplexes address lines internally
12 CcoC 0 SCKE is used as clock enable instead of command bit because user is not multiplexing
address lines externally and requires external command feed.
11 IS 0 At power-up, allowing power self-refresh state is not appropriate because registers are
being set up.
10-9 | RTIM 00 Because tgg value is 70 nS, indicating a 3-clock refresh-to-ACTV timing.
8-0 RC 0x26 | Specification indicates auto-refresh period for 4096 rows to be 64 mS or refresh every

15.625 ps for each row, or 625 bus clocks at 40 MHz. Because DCR[RC] is incremented by
1 and multiplied by 16, RC = (625 bus clocks/16) -1 = 38.06 = 0x38

11.5.3 DACR Initialization

As shown in Figure 11-26, in this example the SDRAM is programmed to access only the
second 512-Kbyte block of each 1-Mbyte partition in the SDRAM (each 16 Mbytes). The
starting address of the SDRAM is 0xFF80_0000. Continuous page mode feature is used.

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-35

AM Example

1 Mbyte

SDRAM Component Accessible
Memory
Bank 0 Bank 1 Bank 2 Bank 3
512 Kbyte 512 Kbyte 512 Kbyte 512 Kbyte
1 Mbyte 1 Mbyte 1 Mbyte
512 Kbyte 512 Kbyte 512 Kbyte 512 Kbyte

Figure 11-26. SDRAM Configuration

The DACRSs should be programmed as shown in Figure 11-27.

31

Field

Setting

(hex)

Field
Setting
(hex)

BA —
1111_1111_1000_10 XX
15 15 8 8
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
RE | — | cAsL | — CBM — |IMRS| Ps P | PM —
0 00 X 011 X | o 00 0 | 1 XX
0 3 0 4

Figure 11-27. DACR Register Configuration

This configuration results in a value of DACRO = OxFF88_0304, as described in
Table 11-35. DACRI initialization is not needed because there is only one block.
Subsequently, DACR1[RE,IMRS,IP] should be cleared; everything else is a don’t care.

Table 11-35. DACR Initialization Values

Bits Name | Setting Description
31-18 BA Base address. So DACRO0[31-16] = 0xFF88, which places the starting address of the
SDRAM accessible memory at 0OxFF88_0000.
17-16 — Reserved. Don't care.
15 RE 0 0, which keeps auto-refresh disabled because registers are being set up at this time.
14 — Reserved. Don’t care.
13-12 CASL 00 Indicates a delay of data 1 cycle after CAS is asserted
11 — Reserved. Don’t care.
10-8 CBM 011 Command bit is pin 20 and bank selects are 21 and up.
7 — Reserved. Don't care.
6 IMRS 0 Indicates MRS command has not been initiated.
54 PS 00 32-bit port.
3 1P 0 Indicates precharge has not been initiated.
11-36 MCF5407 User’s Manual @ MOTOROLA

SDRAM Example

Table 11-35. DACR Initialization Values

Name

Setting Description

PM

1

Indicates continuous page mode

Reserved. Don’t care.

11.5.4 DMR Initialization

In this example, again, only the second 512-Kbyte block of each 1-Mbyte space is accessed
in each bank. In addition the SDRAM component is mapped only to readable and writable
supervisor and user data. The DMRs have the following configuration.

Field
Setting
(hex)

Field
Setting
(hex)

31 18 17 16
BAM —
o‘o‘o‘o o‘o‘o‘o o\1\1‘1o‘1x‘x
0 0 7 4
15 9 8 7 6 5 4 3 2 1 0
_ wp| — [cn|am][sc]spfluc|up] v

Figure 11-28. DMRO Register

With this configuration, the DMRO = 0x0074_0075, as described in Table 11-36.

Table 11-36. DMRO Initialization Values

Bits | Name | Setting Description

31-16 | BAM With bits 17 and 16 as don’t cares, BAM = 0x0074, which leaves bank select bits and
upper 512K select bits unmasked. Note that bits 22 and 21 are set because they are used
as bank selects; bit 20 is set because it controls the 1-Mbyte boundary address.

15-9 — Reserved. Don’t care.

8 WP 0 Allow reads and writes

7 — Reserved

6 C/l 1 Disable CPU space access

5 AM 1 Disable alternate master access

4 SC 1 Disable supervisor code accesses

3 SD 0 Enable supervisor data accesses

2 uc 1 Disable user code accesses

1 ub 0 Enable user data accesses

0 \ 1 Enable accesses.

@ MOTOROLA

Chapter 11. Synchronous/Asynchronous DRAM Controller Module

11-37

AM Example

11.5.5 Mode Register Initialization

When DACR[IMRS] is set, a bus cycle initializes the mode register. If the mode register
setting is read on A[10:0] of the SDRAM on the first bus cycle, the bit settings on the
corresponding MCF5407 address pins must be determined while being aware of masking
requirements.

Table 11-37 lists the desired initialization setting:
Table 11-37. Mode Register Initialization

MCF5407 Pins SDRAM Pins Mode Register Initialization
A20 A10 Reserved X
A19 A9 WB 0
A18 A8 Opmode 0
A17 A7 Opmode 0
A9 A6 CASL 0
A10 A5 CASL 0
A1 A4 CASL 1
Al12 A3 BT 0
A13 A2 BL 0
A14 Al BL 0
A15 A0 BL 0

Next, this information is mapped to an address to determine the hexadecimal value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field

Setting| X X X X X X X X X X X X 0 0 0 X

(hex) 0 0 0 0

Field

Setting| 0 0 0 0 1 0 0 X X X X X X X X

(hex) 0 8 0 0
Figure 11-29. Mode Register Mapping to MCF5407 A[31:0]

Although A[31:20] corresponds to the address programmed in DACRO, according to how
DACRO and DMRO are initialized, bit 19 must be set to hit in the SDRAM. Thus, before
the mode register bit is set, DMRO[19] must be set to enable masking.

11-38 MCF5407 User’s Manual @ MOTOROLA

SDRAM Example

11.5.6 Initialization Code

The following assembly code initializes the SDRAM example.

Power-Up Sequence:

move.w
move.w
move.l
move.l
move.l
move.l

#0x8026, dO //Initialize DCR
d0, DCR

#0xFF880300, doO //Initialize DACRO
d0, DACRO

#0x00740075, doO //Initialize DMRO
d0, DMRO

Precharge Sequence:

move.l
move.l
move.l
move.l

#0xFF880308, d0 //Set DACRO[IP]
d0, DACRO
#0XBEADDEED, d0 //Write to memory location to init. precharge

do0, OxFF880000

Refresh Sequence:

move.l
move.l

#0xXFF888300, d0 //Enable refresh bit in DACRO
d0, DACRO

Mode Register Initialization Sequence:

move.l
move.l
move.l
move.l
move.l

#0x00600075, doO //Mask bit 19 of address

d0, DMRO

#0xFF888340, d0 //Enable DACRO[IMRS]; DACRO[RE] remains set

d0, DACRO

#0x00000000, dO //Access SDRAM address to initialize mode

register

move.l

do, OxFF800800

@ MOTOROLA Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-39

g |

AM Example

11-40

MCF5407 User’s Manual

@ MOTOROLA

Part Il
Peripheral Module

Intended Audience

Part I1I describes the operation and configuration of the MCF5407 DMA, timer, UART, and
parallel port modules, and describes how they interface with the system integration unit,
described in Part II.

Contents

It contains the following chapters:

Chapter 12, “DMA Controller Module,” provides an overview of the DMA
controller module and describes in detail its signals and registers. The latter
sections of this chapter describe operations, features, and supported data transfer
modes in detail, showing timing diagrams for various operations.

Chapter 13, “Timer Module,” describes configuration and operation of the two
general-purpose timer modules, timer O and timer 1. It includes programming
examples.

Chapter 14, “UART Modules,” describes the use of the universal
asynchronous/synchronous receiver/transmitters (UARTs) implemented on the
MCF5407 and includes programming examples. Particular attention is given to
the UART1 implementation of a synchronous interface that provides a controller
for an 8- or 16-bit CODEC interface and an audio CODEC ‘97 (AC *97) digital
interface.

Chapter 15, “Parallel Port (General-Purpose 1/0),” describes the operation and

programming model of the parallel port pin assignment, direction-control, and
data registers. It includes a code example for setting up the parallel port.

Suggested Reading

The following literature may be helpful with respect to the topics in Part I1I:

(M) moToroLA Part Ill. Peripheral Module ll-i

Audio CODEC ‘97 Component Specification

Acronyms and Abbreviations

Table III-i describes acronyms and abbreviations used in Part III.

Table lll-i. Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
BIST Built-in self test
CODEC Code/decode
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose 1/0
] Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IFP Instruction fetch pipeline
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LIFO Last-in, first-out
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
NOP No operation
OEP Operand execution pipeline
PC Program counter

MCF5407 User’s Manual

@ MOTOROLA

Table lll-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
PCLK Processor clock
PLL Phase-locked loop
PLRU Pseudo least recently used
POR Power-on reset
PQFP Plastic quad flat pack
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit
UART Universal asynchronous/synchronous receiver transmitter

@ MOTOROLA

Part lll. Peripheral Module

g |

I-iv

MCF5407 User’s Manual

@ MOTOROLA

Chapter 12
DMA Controller Module

This chapter describes the MCF5407 DMA controller module. It provides an overview of
the module and describes in detail its signals and registers. The latter sections of this
chapter describe operations, features, and supported data transfer modes in detail.

12.1 Overview

The direct memory access (DMA) controller module provides an efficient way to move
blocks of data with minimal processor interaction. The DMA module, shown in
Figure 12-1, provides four channels that allow byte, word, or longword operand transfers.
Each channel has a dedicated set of registers that define the source and destination
addresses (SAR#n and DAR#), byte count (BCRn), and control and status (DCRn and
DSR~#). Transfers can be dual or single address to off-chip devices or dual address to
on-chip devices, such as UART, SDRAM controller, and parallel port.

Channel 0| Channel 1| Channel 2| Channel 3
Intgﬂr;al SARO SAR1 SAR2 SAR3
<«— > | DARO DAR1 DAR2 DAR3 Interrupts
>
External BCRO BCR1 BCR2 BCR3
Requests
DCRO DCR1 DCR2 DCR3
DSRO DSR1 DSR2 DSR3
A
Channel Channel
Requests Attributes
Channel Y
Enables External Bus Address
MUX External Bus Size
MUX A Current Master Attributes
Control
Y
| Arbitration/ Y Y VY
™| Control
Data Path < Interface Bus
Data Path
Control
Read Bus Data Write Bus Data Registered
Bus Signals

Figure 12-1. DMA Signal Diagram

(M) moToroLa Chapter 12. DMA Controller Module 12-1

V¥ ¢

‘ k \ Signal Description

12.1.1 DMA Module Features

The DMA controller module features are as follows:

* Four fully independent, programmable DMA controller channels/bus modules

* Auto-alignment feature for source or destination accesses

* Dual- and single-address transfers

* Two external request pins (DREQ[1:0]) provided for channels 1 and 0

* Two external acknowledge pins (DACK]1:0]) provided for channels 1 and O

e Channels 2 and 3 have request signals connected to the interrupt lines of UARTO and
UART1, programmable through the channel select field MODCTL[DSL]. See
Section 14.3.4, “Modem Control Register (MODCTL).”

e Channel arbitration on transfer boundaries
* Data transfers in 8-, 16-, 32-, or 128-bit blocks using a 16-byte buffer
* Continuous-mode and cycle-steal transfers

* Independent transfer widths for source and destination

* Independent source and destination address registers

¢ Data transfer can occur in as few as two clocks

12.2 DMA Signal Description

Table 12-1 briefly describes the DMA module signals that provide handshake control for
either a source or destination external device.

Table 12-1. DMA Signals

Signal /0 Description

DREQI[1:0)/ | External DMA request. DREQ[1:0] can serve as the DMA request inputs or as two parallel port

PP[6:5] bits. They are programmable individually through the PAR. A peripheral device asserts these
inputs to request an operand transfer between it and memory.
DREQ signals are asserted to initiate DMA accesses in the respective channels. The system
should drive unused DREQ signals to logic high. Although each channel has an individual
DREQ signal, in the MCF5407 only channels 0 and 1 connect to external DREQ pins. DREQ2
and DREQS3 are programmable for use with UARTO and UART1 through MODCTL[DSL]. See
Section 14.3.4, “Modem Control Register (MODCTL).”

TT[1:0)/ O | Transfer type. A DMA access is indicated by the transfer type pins, TT[1:0] = 01. The transfer

PP[1:0] modifier, TM[2:0], and DMA acknowledgement, DACK[1:0], configurations shown below are
meaningful only if TT[1:0] = 01, indicating an external master or DMA access.

12-2 MCF5407 User’s Manual (M) moToroLA

DMA Signal Description

Table 12-1. DMA Signals (Continued)

Signal

/(o]

Description

TM[2:0)/
DACK][1:0]

Transfer modifier/DMA acknowledge. The MCF5407 TM[2:0] encodings are like the MCF5307,
with functions shifted slightly, as Figure 12-2 shows. Dedicated DMA acknowledgement pins,
DACK]1:0], are added and multiplexed as follows—TM[1:0)/DACK[1:0)/PP[3:2]. TM2 is still
multiplexed only with PP4. Chapter 17, “Signal Descriptions,” describes multiplexing.

Although on the MCF5407, TM[2:0] can be programmed to be DMA acknowledge signals, bit
positions of these encodings differ from the MCF5307. Single-address access indication is now
encoded on TM2 when the PAR is set to enable the transfer modifier signal and an external or
DMA transfer is occurring. This encoding is driven by TMO on the MCF5307. In addition, DMA
acknowledge signals are multiplexed with TM[1:0] on the MCF5407, as opposed to TM[2:1]
providing DMA transfer information on the MCF5307. The MCF5407 encoding for TM[2:0],
shown below describes when PAR is set to enable these signals and the IRQPAR is
programmed to disable DACK[1:0]. Note that when DACK{[1:0] are driven, TM2 is still driven if it
is enabled through the PAR.

To enable DACK][1:0], first enable TM[1:0] and then program the interrupt assignment register
(IRQPAR) to enable bits 0—1. When IRQPAR[ENBDACK1] = 1 and TM1 is enabled, DACK1 for
DMA channel 1 is driven in place of TM1 for DMA transfers. Clearing ENBDACK1 disables this
function and only the TM1 encoding is driven. Likewise, setting ENBDACKO enables DACKO to
be driven; clearing ENBDACKO disables this function and drives the TMO encoding.

TM2 Encoding

0 Single-address access negated

1 Single-address access

TMI[1:0] Encoding

00 DMA acknowledge information not provided

01 DMA transfer, channel 0

10 DMA transfer, channel 1

11 Reserved

The DMA transfer information on TM[1:0] can be provided on every DMA transfer or only on the
last transfer by programming DCRIAT].

DACK[1:0]

1/0

DMA acknowledge. These signals provide an acknowledge of a DMA transfer. They can be
programmed using DCRI[AT] to assert on every transfer or only on the final transfer.

Table 12-2 shows MCF5407 pin configurations based on PAR and IRQPAR configurations.
Table 12-2. MCF5407 Signal Configurations for PP[4:2]/TM[2:0]/DACK]1:0]

COnfigﬁgtion 1 | IRQPAR Configuration PP[4:2] TM[2:0] DACK]1:0]
TM[2:0] disabled, | ENBDACK[1-0] =0 or 1 Driven Not driven Not driven
PP[4:2] enabled

TM[2:0] enabled | ENBDACK[1-0] =0 Not driven TM[2:0] driven Not driven
TM[2:0] enabled | ENBDACK[1-0] = 1 Not driven TM2 driven only Driven

T Note that to enable DACK[1:0], PAR must first be programmed to enable TM[1:0].

Designers who used MCF5307 DMA channels should also note that the DMA byte count
registers (BCR) for channels 0-3 exclusively support a 24-bit byte count. A 16-bit byte
count register and MPARK[BCR24BIT] are no longer supported.

As shown in Figure 12-2, when properly connected, TM[2:0] can be used in MCF5407
designs in the same manner as they were on MCF5307 designs or DACK]1:0] can be used
for DMA transfers.

@ MOTOROLA

Chapter 12. DMA Controller Module

12-3

\ Transfer Overview

MCF5307 Function Pin Pin MCF5407 Function
Single/dual cycle access TMO TMO | DMA 0 acknowledge
DMA 0 acknowledge configuration T™1 & TM1 | DMA 1 acknowledge
DMA 1 acknowledge configuration T™M2 TM2 | Single/dual cycle access

Figure 12-2. MCF5307/MCF5407 TM[2:0] Pin Remapping

12.3 DMA Transfer Overview

The DMA module usually transfers data faster than the ColdFire core can under software
control. The term ‘direct memory access’ refers to peripheral device’s ability to access
system memory directly, greatly improving overall system performance. The DMA module
consists of four independent, functionally equivalent channels, so references to DMA in
this chapter apply to any of the channels. It is not possible to implicitly address all four
channels at once. The MCF5407 on-chip peripherals do not support single-address
transfers.

The processor generates DMA requests internally by setting DCR[START]; a device can
generate a DMA request externally by using DREQ pins. The processor can program bus
bandwidth for each channel. The channels support cycle-steal and continuous transfer
modes; see Section 12.5.1, “Transfer Requests (Cycle-Steal and Continuous Modes).”

The DMA controller supports dual- and single-address transfers as follows. In both, the
DMA channel supports 32 address bits and 32 data bits.

e Dual-address transfers— A dual-address transfer consists of a read followed by a
write and is initiated by an internal request using the START bit or by an external
device using DREQ. Two types of transfer can occur, a read from a source device or
a write to a destination device; see Figure 12-3.

Control and Data Memory/
K— Peripheral
DMA
Memory/
Peripheral
Control and Data

Figure 12-3. Dual-Address Transfer

124 MCF5407 User’s Manual (M) moToroLa

DMA Controller Module Programming Model

Single-address transfers— An external device can initiate a single-address transfer
by asserting DREQ. The MCF5407 provides address and control signals for
single-address transfers. The external device reads to or writes from the specified
address, as Figure 12-4 shows. External logic is required.

Write:
Control SignalsK \Control Signals
Data
Memory = Peripheral
Read:

Control Signalsﬁ Ntrol Signals

Data
Memory Peripheral

i

Figure 12-4. Single-Address Transfers

Any operation involving the DMA module follows the same three steps:

1.

Channel initialization — Channel registers are loaded with control information,
address pointers, and a byte-transfer count.

Data transfer—The DMA accepts requests for operand transfers and provides
addressing and bus control for the transfers.

. Channel termination—Occurs after the operation is finished, either successfully or

due to an error. The channel indicates the operation status in the channel’s DSR,
described in Section 12.4.5, “DMA Status Registers (DSRO-DSR3).”

12.4 DMA Controller Module Programming Model

This section describes each internal register and its bit assignment. Note that there is no way
to prevent a write to a control register during a DMA transfer. Table 12-3 shows the
mapping of DMA controller registers.

(M) moToroLa Chapter 12. DMA Controller Module 125

\ Controller Module Programming Model

Table 12-3. Memory Map for DMA Controller Module Registers

DMA | MBAR
Channel | Offset [31:24] [23:16] [15:8] [7:0]
0 0x300 Source address register 0 (SARO) [p. 12-7]
0x304 Destination address register 0 (DARO) [p. 12-7]
0x308 DMA control register 0 (DCRO) [p. 12-8]
0x30C Reserved Byte count register 0 (BCRO) [p. 12-7]
0x310 | DMA status register 0 Reserved
(DSRO) [p. 12-10]
0x314 | DMA interrupt vector Reserved
register 0 (DIVRO)
[p. 12-11]
1 0x340 Source address register 1 (SAR1) [p. 12-7]
0x344 Destination address register 1 (DAR1) [p. 12-7]
0x348 DMA control register 1 (DCR1) [p. 12-8]
0x34C Reserved Byte count register 1 (BCR1) [p. 12-7]
0x350 | DMA status register 1 Reserved
(DSR1) [p. 12-10]
0x354 | DMA interrupt vector Reserved
register 1 (DIVR1)
[p. 12-11]
2 0x380 Source address register 2 (SAR2) [p. 12-7]
0x384 Destination address register 2 (DAR2) [p. 12-7]
0x388 DMA control register 2 (DCR2) [p. 12-8]
0x38C Reserved Byte count register 2 (BCR2) [p. 12-7]
0x390 | DMA status register 2 Reserved
(DSR2) [p. 12-10]
0x394 | DMA interrupt vector Reserved
register 2 (DIVR2)
[p. 12-11]
3 0x3C0 Source address register 3 (SAR3) [p. 12-7]
0x3C4 Destination address register 3 (DAR3) [p. 12-7]
0x3C8 DMA control register 3 (DCR3) [p. 12-8]
0x3CC Reserved Byte count register 3 (BCR3) [p. 12-7]
0x3DO0 | DMA status register 3 Reserved
(DSR3) [p. 12-10]
0x3D4 | DMA interrupt vector Reserved
register 3 (DIVR3)
[p. 12-11]
NOTE:

External masters cannot access MCF5407 on-chip memories or
MBAR, but they can access DMA module registers.

126 MCF5407 User’s Manual (M) moToroLa

DMA Controller Module Programming Model

12.4.1 Source Address Registers (SAR0-SAR3)

SARn, Figure 12-5, contains the address from which the DMA controller requests data. In
single-address mode, SAR#n provides the address regardless of the direction.

31 0
Field SAR
Reset 0000_0000_0000_0000_0000_0000_0000_0000
RIW R/W
Address MBAR + 0x300, 0x340, 0x380, 0x3C0
Figure 12-5. Source Address Registers (SARn)
NOTE:

SAR/DAR address ranges cannot be programmed to on-chip
SRAM because it cannot be accessed by on-chip DMA.

12.4.2 Destination Address Registers (DAR0O-DAR3)

For dual-address transfers only, DAR#, Figure 12-6, holds the address to which the DMA
controller sends data.

31 0
Field DAR
Reset 0000_0000_0000_0000_0000_0000_0000_0000
R/W R/W
Address MBAR + 304, 0x344, 0x384, 0x3C4

Figure 12-6. Destination Address Registers (DARnN)

NOTE:

On-chip DMAs do not maintain coherency with MCF5407
caches and so must not transfer data to cacheable memory.

12.4.3 Byte Count Registers (BCR0-BCR3)

BCRu#, Figure 12-7, holds the number of bytes yet to be transferred for a given block. BCR#n
decrements on the successful completion of the address transfer of either a write transfer in
dual-address mode or any transfer in single-address mode. BCR#n decrements by 1, 2, 4, or
16 for byte, word, longword, or line accesses, respectively.

(M) moToroLa Chapter 12. DMA Controller Module 127

\ Controller Module Programming Model

31 24 23 0
Field — BCR
Reset — 0000_0000_0000_0000_0000_0000
RW R/W
Address MBAR + 0x30C, 0x34C, 0x38C, 0x3AC

Figure 12-7. Byte Count Registers (BCRn)

DSR[DONE], shown in Figure 12-9, is set when the block transfer is complete.

When a transfer sequence is initiated and BCR#[BCR] is not divisible by 16, 4, or 2 when
the DMA is configured for line, longword, or word transfers, respectively, DSRn[CE] is set
and no transfer occurs. See Section 12.4.5, “DMA Status Registers (DSRO-DSR3).”

12.4.4 DMA Control Registers (DCR0-DCR3)
DCRun, Figure 12-8, is used for configuring the DMA controller module.

31 30 29 28 27 25 24 23 2 20 20 19 18 17 16
Field| INT ‘EEXT‘ Cs ‘ AA ‘ BWC ‘SAA‘S?RW‘SINC‘ SSIZE ‘DINC‘ DSIZE ‘START
Reset 0000_0000_0000_0000
R/W R/W
15 14 0
Field| AT —
Reset| 0 N/A
R/W R/W
Address MBAR + 0x308, 0x348, 0x388, 0x3A8

Figure 12-8. DMA Control Registers (DCRn)

Table 12-4 describes DCR fields.
Table 12-4. DCRn Field Descriptions

Bits | Name Description

31 INT Interrupt on completion of transfer. Determines whether an interrupt is generated by completing a
transfer or by the occurrence of an error condition.

0 No interrupt is generated.
1 Internal interrupt signal is enabled.

30 EEXT | Enable external request. Care should be taken because a collision can occur between the START

bit and DREQ when EEXT = 1.

0 External request is ignored.

1 Enables external request to initiate transfer. Internal request is always enabled. It is initiated by
writing a 1 to the START bit.

12-8 MCF5407 User’s Manual (M) moToroLa

DMA Controller Module Programming Model

Table 12-4. DCRn Field Descriptions (Continued)

Bits | Name Description
29 CSs Cycle steal.
0 DMA continuously makes read/write transfers until the BCR decrements to 0.
1 Forces a single read/write transfer per request. The request may be internal by setting the START
bit, or external by asserting DREQ.
28 AA Auto-align. AA and SIZE determine whether the source or destination is auto-aligned, that is,
transfers are optimized based on the address and size. See Section 12.5.4.2, “Auto-Alignment.”
0 Auto-align disabled
1 If SSIZE indicates a transfer no smaller than DSIZE, source accesses are auto-aligned;
otherwise, destination accesses are auto-aligned. Source alignment takes precedence over
destination alignment. If auto-alignment is enabled, the appropriate address register increments,
regardless of DINC or SINC.
27-25 | BWC Bandwidth control. Indicates the number of bytes in a block transfer. When the byte count reaches
a multiple of the BWC value, the DMA releases the bus.
000 DMA has priority. It does not negate its request until its transfer completes.
001 16384
010 32768
011 65536
100 131072
101 262144
110 524288
111 1048576
24 SAA Single-address access. Determines whether the DMA channel is in dual- or single-address mode
0 Dual-address mode.
1 Single-address mode. The DMA provides an address from the SAR and directional control, bit
S_RW, to allow two peripherals (one might be memory) to exchange data within a single access.
Data is not stored by the DMA.
23 S_RW | Single-address access read/write value. Valid only if SAA = 1. Specifies the value of the read signal
during single-address accesses. This provides directional control to the bus controller.
0 Forces the read signal to 0.
1 Forces the read signal to 1.
22 SINC Source increment. Controls whether a source address increments after each successful transfer.
0 No change to SAR after a successful transfer.
1 The SAR increments by 1, 2, 4, or 16, as determined by the transfer size.
21-20 | SSIZE | Source size. Determines the data size of the source bus cycle for the DMA control module.
00 Longword
01 Byte
10 Word
11 Line
19 DINC Destination increment. Controls whether a destination address increments after each successful
transfer.
0 No change to the DAR after a successful transfer.
1 The DAR increments by 1, 2, 4, or 16, depending upon the size of the transfer.
18-17 | DSIZE | Destination size. Determines the data size of the destination bus cycle for the DMA controller.
00 Longword
01 Byte
10 Word
11 Line
16 START | Start transfer.

0 DMA inactive
1 The DMA begins the transfer in accordance to the values in the control registers. START is
cleared automatically after one clock and is always read as logic 0.

(M) moToroLa Chapter 12. DMA Controller Module 129

\ Controller Module Programming Model

Table 12-4. DCRn Field Descriptions (Continued)

Bits | Name Description

15 AT DMA acknowledge type. Controls whether acknowledge information is provided for the entire

transfer or only the final transfer.

0 Entire transfer. DMA acknowledge information is displayed anytime the channel is selected as the
result of an external request.

1 Final transfer (when BCR reaches zero). For dual-address transfer, the acknowledge information
is displayed for both the read and write cycles.

14-0 |— Reserved, should be cleared.

12.4.5 DMA Status Registers (DSR0-DSR3)

In response to an event, the DMA controller writes to the appropriate DSRn bit,
Figure 12-9. Only a write to DSR#[DONE] results in action.

7 6 5 4 3 2 1 0
Field| — CE BES BED — REQ BSY | DONE
Reset| — 0 0 0 — 0 0 0
R/W R/W
Address MBAR + 0x310, 0x350, 0x390, 0x3D0

Figure 12-9. DMA Status Registers (DSRn)

Table 12-5 describes DSRn# fields.
Table 12-5. DSRn Field Descriptions

Bits | Name Description
7 — Reserved, should be cleared.
6 CE Configuration error. Occurs when BCR, SAR, or DAR does not match the requested transfer size,

or if BCR = 0 when the DMA receives a start condition. CE is cleared at hardware reset or by
writing a 1 to DSR[DONE].

0 No configuration error exists.

1 A configuration error has occurred.

5 BES Bus error on source

0 No bus error occurred.

1 The DMA channel terminated with a bus error either during the read portion of a transfer or
during an access in single-address mode (SAA = 1).

4 BED Bus error on destination
0 No bus error occurred.
1 The DMA channel terminated with a bus error during the write portion of a transfer.

3 — Reserved, should be cleared.

2 REQ Request
0 No request is pending or the channel is currently active. Cleared when the channel is selected.
1 The DMA channel has a transfer remaining and the channel is not selected.

12-10 MCF5407 User’s Manual @ MOTOROLA

DMA Controller Module Functional Description

Table 12-5. DSRn Field Descriptions (Continued)

Bits | Name Description

1 BSY Busy
0 DMA channel is inactive. Cleared when the DMA has finished the last transaction.
1 BSY is set the first time the channel is enabled after a transfer is initiated.

0 DONE | Transactions done. Set when all DMA controller transactions complete normally, as determined by

transfer count and error conditions. When BCR reaches zero, DONE is set when the final transfer

completes successfully. DONE can also be used to abort a transfer by resetting the status bits.

When a transfer completes, software must clear DONE before reprogramming the DMA.

0 Writing or reading a 0 has no effect.

1 DMA transfer completed. Writing a 1 to this bit clears all DMA status bits and can be used as an
interrupt handler to clear the DMA interrupt and error bits.

12.4.6 DMA Interrupt Vector Registers (DIVR0-DIVR3)

The contents of a DMA interrupt vector register (DIVR#), Figure 12-10, are driven onto the
internal bus in response to an interrupt acknowledge cycle.

7 0
Field Interrupt Vector Bits
Reset 0000_1111
R/W R/W
Address MBAR + 0x314, 0x354, 0x394, 0x3D4

Figure 12-10. DMA Interrupt Vector Registers (DIVRn)

12.5 DMA Controller Module Functional Description

In the following discussion, the term ‘DMA request’ implies that DCR[START] or
DCR[EEXT] is set, followed by assertion of DREQ. The START bit is cleared when the
channel begins an internal access.

Before initiating a dual-address access, the DMA module verifies that DCR[SSIZE,DSIZE]
are consistent with the source and destination addresses. If the source and destination are
not the same size, the configuration error bit, DSR[CE], is also set. If misalignment is
detected, no transfer occurs, CE is set, and, depending on the DCR configuration, an
interrupt event is issued. Note that if the auto-align bit, DCR[AA], is set, error checking is
performed on appropriate registers.

A read/write transfer reads bytes from the source address and writes them to the destination
address. The number of bytes is the larger of the sizes specified by SSIZE and DSIZE. See
Section 12.4.4, “DMA Control Registers (DCRO-DCR3).”

Source and destination address registers (SAR and DAR) can be programmed in the DCR
to increment at the completion of a successful transfer. BCR decrements when an address
transfer write completes for a single-address access (DCR[SAA] = 0) or when SAA = 1.

(M) moToroLa Chapter 12. DMA Controller Module 12-11

\ Controller Module Functional Description

12.5.1 Transfer Requests (Cycle-Steal and Continuous
Modes)

The DMA channel supports internal and external requests. A request is issued by setting
DCR[START] or by asserting DREQ. Setting DCR[EEXT] enables recognition of external
interrupts. Internal interrupts are always recognized. Bus usage is minimized for either
internal or external requests by selecting between cycle-steal and continuous modes.

* Cycle-steal mode (DCR[CS] = 1)—Only one complete transfer from source to
destination occurs for each request. If DCR[EEXT] is set, a request can be either
internal or external. Internal request is selected by setting DCR[START]. An
external request is initiated by asserting DREQ while EEXT is set.

e Continuous mode (DCR[CS] = 0) — After an internal or external request, the DMA
continuously transfers data until BCR reaches zero or a multiple of DCR[BWC] or
DSR[DONE] is set. If BCR is a multiple of BWC, the DMA request signal is
negated until the bus cycle terminates to allow the internal arbiter to switch masters.
DCR[BWC] =000 specifies the maximum transfer rate; other values specify a
transfer rate limit.

The DMA performs the specified number of transfers, then relinquishes bus control.
The DMA negates its internal bus request on the last transfer before the BCR reaches
amultiple of the boundary specified in BWC. On completion, the DMA reasserts its
bus request to regain mastership at the earliest opportunity. The minimum time that
the DMA loses bus control is one bus cycle.

12.5.2 Data Transfer Modes

Each channel supports dual- and single-address transfers, described in the next sections.

12.5.2.1 Dual-Address Transfers

Dual-address transfers consist of a source operand read and a destination operand write.
The DMA controller module begins a dual-address transfer sequence when DCR[SAA] is
cleared during a DMA request. If no error condition exists, DSR[REQ] is set.

* Dual-address read—The DMA controller drives the SAR value onto the internal
address bus. If DCR[SINC] is set, the SAR increments by the appropriate number
of bytes upon a successful read cycle. When the appropriate number of read cycles
complete (multiple reads if the destination size is wider than the source), the DMA
initiates the write portion of the transfer.

If a termination error occurs, DSR[BES,DONE] are set and DMA transactions stop.

e Dual-address write—The DMA controller drives the DAR value onto the address
bus. If DCR[DINCT] is set, DAR increments by the appropriate number of bytes at
the completion of a successful write cycle. The BCR decrements by the appropriate
number of bytes. DSR[DONE] is set when BCR reaches zero. If the BCR is greater

12-12 MCF5407 User’s Manual @ MOTOROLA

DMA Controller Module Functional Description

than zero, another read/write transfer is initiated. If the BCR is a multiple of
DCR[BWC], the DMA request signal is negated until termination of the bus cycle
to allow the internal arbiter to switch masters.

If a termination error occurs, DSR[BES,DONE] are set and DMA transactions stop.

12.5.2.2 Single-Address Transfers

Single-address transfers consist of one DMA bus cycle, allowing either a read or a write
cycle to occur. The DMA controller begins a single-address transfer sequence when
DCR[SAA] is set during a DMA request. If no error condition exists, DSR[REQ] is set.
When the channel is enabled, DSR[BSY] is set and REQ is cleared. SAR contents are then
driven onto the address bus and the value of DCR[S_RW] is driven on R/W. The BCR
decrements on each successful address access until it is zero, when DSR[DONE] is set.

If a termination error occurs, DSR[BES,DONE] are set and DMA transactions stop.

12.5.3 Channel Initialization and Startup

Before a block transfer starts, channel registers must be initialized with information
describing configuration, request-generation method, and the data block.

12.5.3.1 Channel Prioritization

The four DMA channels are prioritized in ascending order (channel O having highest
priority and channel 3 having the lowest) or as determined by DCR[BWC]. If BWC for a
DMA channel is 000, that channel has priority only over the channel immediately
preceding it. For example, if DCR3[BWC] = 000, DMA channel 3 has priority over DMA
channel 2 (assuming DCR2[BWC] = 000) but not over DMA channel 1.

If DCR1[BWC] = DCR2[BWC] = 000, DMA 1 has priority over DMA 0 and DMA 2.
DCR2[BWC] =000 in this case does not affect prioritization.

Prioritization of simultaneous external requests is either ascending or as determined by
each channel’s BWC bits as described in the previous paragraphs.

12.5.3.2 Programming the DMA Controller Module

Note the following general guidelines for programming the DMA:

* No mechanism exists to prevent writes to control registers during DMA accesses.

» If the BWC of sequential channels are equal, channel priority is in ascending order.
The SAR is loaded with the source (read) address. If the transfer is from a peripheral device
to memory, the source address is the location of the peripheral data register. If the transfer
is from memory to either a peripheral device or memory, the source address is the starting

address of the data block. This can be any aligned byte address. In single-address mode, this
data register is used regardless of transfer direction.

(M) moToroLa Chapter 12. DMA Controller Module 12-13

\ Controller Module Functional Description

The DAR should contain the destination (write) address. If the transfer is from a peripheral
device to memory, or memory to memory, the DAR is loaded with the starting address of
the data block to be written. If the transfer is from memory to a peripheral device, DAR is
loaded with the address of the peripheral data register. This address can be any aligned byte
address. DAR is not used in single-address mode.

SAR and DAR change after each cycle depending on DCR[SSIZE,DSIZE,SINC,DINC]
and on the starting address. Increment values can be 1, 2, 4, or 16 for byte, word, longword,
or line transfers, respectively. If the address register is programmed to remain unchanged
(no count), the register is not incremented after the data transfer.

BCRn[BCR] must be loaded with the number of byte transfers to occur. It is decremented
by 1, 2, 4, or 16 at the end of each transfer, depending on the transfer size. DSR must be
cleared for channel startup.

As soon as the channel has been initialized, it is started by writing a one to DCR[START]
or asserting DREQ, depending on the status of DCR[EEXT]. Programming the channel for
internal request causes the channel to request the bus and start transferring data
immediately. If the channel is programmed for external request, DREQ must be asserted
before the channel requests the bus.

Changes to DCR are effective immediately while the channel is active. To avoid problems
with changing a DMA channel setup, write a one to DSR[DONE] to stop the DMA channel.

12.5.4 Data Transfer

This section includes timing diagrams that illustrate the interaction of signals in DMA data
transfers. It also describes auto-alignment and bandwidth control.

12.5.4.1 External Request and Acknowledge Operation

Channels 0 and 1 initiate transfers to an external module by means of DREQ[1:0]. The
request for channels 2 and 3 are connected internally to the UARTO and UART interrupt
signals, respectively. If DCR[EEXT] = 1 and the channel is idle, the DMA initiates a
transfer when DREQ is asserted.

Figure 12-11 shows the minimum 4-clock cycle delay from when DREQ is sampled
asserted to when a DMA bus cycle begins. This delay may be longer, depending on DMA
priority, bus arbitration, DRAM refresh operations, and other factors.

12-14 MCF5407 User’s Manual @ MOTOROLA

DMA Controller Module Functional Description

0 1 2 3 4 5 6 7 8 9 10 11

CLKIN
DREQO /

TMO/DACKO

TT1

TTO /

RW

A[31:0] X X

L

|
Read Write
Figure 12-11. DREQ Timing Constraints, Dual-Address DMA Transfer

Although Figure 12-11 does not show TM0/DACKO signaling a DMA acknowledgement,
this signal can provide an external request acknowledge response, as shown in subsequent
diagrams.

To initiate a request, DREQ need only be asserted long enough to be sampled on one rising
clock edge. However, note the following regarding the negation of DREQ:

e Incycle-steal mode (DCR[CS] = 1), the read/write transaction is limited to a single
transfer. DREQ must be negated appropriately to avoid generating another request.

— For dual-address transfers, DREQ must be negated before TS is asserted for the
write portion, as shown in Figure 12-11, clock cycle 7.

— For single-address transfers, DREQ must be negated before TS is asserted for the
transfer, as shown in Figure 12-13, clock cycle 4.

e Inburst mode, (DCR[CS] = 0), multiple read/write transfers can occur on the bus as
programmed. DREQ need not be negated until DSR[DONE] is set, indicating the
block transfer is complete. Another transfer cannot be initiated until the DMA
registers are reprogrammed.

Figure 12-12 shows a dual-address, peripheral-to-SDRAM DMA transfer. The DMA is not
parked on the bus, so the diagram shows how the CPU can generate multiple bus cycles
during DMA transfers. It also shows TMO/DACKO timing. The TT signals indicate whether
the CPU (0) or DMA (1) has bus mastership. TM2 indicates dual-address mode.

If DCR[AT] is 1, TM/DACK is asserted during the final transfer. If DCR[AT] is 0,
TM/DACK asserts during all DMA accesses.

(M) moToroLa Chapter 12. DMA Controller Module 12-15

1

_
SIZ[1:0] X X X >C D< X

pigt:0) —{_ () {O—
o\ S\
T A AR _/

soas \J/
RAS[1:0] \ /
CAS[3:0] \ /
TT[1:0] 0 /1 \o /i \o
TMO/DACKO VT T N VT T T T AN
DREQGO |\

| | | |
CPU DMA Read CPU DMA Write CPU

Figure 12-12. Dual-Address, Peripheral-to-SDRAM, Lower-Priority DMA Transfer

Figure 12-13 shows a single-address DMA transfer in which the peripheral is reading from
memory. Note that TM2 is high, indicating a single-address transfer. Note that DREQ is
negated in clock 4, before the assertion of TS in clock 6.

12-16 MCF5407 User’s Manual @ MOTOROLA

DMA Controller Module Functional Description

0 1 2 3 4 5 6 7 8 9 10 11

cwn [L L L L L L L L L L

pRECO \/
TMO/DACKO ST T N
TS -/

A31:0], SIZ[1:0] X X

™ []

RW

Figure 12-13. Single-Address DMA Transfer

12.5.4.2 Auto-Alignment

Auto-alignment allows block transfers to occur at the optimal size based on the address,
byte count, and programmed size. To use this feature, DCR[AA] must be set. The source is
auto-aligned if SSIZE indicates a transfer size larger than DSIZE. Source alignment takes
precedence over the destination when the source and destination sizes are equal. Otherwise,
the destination is auto-aligned. The address register chosen for alignment increments
regardless of the increment value. Configuration error checking is performed on registers
not chosen for alignment.

If BCR is greater than 16, the address determines transfer size. Bytes, words, or longwords
are transferred until the address is aligned to the programmed size boundary, at which time
accesses begin using the programmed size.

If BCR is less than 16 at the start of a transfer, the number of bytes remaining dictates
transfer size. For example, AA = 1, SAR = 0x0001, BCR = 0x00F0, SSIZE = 00
(longword), and DSIZE = 01 (byte). Because SSIZE > DSIZE, the source is auto-aligned.
Error checking is performed on destination registers. The access sequence is as follows:

1. Read byte from 0x0001 —write 1 byte, increment SAR.

2. Read word from 0x0002 —write 2 bytes, increment SAR.

3. Read longword from 0x0004 — write 4 bytes, increment SAR.
4. Repeat longwords until SAR = 0x00FO.

(M) moToroLa Chapter 12. DMA Controller Module 12-17

3
4

y
A

\ Controller Module Functional Description

5. Read byte from 0xO0F0—write byte, increment SAR.

If DSIZE is another size, data writes are optimized to write the largest size allowed based
on the address, but not exceeding the configured size.

12.5.4.3 Bandwidth Control

Bandwidth control makes it possible to force the DMA off the bus to allow access to
another device. DCR[BWC] provides seven levels of block transfer sizes. If the BCR
decrements to a multiple of the decode of the BWC, the DMA bus request negates until the
bus cycle terminates. If a request is pending, the arbiter may then pass bus mastership to
another device. If auto-alignment is enabled, DCR[AA] = 1, the BCR may skip over the
programmed boundary, in which case, the DMA bus request is not negated.

If BWC = 000, the request signal remains asserted until BCR reaches zero. DMA has
priority over the core. Note that in this scheme, the arbiter can always force the DMA to
relinquish the bus. See Section 6.2.10.1, “Default Bus Master Park Register (MPARK).”

12.5.5 Termination

An unsuccessful transfer can terminate for one of the following reasons:

* Error conditions— When the MCF5407 encounters a read or write cycle that
terminates with an error condition, DSR[BES] is set for a read and DSR[BED] is set
for a write before the transfer is halted. If the error occurred in a write cycle, data in
the internal holding register is lost.

e Interrupts—If DCR[INT] is set, the DMA drives the appropriate internal interrupt
signal. The processor can read DSR to determine whether the transfer terminated
successfully or with an error. DSR[DONE] is then written with a one to clear the
interrupt and the DONE and error bits.

12-18 MCF5407 User’s Manual @ MOTOROLA

Chapter 13
Timer Module

This chapter describes the configuration and operation of the two general-purpose timer
modules (timer O and timer 1). It includes programming examples.

13.1 Overview

The timer module incorporates two independent, general-purpose 16-bit timers, timer O and
timer 1. The output of an 8-bit prescaler clocks each timer. There are two sets of registers,
one for each timer. The timers can operate from CLKIN or from an external clocking source
using one of the TIN signals. If CLKIN is selected, it can be divided by 16 or 1.

Figure 13-1 is a block diagram of one of the two identical tiSmer modules.

GENERAL-PURPOSE TIMER

CLKIN
(+1 or +16) o . Timer Mode Register (TMRn)
> Timer Prescaler Mode Bits
Clock
TIN »| Generator > Divider
clock
Capture 15 A\ Y
Detection Timer Counter (TCNn)
(contains incrementing value)
A A
15 Y Y 0o 15 \ 0
TOUT = Timer Capture Register (TCRn) Timer Reference Register (TRRn)
h (latches TCN value when triggered by TIN) (reference value for comparison with TCN)
Y Y
RQn . Timer Event Register (TERn)

(indicates capture or when TCN = TRRn)

Figure 13-1. Timer Block Diagram

(M) moToroLA Chapter 13. Timer Module 13-1

V¥ ¢

‘ k eral-Purpose Timer Units

13.1.1 Key Features

Each general-purpose 16-bit timer unit has the following features:
e Maximum period of 4.97 seconds at 54 MHz
e 18.5-nS resolution at 54 MHz
e Programmable sources for the clock input, including external clock
e Input-capture capability with programmable trigger edge on input pin
e Output-compare with programmable mode for the output pin
* Free run and restart modes

* Maskable interrupts on input capture or reference-compare

13.2 General-Purpose Timer Units

The general-purpose timer units provide the following features:

* Each timer can be programmed to count and compare to a reference value stored in
a register or capture the timer value at an edge detected on TIN.

* System bus clock can be divided by 16 or 1. This clock is input to the prescaler.

* TIN is fed directly into the 8-bit prescaler. The maximum value of TIN is 1/5 of
CLKIN, as described in Chapter 20, “Electrical Specifications.”

* The 8-bit prescaler clock divides the clocking source and is user-programmable
from 1 to 256.

* Programmed events generate interrupts.

e The timer output signal (TOUT) can be configured to toggle or pulse on an event.

13.3 General-Purpose Timer Programming Model

The following features are programmable through the timer registers, shown in Table 13-1:

e Prescaler—The prescaler clock input is selected from CLKIN (divided by 1 or 16)
or from the corresponding timer input, TIN. TIN is synchronized to CLKIN. The
synchronization delay is between two and three CLKIN clocks. The corresponding
TMRn[ICLK] selects the clock input source. A programmable prescaler divides the
clock input by values from 1 to 256. The prescaler is an input to the 16-bit counter.

e Capture mode—Each timer has a 16-bit timer capture register (TCRO and TCR1)
that latches the counter value when the corresponding input capture edge detector
senses a defined TIN transition. The capture edge bits (TMRn[CE]) select the type
of transition that triggers the capture, sets the timer event register capture event bit,
TERn[CAP], and issues a maskable interrupt.

13-2 MCF5407 User’s Manual (M) moToroLa

General-Purpose Timer Programming Model

* Reference compare— A timer can be configured to count up to a reference value, at
which point TER#[REF] is set. If TMR#[ORI] is one, an interrupt is issued. If the
free run/restart bit TMR#n[FRR] is set, a new count starts. If it is clear, the timer
keeps running.

e Output mode— When a timer reaches the reference value selected by TMRr[OM],
it can send an output signal on TOUTn. TOUTx can be an active-low pulse or a
toggle of the current output under program control.

NOTE:

Although external devices cannot access MCF5407 on-chip
memories or MBAR, they can access timer module registers.

The timer module registers, shown in Table 13-1, can be modified at any time.

Table 13-1. General-Purpose Timer Module Memory Map

gff’:g [31:24] [23:16] [15:8] [7:0]
0x140 Timer 0 mode register (TMRO) [p. 13-3] Reserved
0x144 Timer 0 reference register (TRRO) [p. 13-4] Reserved
0x148 Timer 0 capture register (TCRO) [p. 13-4] Reserved
0x14C Timer 0 counter (TCNO) [p. 13-5] Reserved
0x150 Reserved Timer 0 event register Reserved
(TERO) [p. 13-5]
0x180 Timer 1 mode register (TMR1) [p. 13-3] Reserved
0x184 Timer 1 reference register (TRR1) [p. 13-4] Reserved
0x188 Timer 1 capture register (TCR1) [p. 13-4] Reserved
0x18C Timer 1 counter (TCN1) [p. 13-5] Reserved
0x190 Reserved Timer 1 event register Reserved
(TER1) [p. 13-5]

13.3.1 Timer Mode Registers (TMRO/TMR1)

Timer mode registers (TMRO/TMR1), Figure 13-2, program the prescaler and various
timer modes.

15 8 7 6 5 4 3 2 1 0
Field PS \ CE ‘ oM ‘ ORI ‘FRR‘ CLK ‘RST
Reset 0000_0000_0000_0000
RW RW
Address MBAR + 0x140 (TMRO); + 0x180 (TMR1)

Figure 13-2. Timer Mode Registers (TMRO/TMR1)
Table 13-2 describes TMRu fields.

(M) moToroLA Chapter 13. Timer Module 13-3

eral-Purpose Timer Programming Model

Table 13-2. TMRn Field Descriptions

Bits | Name Description

15-8 PS | Prescaler value. The prescaler is programmed to divide the clock input (CLKIN/(16 or 1) or clock on
TIN) by values from 1 (PS = 0000_0000) to 256 (PS = 1111_1111).

7-6 CE | Capture edge and enable interrupt

00 Disable interrupt on capture event

01 Capture on rising edge only and enable interrupt on capture event
10 Capture on falling edge only and enable interrupt on capture event
11 Capture on any edge and enable interrupt on capture event

5 OM | Output mode
0 Active-low pulse for one CLKIN cycle (18.5 ns at 54 MHz).
1 Toggle output.

4 ORI | Output reference interrupt enable. If ORI is set when TERn[REF] = 1, an interrupt occurs.
0 Disable interrupt for reference reached (does not affect interrupt on capture function).
1 Enable interrupt upon reaching the reference value.

3 FRR | Free run/restart
0 Free run. Timer count continues to increment after reaching the reference value.
1 Restart. Timer count is reset immediately after reaching the reference value.

2-1 CLK | Input clock source for the timer

00 Stop count

01 System bus clock divided by 1

10 System bus clock divided by 16. Note that this clock source is not synchronized to the timer; thus
successive time-outs may vary slightly.

11 TIN pin (falling edge)

0 RST | Reset timer. Performs a software timer reset similar to an external reset, although other register
values can still be written while RST = 0. A transition of RST from 1 to O resets register values. The
timer counter is not clocked unless the timer is enabled.

0 Reset timer (software reset)

1 Enable timer

13.3.2 Timer Reference Registers (TRRO/TRR1)

Each timer reference register (TRRO/TRR1), Figure 13-3, contains the reference value
compared with the respective free-running timer counter (TCNO/TCN1) as part of the
output-compare function. The reference value is not matched until TCNrn equals TRRx.

15 o
Field REF
Reset 1111_1111_1111_1111
RIW iy
Address MBAR -+ 0x144 (TRRO),+ 0x184 (TRR1)

Figure 13-3. Timer Reference Registers (TRRO/TRR1)

13.3.3 Timer Capture Registers (TCRO/TCR1)

Each timer capture register (TCRO/TCR1), Figure 13-4, latches the corresponding TCNn
value during a capture operation when an edge occurs on TIN, as programmed in TMR#.
CLKIN is assumed to be the clock source. TIN cannot simultaneously function as a

13-4 MCF5407 User’s Manual (M) moToroLa

General-Purpose Timer Programming Model

clocking source and as an input capture pin.

15 0
Field CAP (16-bit capture counter value)
Reset 0000_0000_0000_0000
R/W Read only
Address MBAR + 0x148 (TCRO); + 0x188 (TCR1)

Figure 13-4. Timer Capture Register (TCR0O/TCR1)

13.3.4 Timer Counters (TCNO/TCN1)

The current value of the 16-bit, incrementing timer counters (TCNO/TCN1), Figure 13-5,
can be read anytime without affecting counting. Writing to TCNn clears it. The timer
counter decrements on the clock source rising edge (CLKIN + 1, CLKIN =+ 16, or TIN).

15 0
Field 16-bit timer counter value count
Reset 0000_0000_0000_0000
R/W R/W (to reset)
Address MBAR + 0x14C (TCNO); + 0x18C (TCN1)

Figure 13-5. Timer Counters (TCNO/TCN1)

13.3.5 Timer Event Registers (TERO/TER1)

Each timer event register (TERO/TER1), Figure 13-6, reports capture or reference events
events the timer recognizes by setting TERn[CAP] or TERn[REF], which it does regardless
of the corresponding interrupt-enable bit values, TMR#n[ORI,CE].

Writing a 1 to either REF or CAP clears it (writing a 0 does not affect bit value); both bits
can be cleared at the same time. REF and CAP must be cleared early in the exception
handler, before the timer negates the IRQn to the interrupt controller.

7 2 1 0
Field — ‘ REF ‘ CAP
Reset 0000_0000
R/W R/W (ones clear/zeros have no effect)
Address MBAR + 0x151 (TERO); + 0x191 (TER1)

Figure 13-6. Timer Event Registers (TERO/TER1)

(M) moToroLA Chapter 13. Timer Module 13-5

A 4

‘ k e Example

Table 13-3 describes TER# fields.
Table 13-3. TERn Field Descriptions

Bits | Name Description

7-2 — Reserved

1 REF | Output reference event. The counter has reached the TRRn value. Setting TMRn[ORI] enables the
interrupt request caused by this event. Writing a one to REF clears the event condition.

0 CAP | Capture event. The counter value has been latched into TCRn. Setting TMRn[CE] enables the
interrupt request caused by this event. Writing a 1 to CAP clears the event condition.

13.4 Code Example

The following code provides an example of how to initialize timer O and how to use the
timer for counting time-out periods.

MBARX EQU 0x10000 ;Defines the module base address at 0x10000
TMRO EQU MBARx+0x140;Timer 0 register

TMR1 EQU MBARx+0x180 ;Timer register

TRRO EQU MBARx+0x144 ;Timer reference register
TRR1 EQU MBARx+0x184 ;Timer reference register
TCRO EQU MBARx+0x148 ;Timer capture register
TCR1 EQU MBARx+0x188 ;Timer capture register
TCNO EQU MBARx+0x14C ;Timer counter

TCN1 EQU MBARx+0x18C ;Timer counter

TERO EQU MBARx+0x151 ;Timer event register
TER1 EQU MBARx+0x191 ;Timer event register

HFOHROROROR

* TMRO is defined as: *
*[PS]= O0xFF, divide clock by 256

*[CE] = 00disable interrupt

*[OM] = 0 output=active-low pulse
*[ORI] = 0, disable ref.interrupt
*[FRR] = 1, restart mode enabled
*[CLK] = 10, CLKIN/16

*[RST] = 0, timer 0 disabled

move.w #0XFF0C,DO
move.w DO,TMRO

move.w #0x0000,D0;writing to the timer counter with any
move.w DO,TCNO ;value resets it to zero

move.w #AFAF,DO ;set the timer 0 reference to be

move.w #DO,TRRO ;defined as OxXAFAF
The simple example below uses 0 to count time-out loops. A time-out occurs when the
reference value, OxAFAF, is reached.
timer0_ex

clr.l DO

clr.1l D1
clt.l D2

move.w #0x0000,D0
move,w DO,TCNO;reset the counter to 0x0000

move.b #0x03,D0 ;writing ones to TERO[REF,CAP]
move.b DO,TERO ;clears the event flags

13-6 MCF5407 User’s Manual (M) moToroLa

Calculating Time-Out Values

move.w TMRO,DO;save the contents of TMRO while setting
bset #0,D0 ;the 0 bit. This enables timer 0 and starts counting
move.w DO, TMRO ;load the value back into the register, setting TMRO[RST]

TO_LOOP

move.b TER0O,Dl1 ;load TERO and see if
btst #1,D1 ;TERO[REF] has been set
beq TO_LOOP

addi.l #1,D2;Increment D2
cmp.l #5,D2;Did D2 reach 5? (i.e. timer ref has timed)
beq TO _FINISH;If so, end timer0 example. Otherwise jump back.

move.b #0x02,D0 ;writing one to TERO[REF] clears the event flag
move.b DO, TERO
jmp TO_LOOP

TO_FINISH
HALT;End processing. Example is finished

13.5 Calculating Time-Out Values

The formula below determines time-out periods for various reference values:

Time-out period = (1/clock frequency) x (1 or 16) x (TMR#n[PS] + 1) x
(TRRn[REF])

When calculating time-out periods, add 1 to the prescaler to simplify calculating, because
TMRn[PS] = 0x00 yields a prescaler of 1 and TMRn[PS] = OxFF yields a prescaler of 256.
For example, if a 54-MHz timer clock is divided by 16, TMR#z[PS] = Ox7F, and the timer
is referenced at 0OXABCD (43,981 decimal), the time-out period is as follows:

Time-out period = (1/54,000,000) x (16) x (127 + 1) x (43,981) = 1.67 S
The time-out values in Table 13-4 represent the time it takes the counter value in TCNn
value to go from 0x0000 to the default reference value, TRRn[REF] = OxFFFF. Time-out

values shown for CLKIN are divided by 1 and by 16 (TMRn[CLK] is 01 or 10,
respectively).

Any clock source (CLKIN + 1, CLKIN =+ 16, or TIN) can be prescaled using TMR#n[PS].

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0OxFFFF
(162-MHz Processor Clock)

CLK=10 (1) ‘ CLK =01 (= 16) CLK=10 (1) ‘ CLK =01 (= 16)
T"(’:;ggsl CLKIN (MHz) T"(";‘e[:)sl CLKIN (MHz)

54 | 405 | 32.4 | 54 | 405 | 324 54 | 405 | 32.4 | 54 | 405 | 32.4
0 |0.019]0.026 | 0.032 | 0.001 | 0.002 | 0.002 128 | 2.505 | 3.340 | 4.175 | 0.157 | 0.209 | 0.261
1 0.039 | 0.052 | 0.065 | 0.002 | 0.003 | 0.004 129 | 2.524 | 3.366 | 4.207 | 0.158 | 0.210 | 0.263
2 |0.058]0.078 | 0.097 | 0.004 | 0.005 | 0.006 130 | 2544 | 3.392 | 4.240 | 0.159 | 0.212 | 0.265
3 |0.0780.104 | 0.129 | 0.005 | 0.006 | 0.008 131 | 2563 | 3.418 | 4.272 | 0.160 | 0.214 | 0.267
4 |0.097]0.129] 0.162 | 0.006 | 0.008 | 0.010 132 | 2.583 | 3.443 | 4.304 | 0.161 | 0.215 | 0.269
5 |0.117]0.155 | 0.194 | 0.007 | 0.010 | 0.012 133 | 2.602 | 3.469 | 4.337 | 0.163 | 0.217 | 0.271

(M) moToroLA Chapter 13. Timer Module 13-7

ulating Time-Out Values

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF
(162-MHz Processor Clock) (Continued)

CLK=10(+1) ‘ CLK =01 (+ 16) CLK =10 (+ 1) ‘ CLK =01 (+ 16)
TI\(IIge[‘F:’)S] CLKIN (MHz) T"(":g)sl CLKIN (MHz)

54 | 405 | 324 | 54 | 40.5 | 32.4 54 | 405 | 32.4 | 54 | 40.5 | 32.4
6 0.136 | 0.181 | 0.227 | 0.008 | 0.011 | 0.014 134 | 2.621 | 3.495 | 4.369 | 0.164 | 0.218 | 0.273
7 0.155 | 0.207 | 0.259 | 0.010 | 0.013 | 0.016 135 | 2.641 | 3.521 | 4.401| 0.165 | 0.220 | 0.275
8 0.175 | 0.233 | 0.291 | 0.011 | 0.015 | 0.018 136 | 2.660 | 3.547 | 4.434 | 0.166 | 0.222 | 0.277
9 0.194 | 0.259 | 0.324 | 0.012 | 0.016 | 0.020 137 | 2.680 | 3.573 | 4.466 | 0.167 | 0.223 | 0.279
10 |0.214|0.285 | 0.356 | 0.013 | 0.018 | 0.022 138 | 2.699 | 3.599 | 4.499 | 0.169 | 0.225 | 0.281
11 |0.233|0.311 | 0.388 | 0.015 | 0.019 | 0.024 139 | 2.719 | 3.625 | 4.531 | 0.170 | 0.227 | 0.283
12 | 0.252 | 0.337 | 0.421 | 0.016 | 0.021 | 0.026 140 | 2.738 | 3.651 | 4.563 | 0.171 | 0.228 | 0.285
13 | 0.272|0.362 | 0.453 | 0.017 | 0.023 | 0.028 141 | 2.757 | 3.676 | 4.596 | 0.172 | 0.230 | 0.287
14 | 0.291 | 0.388 | 0.485 | 0.018 | 0.024 | 0.030 142 | 2.777 | 3.702 | 4.628 | 0.174 | 0.231 | 0.289
15 | 0.311|0.414 | 0.518 | 0.019 | 0.026 | 0.032 143 | 2.796 | 3.728 | 4.660 | 0.175 | 0.233 | 0.291
16 | 0.330 | 0.440 | 0.550 | 0.021 | 0.028 | 0.034 144 | 2.816 | 3.754 | 4.693 | 0.176 | 0.235 | 0.293
17 |0.350 | 0.466 | 0.583 | 0.022 | 0.029 | 0.036 145 | 2.835 | 3.780 | 4.725 | 0.177 | 0.236 | 0.295
18 | 0.369 | 0.492 | 0.615 | 0.023 | 0.031 | 0.038 146 | 2.854 | 3.806 | 4.757 | 0.178 | 0.238 | 0.297
19 |0.388 | 0.518 | 0.647 | 0.024 | 0.032 | 0.040 147 | 2.874 | 3.832 | 4.790 | 0.180 | 0.239 | 0.299
20 | 0.408 | 0.544 | 0.680 | 0.025 | 0.034 | 0.042 148 | 2.893 | 3.858 | 4.822 | 0.181 | 0.241 | 0.301
21 | 0.427 | 0.570 | 0.712 | 0.027 | 0.036 | 0.044 149 | 2.913 | 3.884 | 4.855 | 0.182 | 0.243 | 0.303
22 | 0.447 | 0.595 | 0.744 | 0.028 | 0.037 | 0.047 150 | 2.932|3.910 | 4.887 | 0.183 | 0.244 | 0.305
23 | 0.466 | 0.621 | 0.777 | 0.029 | 0.039 | 0.049 151 | 2.952 | 3.935 | 4.919 | 0.184 | 0.246 | 0.307
24 | 0.485 | 0.647 | 0.809 | 0.030 | 0.040 | 0.051 152 | 2.971 | 3.961 | 4.952 | 0.186 | 0.248 | 0.309
25 | 0.505 | 0.673 | 0.841 | 0.032 | 0.042 | 0.053 153 | 2.990 | 3.987 | 4.984 | 0.187 | 0.249 | 0.311
26 | 0524 | 0.699 | 0.874 | 0.033 | 0.044 | 0.055 154 | 3.010 | 4.013 | 5.016 | 0.188 | 0.251 | 0.314
27 | 0.544 | 0.725 | 0.906 | 0.034 | 0.045 | 0.057 155 | 3.029 | 4.039 | 5.049 | 0.189 | 0.252 | 0.316
28 | 0.563 | 0.751 | 0.939 | 0.035 | 0.047 | 0.059 156 | 3.049 | 4.065 | 5.081 | 0.191 | 0.254 | 0.318
29 | 0583 0.777 | 0.971 | 0.036 | 0.049 | 0.061 157 | 3.068 | 4.091 | 5.113 | 0.192 | 0.256 | 0.320
30 | 0.602 | 0.803 | 1.003 | 0.038 | 0.050 | 0.063 158 | 3.087 | 4.117 | 5.146 | 0.193 | 0.257 | 0.322
31 | 0.621|0.829 | 1.036 | 0.039 | 0.052 | 0.065 159 | 3.107 | 4.143 | 5.178 | 0.194 | 0.259 | 0.324
32 | 0.641|0.854 | 1.068 | 0.040 | 0.053 | 0.067 160 | 3.126 | 4.168 | 5.211 | 0.195 | 0.261 | 0.326
33 | 0.660 | 0.880 | 1.100 | 0.041 | 0.055 | 0.069 161 | 3.146 | 4.194 | 5.243 | 0.197 | 0.262 | 0.328
34 | 0.680 | 0.906 | 1.133 | 0.042 | 0.057 | 0.071 162 | 3.165 | 4.220 | 5.275 | 0.198 | 0.264 | 0.330
35 | 0.699 | 0.932 | 1.165 | 0.044 | 0.058 | 0.073 163 | 3.185 | 4.246 | 5.308 | 0.199 | 0.265 | 0.332
36 | 0.718 | 0.958 | 1.197 | 0.045 | 0.060 | 0.075 164 | 3.204 | 4.272 | 5.340 | 0.200 | 0.267 | 0.334
37 | 0.738|0.984 | 1.230 | 0.046 | 0.061 | 0.077 165 | 3.223 | 4.298 | 5.372 | 0.201 | 0.269 | 0.336
38 | 0.757 | 1.010 | 1.262 | 0.047 | 0.063 | 0.079 166 | 3.243 | 4.324 | 5.405 | 0.203 | 0.270 | 0.338
39 |0.777 | 1.086 | 1.295 | 0.049 | 0.065 | 0.081 167 | 3.262 | 4.350 | 5.437 | 0.204 | 0.272 | 0.340
40 | 0.796 | 1.062 | 1.327 | 0.050 | 0.066 | 0.083 168 | 3.282 | 4.376 | 5.469 | 0.205 | 0.273 | 0.342
41 | 0816 1.087 | 1.359 | 0.051 | 0.068 | 0.085 169 | 3.301 | 4.401 | 5.502 | 0.206 | 0.275 | 0.344
42 |0.835]1.113 | 1.392 | 0.052 | 0.070 | 0.087 170 | 3.320 | 4.427 | 5.534 | 0.208 | 0.277 | 0.346

13-8 MCF5407 User’s Manual (M) moToroLa

Calculating Time-Out Values

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF
(162-MHz Processor Clock) (Continued)

CLK=10(+1) ‘ CLK =01 (+ 16) CLK =10 (+ 1) ‘ CLK =01 (+ 16)
TI\(IIge[‘F:’)S] CLKIN (MHz) T"(":g)sl CLKIN (MHz)

54 | 405 | 324 | 54 | 40.5 | 32.4 54 | 405 | 32.4 | 54 | 40.5 | 32.4
43 |0.854 | 1.139 | 1.424 | 0.053 | 0.071 | 0.089 171 | 3.340 | 4.453 | 5.567 | 0.209 | 0.278 | 0.348
44 | 0.874|1.165 | 1.456 | 0.055 | 0.073 | 0.091 172 | 3.359 | 4.479 | 5.599 | 0.210 | 0.280 | 0.350
45 | 0.893 | 1.191 | 1.489 | 0.056 | 0.074 | 0.093 173 | 3.379 | 4.505 | 5.631 | 0.211 | 0.282 | 0.352
46 |0.913|1.217 | 1.521 | 0.057 | 0.076 | 0.095 174 | 3.398 | 4.531 | 5.664 | 0.212 | 0.283 | 0.354
47 |0.932 | 1.243 | 1.553 | 0.058 | 0.078 | 0.097 175 | 3.418 | 4.557 | 5.696 | 0.214 | 0.285 | 0.356
48 | 0951 1.269 | 1.586 | 0.059 | 0.079 | 0.099 176 | 3.437 | 4.583 | 5.728 | 0.215 | 0.286 | 0.358
49 | 0.971|1.295 | 1.618 | 0.061 | 0.081 | 0.101 177 | 3.456 | 4.609 | 5.761 | 0.216 | 0.288 | 0.360
50 | 0.990 | 1.320 | 1.651 | 0.062 | 0.083 | 0.103 178 | 3.476 | 4.634 | 5.793 | 0.217 | 0.290 | 0.362
51 1.010 | 1.346 | 1.683 | 0.063 | 0.084 | 0.105 179 | 3.495 | 4.660 | 5.825 | 0.218 | 0.291 | 0.364
52 |1.029 | 1.372 | 1.715 | 0.064 | 0.086 | 0.107 180 | 3.515 | 4.686 | 5.858 | 0.220 | 0.293 | 0.366
53 | 1.049 | 1.398 | 1.748 | 0.066 | 0.087 | 0.109 181 | 3.534 |4.712 | 5.890 | 0.221 | 0.295 | 0.368
54 | 1.068 | 1.424 | 1.780 | 0.067 | 0.089 | 0.111 182 | 3.554 | 4.738 | 5.923 | 0.222 | 0.296 | 0.370
55 | 1.087 | 1.450 | 1.812 | 0.068 | 0.091 | 0.113 183 | 3.573 | 4.764 | 5.955 | 0.223 | 0.298 | 0.372
56 | 1.107 | 1.476 | 1.845 | 0.069 | 0.092 | 0.115 184 | 3.592 | 4.790 | 5.987 | 0.225 | 0.299 | 0.374
57 |1.126 | 1.502 | 1.877 | 0.070 | 0.094 | 0.117 185 |3.612|4.816 | 6.020 | 0.226 | 0.301 | 0.376
58 | 1.146 | 1.528 | 1.909 | 0.072 | 0.095 | 0.119 186 | 3.631 | 4.842 | 6.052 | 0.227 | 0.303 | 0.378
59 | 1.165| 1.553 | 1.942 | 0.073 | 0.097 | 0.121 187 | 3.651 | 4.867 | 6.084 | 0.228 | 0.304 | 0.380
60 | 1.185| 1.579 | 1.974 | 0.074 | 0.099 | 0.123 188 | 3.670 | 4.893 | 6.117 | 0.229 | 0.306 | 0.382
61 1.204 | 1.605 | 2.007 | 0.075 | 0.100 | 0.125 189 | 3.689 | 4.919 | 6.149 | 0.231 | 0.307 | 0.384
62 | 1.223 | 1.631 | 2.039 | 0.076 | 0.102 | 0.127 190 | 3.709 | 4.945 | 6.181 | 0.232 | 0.309 | 0.386
63 | 1.243 | 1.657 | 2.071 | 0.078 | 0.104 | 0.129 191 | 3.728 | 4.971 | 6.214 | 0.233 | 0.311 | 0.388
64 | 1.262 | 1.683 | 2.104 | 0.079 | 0.105 | 0.131 192 | 3.748 | 4.997 | 6.246 | 0.234 | 0.312 | 0.390
65 | 1.282 | 1.709 | 2.136 | 0.080 | 0.107 | 0.133 193 | 3.767 | 5.023 | 6.279 | 0.235 | 0.314 | 0.392
66 | 1.301 | 1.735 | 2.168 | 0.081 | 0.108 | 0.136 194 | 3.787 | 5.049 | 6.311 | 0.237 | 0.316 | 0.394
67 | 1.320 | 1.761 | 2.201 | 0.083 | 0.110 | 0.138 195 | 3.806 | 5.075 | 6.343 | 0.238 | 0.317 | 0.396
68 | 1.340 | 1.786 | 2.233 | 0.084 | 0.112 | 0.140 196 | 3.825 | 5.100 | 6.376 | 0.239 | 0.319 | 0.398
69 | 1.359 | 1.812 | 2.265 | 0.085 | 0.113 | 0.142 197 | 3.845 | 5.126 | 6.408 | 0.240 | 0.320 | 0.400
70 | 1.379 | 1.838 | 2.298 | 0.086 | 0.115 | 0.144 198 | 3.864 | 5.152 | 6.440 | 0.242 | 0.322 | 0.403
71 1.398 | 1.864 | 2.330 | 0.087 | 0.117 | 0.146 199 | 3.884 | 5.178 | 6.473 | 0.243 | 0.324 | 0.405
72 |1.4181.890 | 2.363 | 0.089 | 0.118 | 0.148 200 | 3.903 | 5.204 | 6.505 | 0.244 | 0.325 | 0.407
73 |1.437 | 1.916 | 2.395 | 0.090 | 0.120 | 0.150 201 |3.922 5230 6.537 | 0.245 | 0.327 | 0.409
74 | 1.456 | 1.942 | 2.427 | 0.091 | 0.121 | 0.152 202 | 3.942 | 5.256 | 6.570 | 0.246 | 0.328 | 0.411
75 | 1.476 | 1.968 | 2.460 | 0.092 | 0.123 | 0.154 203 | 3.961|5.282 | 6.602 | 0.248 | 0.330 | 0.413
76 | 1.495 | 1.994 | 2.492 | 0.093 | 0.125 | 0.156 204 | 3.9815.308 | 6.635 | 0.249 | 0.332 | 0.415
77 | 1.515|2.019 | 2.524 | 0.095 | 0.126 | 0.158 205 | 4.000 | 5.333 | 6.667 | 0.250 | 0.333 | 0.417
78 | 1.534 | 2.045 | 2.557 | 0.096 | 0.128 | 0.160 206 | 4.020 | 5.359 | 6.699 | 0.251 | 0.335 | 0.419
79 | 1.553 | 2.071 | 2.589 | 0.097 | 0.129 | 0.162 207 | 4.039 | 5.385 | 6.732 | 0.252 | 0.337 | 0.421

(M) moToroLA Chapter 13. Timer Module 13-9

ulating Time-Out Values

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF
(162-MHz Processor Clock) (Continued)

CLK=10(+1) ‘ CLK =01 (+ 16) CLK =10 (+ 1) ‘ CLK =01 (+ 16)
TI\(IIge[‘F:’)S] CLKIN (MHz) T"(":g)sl CLKIN (MHz)

54 | 405 | 324 | 54 | 40.5 | 32.4 54 | 405 | 32.4 | 54 | 40.5 | 32.4
80 | 1.573|2.097 | 2.621 | 0.098 | 0.131 | 0.164 208 | 4.058 | 5.411 | 6.764 | 0.254 | 0.338 | 0.423
81 1.592 | 2.123 | 2.654 | 0.100 | 0.133 | 0.166 209 | 4.078 | 5.437 | 6.796 | 0.255 | 0.340 | 0.425
82 | 1.612|2.149 | 2.686 | 0.101 | 0.134 | 0.168 210 | 4.097 | 5.463 | 6.829 | 0.256 | 0.341 | 0.427
83 | 1.631|2.175|2.719|0.102 | 0.136 | 0.170 211 | 4.117 | 5.489 | 6.861 | 0.257 | 0.343 | 0.429
84 | 1.651|2201|2.751|0.103 | 0.138 | 0.172 212 | 4.136 | 5.515 | 6.893 | 0.259 | 0.345 | 0.431
85 | 1.670 | 2.227 | 2.783 | 0.104 | 0.139 | 0.174 213 | 4.155 | 5.541 | 6.926 | 0.260 | 0.346 | 0.433
86 | 1.689 | 2.252 | 2.816 | 0.106 | 0.141 | 0.176 214 | 4.175 | 5.567 | 6.958 | 0.261 | 0.348 | 0.435
87 | 1.709 | 2.278 | 2.848 | 0.107 | 0.142 | 0.178 215 | 4.194 | 5.592 | 6.991 | 0.262 | 0.350 | 0.437
88 | 1.728 | 2.304 | 2.880 | 0.108 | 0.144 | 0.180 216 | 4.214 | 5.618 | 7.023 | 0.263 | 0.351 | 0.439
89 | 1.748 | 2.330 | 2.913 | 0.109 | 0.146 | 0.182 217 | 4.233 | 5.644 | 7.055 | 0.265 | 0.353 | 0.441
90 | 1.767 | 2.356 | 2.945 | 0.110 | 0.147 | 0.184 218 | 4.253 | 5.670 | 7.088 | 0.266 | 0.354 | 0.443
91 1.786 | 2.382 | 2.977 | 0.112 | 0.149 | 0.186 219 | 4.272 | 5.696 | 7.120 | 0.267 | 0.356 | 0.445
92 | 1.806 | 2.408 | 3.010 | 0.113 | 0.150 | 0.188 220 | 4.291|5.722 | 7.152 | 0.268 | 0.358 | 0.447
93 | 1.825|2.434 | 3.042 | 0.114 | 0.152 | 0.190 221 | 4.311 | 5.748 | 7.185 | 0.269 | 0.359 | 0.449
94 | 1.845|2.460 | 3.075 | 0.115 | 0.154 | 0.192 222 | 4.330 | 5.774 | 7.217 | 0.271 | 0.361 | 0.451
95 | 1.864 | 2.486 | 3.107 | 0.117 | 0.155 | 0.194 223 | 4.350 | 5.800 | 7.249 | 0.272 | 0.362 | 0.453
96 | 1.884 | 2511 | 3.139 | 0.118 | 0.157 | 0.196 224 | 4.369 | 5.825 | 7.282 | 0.273 | 0.364 | 0.455
97 | 1.903 | 2537 | 3.172 | 0.119 | 0.159 | 0.198 225 | 4.388 | 5.851 | 7.314 | 0.274 | 0.366 | 0.457
98 | 1.922 | 2.563 | 3.204 | 0.120 | 0.160 | 0.200 226 | 4.408 | 5.877 | 7.347 | 0.275 | 0.367 | 0.459
99 | 1.942 | 2589 | 3.236 | 0.121 | 0.162 | 0.202 227 | 4.427 | 5.903 | 7.379 | 0.277 | 0.369 | 0.461
100 | 1.961 | 2.615 | 3.269 | 0.123 | 0.163 | 0.204 228 | 4.447 | 5.929 | 7.411 | 0.278 | 0.371 | 0.463
101 | 1.981 | 2.641 | 3.301 | 0.124 | 0.165 | 0.206 229 | 4.466 | 5.955 | 7.444 | 0.279 | 0.372 | 0.465
102 | 2.000 | 2.667 | 3.333 | 0.125 | 0.167 | 0.208 230 | 4.486 | 5.981 | 7.476 | 0.280 | 0.374 | 0.467
103 | 2.019 | 2.693 | 3.366 | 0.126 | 0.168 | 0.210 231 | 4.505 | 6.007 | 7.508 | 0.282 | 0.375 | 0.469
104 | 2.039 | 2.719 | 3.398 | 0.127 | 0.170 | 0.212 232 | 4.524 | 6.033 | 7.541 | 0.283 | 0.377 | 0.471
105 | 2.058 | 2.744 | 3.431 0.129 | 0.172 | 0.214 233 | 4.544 | 6.058 | 7.573 | 0.284 | 0.379 | 0.473
106 | 2.078 | 2.770 | 3.463 | 0.130 | 0.173 | 0.216 234 | 4563 | 6.084 | 7.605 | 0.285 | 0.380 | 0.475
107 | 2.097 | 2.796 | 3.495 | 0.131 | 0.175 | 0.218 235 | 4.583|6.110 | 7.638 | 0.286 | 0.382 | 0.477
108 | 2.117 | 2.822 | 3.528 | 0.132 | 0.176 | 0.220 236 | 4.602 | 6.136 | 7.670 | 0.288 | 0.384 | 0.479
109 | 2.136 | 2.848 | 3.560 | 0.133 | 0.178 | 0.222 237 | 4.622|6.162 | 7.703 | 0.289 | 0.385 | 0.481
110 | 2.155 | 2.874 | 3.592 | 0.135 | 0.180 | 0.225 238 | 4.641]6.188 | 7.735 | 0.290 | 0.387 | 0.483
111 | 2.175 | 2.900 | 3.625 | 0.136 | 0.181 | 0.227 239 | 4.660 | 6.214 | 7.767 | 0.291 | 0.388 | 0.485
112 | 2.194 | 2.926 | 3.657 | 0.137 | 0.183 | 0.229 240 | 4.680 | 6.240 | 7.800 | 0.292 | 0.390 | 0.487
113 | 2.214 | 2.952 | 3.689 | 0.138 | 0.184 | 0.231 241 | 4.699 | 6.266 | 7.832 | 0.294 | 0.392 | 0.489
114 | 2.233|2.977 | 3.722| 0.140 | 0.186 | 0.233 242 | 4.719 | 6.291 | 7.864 | 0.295 | 0.393 | 0.492
115 | 2.252 | 3.003 | 3.754 | 0.141 | 0.188 | 0.235 243 | 4.738 | 6.317 | 7.897 | 0.296 | 0.395 | 0.494
116 | 2.272 | 3.029 | 3.787 | 0.142 | 0.189 | 0.237 244 | 4.757 | 6.343 | 7.929 | 0.297 | 0.396 | 0.496

13-10 MCF5407 User’s Manual @ MOTOROLA

Calculating Time-Out Values

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF
(162-MHz Processor Clock) (Continued)

CLK=10(+1) ‘ CLK =01 (+ 16) CLK=10(+1) ‘ CLK =01 (+ 16)
TI\(IIge[‘F:’)S] CLKIN (MHz) T"(":g)sl CLKIN (MHz)

54 | 405 | 32.4 | 54 | 405 | 32.4 54 | 405 | 32.4 | 54 | 40.5 | 32.4
117 | 2.291 | 3.055 | 3.819 | 0.143 | 0.191 | 0.239 245 | 4.777 | 6.369 | 7.961 | 0.299 | 0.398 | 0.498
118 | 2.311 | 3.081 | 3.851 | 0.144 | 0.193 | 0.241 246 | 4.796 | 6.395 | 7.994 | 0.300 | 0.400 | 0.500
119 | 2.330 | 3.107 | 3.884 | 0.146 | 0.194 | 0.243 247 | 4.816 | 6.421 | 8.026 | 0.301 | 0.401 | 0.502
120 | 2.350 | 3.133 | 3.916 | 0.147 | 0.196 | 0.245 248 | 4.835 | 6.447 | 8.059 | 0.302 | 0.403 | 0.504
121 | 2.369 | 3.159 | 3.948 | 0.148 | 0.197 | 0.247 249 | 4.855 | 6.473 | 8.091 | 0.303 | 0.405 | 0.506
122 |2.388 | 3.185 | 3.981 | 0.149 | 0.199 | 0.249 250 | 4.874 | 6.499 | 8.123 | 0.305 | 0.406 | 0.508
123 | 2.408 | 3.210 | 4.013 | 0.150 | 0.201 | 0.251 251 | 4.893 | 6.524 | 8.156 | 0.306 | 0.408 | 0.510
124 | 2.427 | 3.236 | 4.045 | 0.152 | 0.202 | 0.253 252 | 4.913 | 6.550 | 8.188 | 0.307 | 0.409 | 0.512
125 | 2.447 | 3.262 | 4.078 | 0.153 | 0.204 | 0.255 253 | 4.932 | 6.576 | 8.220 | 0.308 | 0.411 | 0.514
126 | 2.466 | 3.288 | 4.110 | 0.154 | 0.206 | 0.257 254 | 4.952 | 6.602 | 8.253 | 0.309 | 0.413 | 0.516
127 | 2.486 | 3.314 | 4.143 | 0.155 | 0.207 | 0.259 255 | 4.971 | 6.628 | 8.285 | 0.311 | 0.414 | 0.518

(M) moToroLA Chapter 13. Timer Module 13-11

g |

ulating Time-Out Values

13-12

MCF5407 User’s Manual

@ MOTOROLA

Chapter 14
UART Modules

This chapter describes the use of the universal asynchronous/synchronous
receiver/transmitters (UARTSs) implemented on the MCF5407 and includes programming
examples. All references to UART refer to one of these modules when in UART mode as
opposed to modem mode. Particular attention is given to the UART1 implementation of a
synchronous interface that provides a controller for an 8- or 16-bit CODEC interface and
an audio CODEC ‘97 (AC *97) digital interface.

14.1 Overview

The MCF5407 contains two independent UARTs. UART1 on the MCF5407 provides
synchronous operation and a CODEC interface for soft modem support. Each UART can
be clocked by CLKIN, eliminating the need for an external crystal. As Figure 14-1 shows,
each UART module interfaces directly to the CPU and consists of the following:

* Serial communication channel
* Programmable transmitter and receiver clock generation
e Internal channel control logic

* Interrupt control logic

UART
l«—— CTS
Internal Channel Serial RTS
i F—>
Control Logic Communications
Channel l«—— RxD
— TxD
System Integration
Programmable CLKIN
Moﬁ‘liéirtsg:\ﬂ) Imemligtg i(c):ontrol Clock o
Controller Generation External clock (TIN)

Figure 14-1. Simplified Block Diagram

The serial communication channel provides a full-duplex asynchronous/synchronous
receiver and transmitter deriving an operating frequency from CLKIN or an external clock
using the timer pin. The transmitter converts parallel data from the CPU to a serial bit
stream, inserting appropriate start, stop, and parity bits. It outputs the resulting stream on

(M) moToroLA Chapter 14. UART Modules 14-1

al Module Overview

the channel transmitter serial data output (TxD). See Section 14.5.2.1, “Transmitting in
UART Mode.”

The receiver converts serial data from the channel receiver serial data input (RxD) to
parallel format, checks for a start, stop, and parity bits, or break conditions, and transfers
the assembled character onto the bus during read operations. The receiver may be polled-
or interrupt-driven. See Section 14.5.2.3, “Receiver.”

UART1 can be programmed to function like original UART (identical to UARTO) or in one
of the following three modem modes:

* An 8-bit CODEC interface

* A 16-bit CODEC interface

* An audio CODEC ‘97 (AC ’97) digital interface controller

A CODEC (code/decode) chip provides a data conversion interface for high-speed modem
designs meeting a high range of standards, such as ITU-T V.34 and PCM. UARTI
interfaces to the CODEC through a serial port consisting of Tx and Rx serial data and serial
bit clock and frame inputs from the CODEC. UART]1 transfers digital sample data to and
from the CODEC through the serial port.

AC ’97 defines an architecture for audio-intensive personal computer applications such as
gaming, authoring, and high-resolution music and video playback. An external AC °97
analog device performs mixing, analog processing, and sample-rate DAC and ADC.
UART1 interfaces to the AC *97 device through a serial port consisting of Tx and Rx serial
data, a serial bit clock, and a frame sync output generated by UART1 from the serial bit
clock. An MCF5407 general-purpose I/O (GPIO) is used as a reset to the AC ‘97 device.
UART]1 transfers digital sample data as well as control/status information to and from the
AC ‘97 device through the serial port.

Unless otherwise specified, descriptions in this chapter refer to UART mode.

14.2 Serial Module Overview

The MCF5407 contains two independent UART modules, whose features are as follows:
* Each can be clocked by CLKIN, eliminating a need for an external crystal
* Full-duplex asynchronous/synchronous receiver/transmitter channel
* Quadruple-buffered receiver
* Double-buffered transmitter
* Independently programmable receiver and transmitter clock sources
* Programmable data format:
— 5-8 data bits plus parity
— Odd, even, no parity, or force parity
— One, one-and-a-half, or two stop bits

14-2 MCF5407 User’s Manual (M) moToroLa

Register Descriptions

Each channel programmable to normal (full-duplex), automatic echo, local
loop-back, or remote loop-back mode

Automatic wake-up mode for multidrop applications
Four maskable interrupt conditions

UARTO and UART1 have interrupt capability to DMA channels 2 and 3,
respectively, when either the RxXRDY or FFULL bit is set in the USR.

Parity, framing, and overrun error detection

False-start bit detection

Line-break detection and generation

Detection of breaks originating in the middle of a character

Start/end break interrupt/status

UART1 has the following additional features:

Programmable to interface to an 8- or 16-bit CODEC for soft modem support
Programmable to function as a digital AC *97 controller

Tx and Rx FIFOs can hold the following:

— 32 1-byte samples when programmed as a UART or as an 8-bit CODEC interface
— 16 2-byte samples when programmed as a 16-bit CODEC interface

— 16 20-bit samples when programmed as a digital AC 97 controller

Both DMA channels associated with the UARTSs can be programmed to service
UART1 (one for the Tx channel and one for the Rx channel)

No parity error, framing error, or line break detection in modem mode

14.3 Register Descriptions

This section contains a detailed description of each register and its specific function.
Flowcharts in Section 14.5.6, “Programming,” describe basic UART module programming.
The operation of the UART module is controlled by writing control bytes into the
appropriate registers. Table 14-1 is a memory map for UART module registers.

(M) moToroLA Chapter 14. UART Modules 14-3

ister Descriptions

Table 14-1. UART Module Programming Model

MBAR Offset
[31:24] [23:16] [15:8] [7:0]
UARTO | UART1
0x1CO | 0x200 |UART mode Rx FIFO threshold Modem control Tx FIFO threshold

registers1—(UMR1n) register—(RXLVL) [p. |register—(MODCTL) |register—(TXLVL) [p.
[p. 14-5], (UMR2n) [p. | 14-8] (UART1 only) [p. 14-9] (UART1 only) | 14-10] (UART1 only)

14-7]

0x1C4 | 0x204 |(Read) UART status — (Read) Rx samples (Read) Tx space
registers—(USRn) [p. available available
14-10] register—(RSMP) [p. | register—(TSPC) [p.

(Write) UART 14-12] (UART1 only) | 14-12] (UART1 only)

clock-select
register' —(UCSRn)
[p. 14-12]

0x1C8 | 0x208 |(Read) Do not access? | —

(Write) UART —
command
registers—(UCRN) [p.
14-13]

0x1CC | 0x20C |(UARTO/Read) UART |—
receiver
buffers—(URBN) [p.
14-15]

(UART1/Read) UART receiver buffers—(URBn) [p. 14-15]

(UARTO/Write) UART | —
transmitter
buffers—(UTBn) [p.
14-16]

(UART1/Write) UART transmitter buffers—(UTBn) [p. 14-16]

0x1D0 | 0x210 |(Read) UART input —
port change
registers—(UIPCRn)

[p. 14-17]
(Write) UART auxiliary | —
control
registers'—(UACRn)
[p. 14-17]

0x1D4 | 0x214 |(Read) UART interrupt |—
status
registers—(UISRn) [p.
14-18]
(Write) UART interrupt | —
mask
registers—(UIMRn) [p.
14-18]

0x1D8 | 0x218 |UART divider upper —
registers—(UDUn) [p.
14-19]

14-4 MCF5407 User’s Manual (M) moToroLa

Register Descriptions

Table 14-1. UART Module Programming Model (Continued)

MBAR Offset

UARTO

UART1

[31:24]

[23:16]

[15:8]

[7:0]

0x1DC

0x21C

UART divider lower
registers—(UDLn) [p.
14-19]

Ox1EO0-
Ox1EC

0x220—
0x22C

Do not access?

0x1FO0

0x230

UART interrupt vector
register—(UIVRn) [p.
14-20]

0x1F4

0x234

(Read) UART input
port registers—(UIPn)
[p. 14-20]

(Write) Do not access?

Ox1F8

0x238

(Read) Do not access?®

(Write) UART output
port bit set command
registers—(UOP1n%)
[p. 14-21]

0x1FC

0x23C

(Read) Do not access?®

(Write) UART output
port bit reset
command
registers—(UOPON3)
[p. 14-21]

T UMR1 n, UMR2n, and UCSRn should be changed only after the receiver/transmitter is issued a software reset

command. That is, if channel operation is not disabled, undesirable results may occur.

2 This address is for factory testing. Reading this location results in undesired effects and possible incorrect
transmission or reception of characters. Register contents may also be changed.

Address-triggered commands

NOTE:

UART registers are accessible only as bytes. Although external
masters cannot access on-chip memories or MBAR, they can
access any UART registers.

14.3.1 UART Mode Registers 1 (UMR1n)

The UART mode registers 1 (UMRI1n) control configuration. UMR1#z can be read or
written when the mode register pointer points to it, at RESET or after a RESET MODE
REGISTER POINTER command using UCRr[MISC]. After UMRI1~z is read or written, the
pointer points to UMR2n.

@ MOTOROLA

Chapter 14. UART Modules

14-5

A

ister Descriptions

7 6 5 4 3 2 1 0
Field| RxRTS RxIRQ/FFULL‘ ERR ‘ PM ‘ PT ‘ B/C
Reset 0000_0000
R/W R/W
Address| MBAR + 0x1CO (UARTO0), 0x200 (UART1). After UMR1n is read or written, the pointer points to UMR2n.

Figure 14-2. UART Mode Registers 1 (UMR1n)

Table 14-2 describes UMR 1~ fields.

Table 14-2. UMR1n Field Descriptions

Bits

Name

Description

RxRTS

Receiver request-to-send. Allows the RTS output to control the CTS input of the transmitting device

to prevent receiver overrun. If both the receiver and transmitter are incorrectly programmed for RTS

control, RTS control is disabled for both. Transmitter RTS control is configured in UMR2n[TxRTS].

Not used in modem mode.

0 The receiver has no effect on RTS.

1 When a valid start bit is received, RTS is negated if the UART's FIFO is full. RTS is reasserted
when the FIFO has an empty position available.

RxIRQ/
FFULL

Receiver interrupt select. This bit is used in UART and modem modes.
0 RxRDY is the source that generates IRQ.
1 FFULL is the source that generates IRQ.

ERR

Error mode. Configures the FIFO status bits, USRn[RB,FE,PE]. This bit is not used in modem mode.

0 Character mode. The USRn values reflect the status of the character at the top of the FIFO. ERR
must be 0 for correct A/D flag information when in multidrop mode.

1 Block mode. The USRn values are the logical OR of the status for all characters reaching the top of
the FIFO because the last RESET ERROR STATUS command for the channel was issued. See
Section 14.3.10, “UART Command Registers (UCRn).”

4-3

PM

Parity mode. Selects the parity or multidrop mode for the channel. The parity bit is added to the
transmitted character, and the receiver performs a parity check on incoming data. The value of PM
affects PT, as shown below. PM is not used in modem mode.

PT

Parity type. PM and PT together select parity type (PM = 0x) or determine whether a data or address
character is transmitted (PM = 11). PT is not used in modem mode.

PM Parity Mode Parity Type (PT= 0) Parity Type (PT=1)

00 | With parity Even parity Odd parity

01 Force parity Low parity High parity

10 | No parity n/a

11 Multidrop mode Data character Address character

B/C

Bits per character. Select the number of data bits per character to be sent. The values shown do not
include start, parity, or stop bits. B/C is not used in modem mode.

00 5 bits

01 6 bits

10 7 bits

11 8 bits

14-6

MCF5407 User’s Manual (M) moToroLA

Register Descriptions

14.3.2 UART Mode Register 2 (UMR2n)

UART mode registers 2 (UMR2#n) control UART module configuration. UMR2n can be
read or written when the mode register pointer points to it, which occurs after any access to
UMRI17n. UMR2n accesses do not update the pointer.

7 6 5 4 3 0
Field cM | mwts | mets | sB
Reset 0000_0000
R/W R/W
Address MBAR + 0x1C0, 0x200. After UMR1n is read or written, the pointer points to UMR2n.

Figure 14-3. UART Mode Register 2 (UMR2n)

Table 14-3 describes UMR2n fields.
Table 14-3. UMR2n Field Descriptions

Bits | Name Description

7-6 CM | Channel mode. Selects a channel mode. Section 14.5.3, “Looping Modes,” describes individual
modes. CM is used in both UART and modem modes.

00 Normal

01 Automatic echo

10 Local loop-back

11 Remote loop-back

5 | TxRTS | Transmitter ready-to-send. Controls negation of RTS to automatically terminate a message

transmission. Attempting to program a receiver and transmitter in the same channel for RTS control is

not permitted and disables RTS control for both. TXRTS is not used in modem mode.

0 The transmitter has no effect on RTS.

1 In applications where the transmitter is disabled after transmission completes, setting this bit
automatically clears UOP[RTS] one bit time after any characters in the channel transmitter shift and
holding registers are completely sent, including the programmed number of stop bits.

4 | TXCTS | Transmitter clear-to-send. If both TXCTS and TxRTS are enabled, TXCTS controls the operation of the

transmitter. TXCTS is not used in modem mode.

0 CTS has no effect on the transmitter.

1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to
send a character. If CTS is asserted, the character is sent; if it is negated, the channel TxD remains
in the high state and transmission is delayed until CTS is asserted. Changes in CTS as a character is
being sent do not affect its transmission.

(M) moToroLA Chapter 14. UART Modules 14-7

A

ister Descriptions

Table 14-3. UMR2n Field Descriptions (Continued)

Bits | Name Description

3-0 SB Stop-bit length control. Selects the length of the stop bit appended to the transmitted character.
Stop-bit lengths of 9/16th to 2 bits are programmable for 6-8 bit characters. Lengths of 1 1/16th to 2
bits are programmable for 5-bit characters. In all cases, the receiver checks only for a high condition at
the center of the first stop-bit position, that is, one bit time after the last data bit or after the parity bit, if
parity is enabled. If an external 1x clock is used for the transmitter, clearing bit 3 selects one stop bit
and setting bit 3 selects 2 stop bits for transmission. Not used in modem mode.

SB | 5 Bits | 6-8 Bits SB | 5 Bits | 6-8 Bits SB | 5-8 Bits SB | 5-8 Bits
0000 | 1.063 0.563 0100 | 1.313 0.813 1000 | 1.563 1100 1.813
0001 | 1.125 | 0.625 0101 | 1.375 0.875 1001 1.625 1101 1.875
0010 | 1.188 0.688 0110 | 1.438 0.938 1010 | 1.688 1110 1.938
0011 | 1.250 0.750 0111 | 1.500 1.000 1011 1.750 1111 2.000

14.3.3 Rx FIFO Threshold Register (RXLVL)

The Rx FIFO threshold register (RXLVL) supports UART1 only and is used in both UART
and modem modes. The threshold is one less than the value at which the Rx FIFO is
considered to be full for purposes of alerting the CPU that the Rx FIFO needs to be read.

7 5 4 0
Field — RXLVL
Reset 000 0_0000
R/W R/W
Address MBAR + 0x201

Figure 14-4. Rx FIFO Threshold Register (RXLVL)

Table 14-4 describes RXLVL fields.
Table 14-4. RXLVL Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.

4-0 | RXLVL | Rx FIFO full threshold level. Values of 0000—1111 specify 1-32 bytes. The Rx FIFO is full when the
number of bytes in the FIFO equals or exceeds the Rx threshold. Although FIFO thresholds are in
bytes, data is written into and read out of the FIFOs in numbers of samples, as follows:
* 1 sample = 1 byte for 8-bit CODEC and UART modes,
* 1 sample = 2 bytes for 16-bit CODEC and AC ‘97 modes
For choosing threshold values, AC ‘97 samples should be thought of as 2-byte entities.
The Rx threshold is RXLVL + 1, so RXLVL = [(# samples) * (# bytes per sample)] - 1. For example,
for Rx FIFO to indicate full when 13 or more samples have arrived, calculate RXLVL as follows:
» For 8-bit CODEC or UART mode, RXLVL = [(13 samples) * (1 byte per sample)] - 1 = 12 bytes
* For 16-bit CODEC or AC ‘97 modes, RXLVL = [(13 samples) * (2 bytes per sample)] - 1 =25
bytes

14-8 MCF5407 User’s Manual (M) moToroLa

Register Descriptions

14.3.4 Modem Control Register (MODCTL)

The modem control register (MODCTL), Figure 14-5, controls whether UART1 is in
UART mode or in one of three modem modes.

7 6 5 4 3 2 1 0
Field ACRB ‘ AWR ‘ DSL ‘ DTSH ‘ SHDIR ‘ MODE
Reset 1000_0000
R/W R/W
Address MBAR + 0x202

Figure 14-5. Modem Control Register (MODCTL)

Table 14-5 describes MODCTL fields.
Table 14-5. Modem Control Register (MODCTL) Field Descriptions

Bits | Name

Description

7 ACRB

AC ‘97 cold reset (active low).
0 The genera-purpose I/O used as the AC ‘97 cold reset output pin is active
1 The genera-purpose /O used as the AC ‘97 cold reset output pin is inactive

6 AWR

AC ‘97 warm reset (active high)

0 Warm reset is inactive, letting UART1’s RTS output to function normally as the AC ‘97 frame
sync.

1 Forces a 1 on UART1’s RTS output, which is used as the AC ‘97 frame sync.

5-4 DSL

Channel select for DMA channels 2 and 3. The sources for the interrupt request lines that drive
DMA DREQI[3:2] are selected by multiplexers in UART1, which are controlled by DSL.
00 DMA DREQ2 is driven by UARTO combined Tx/Rx interrupt
DMA DREQS is driven by UART1 combined Tx/Rx interrupt
01 DMA DREQ2 is driven by UART1 Rx interrupt
DMA DREQS is driven by UART1 Tx interrupt
10 same as 00
11 DMA DREQ2 is driven by UART1 Rx interrupt
DMA DREQ3 is driven by UART1 combined Tx/Rx interrupt. This combination is a by-product of
implementation and may not be useful.
When UART1 uses both DREQ lines, DREQ3 and DREQ2 are driven by the Tx FIFO empty and Rx
FIFO full conditions, respectively. The Rx FIFO not-empty condition can be used instead of Rx FIFO
full by clearing UMR1n[6]. UARTO and UART1 have separate request lines to the interrupt
controller. Each is sourced from the combined Tx/Rx interrupt from the associated UART.

3 DTS1

Delay of time slot 1. Determines the starting point of the first bit of the first time slot of a new frame.
0 The rising edge of frame sync
1 One bit-clock cycle after the rising edge of frame sync

2 SHDIR

Shift direction. For AC ‘97 this bit must be 0.
0 Samples/time slots are transferred msb first
1 Samples/time slots are transferred Isb first

1-0 | MODE

Mode select for UART1.

00 UART mode (default mode after hard reset). Changing from modem mode back to UART mode
by writing 00 to this field has the same effect on UART1 as a hard reset—all registers and
control logic are reset and the Tx and Rx FIFO pointers are reinitialized, effectively emptying the
FIFOs.

01 8-bit CODEC interface mode

10 16-bit CODEC interface mode

11 AC ‘97 mode

(M) moToroLA Chapter 14. UART Modules 14-9

A

ister Descriptions

14.3.5 Tx FIFO Threshold Register (TXLVL)

Tx FIFO threshold register (TXLVL) supports only UART1 in both UART and modem
modes. TXLVL holds the Tx FIFO threshold, the value at which the Tx FIFO is considered
to be empty for purposes of alerting the CPU that the Tx FIFO needs more data/samples.

7 5 4 0
Field — TXLVL
Reset — 0_0000
R/W R/W
Address MBAR + 0x203

Figure 14-6. Tx FIFO Threshold Register (TXLVL)
Table 14-6 describes TXLVL fields.
Table 14-6. TXLVL Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.

4-0 | TXLVL | Tx FIFO empty threshold level. 0000—1111 selects values of 0-31 bytes, respectively. The Tx FIFO
is empty when the number of bytes in the FIFO is less than or equal to the Tx threshold value.
Although the FIFO thresholds are in numbers of bytes, data is written into and read out of the
FIFOs in numbers of samples, as follows:

1 sample = 1 byte for 8-bit CODEC and UART modes

1 sample = 2 bytes for 16-bit CODEC and AC ‘97 modes
For choosing threshold values, AC ‘97 samples should be thought of as 2-byte entities.
Choose the Tx threshold register value using the following formula:

TXLVL = (# samples) * (# bytes per sample)
For example, to indicate empty when three or fewer samples remain, calculate TXLVL as follows:
For 8-bit CODEC or UART mode, TXLVL = (3 samples) * (1 byte per sample) = 3 bytes
For 16-bit CODEC or AC ‘97 modes, TXLVL = (3 samples) * (2 bytes per sample) = 6 bytes

14.3.6 UART Status Registers (USRn)

The USRn, Figure 14-7, shows status of the transmitter, the receiver, and the FIFO.

7 6 5 4 3 2 1 0
Field RB ‘ FE ‘ PE ‘ OE ‘ TXEMP ‘ TxRDY ‘ FFULL ‘ RxRDY
Reset 0000_0000
R/W Read only
Address MBAR + 0x1C4 (USRO), 0x204 (USR1)

Figure 14-7. UART Status Register (USRn)
Table 14-7 describes USR# fields.

14-10 MCF5407 User’s Manual @ MOTOROLA

Register Descriptions

Table 14-7. USRn Field Descriptions

Bits | Name Description
7 RB Received break. The received break circuit detects breaks that originate in the middle of a received
character. However, a break in the middle of a character must persist until the end of the next
detected character time. RB is not used (and is always 0) in modem mode.

0 No break was received.

1 An all-zero character of the programmed length was received without a stop bit. RB is valid only
when RxRDY = 1. Only a single FIFO position is occupied when a break is received. Further
entries to the FIFO are inhibited until RxD returns to the high state for at least one-half bit time,
which is equal to two successive edges of the UART clock.

6 FE Framing error. FE is not used (and is always 0) in modem mode.

0 No framing error occurred.

1 No stop bit was detected when the corresponding data character in the FIFO was received. The
stop-bit check occurs in the middle of the first stop-bit position. FE is valid only when RxRDY = 1.

5 PE Parity error. Valid only if RxRDY = 1. PE is not used (and is always 0) in modem mode.

0 No parity error occurred.

1 If UMR1n[PM] = Ox (with parity or force parity), the corresponding character in the FIFO was
received with incorrect parity. If UMR1n[PM] = 11 (multidrop), PE stores the received A/D bit.

4 OE Overrun error. Indicates whether an overrun occurs. OE also functions this way for UART1 in
modem mode. (For purposes of overrun, FIFO full means all space in the FIFO is occupied; the Rx

FIFO threshold is irrelevant to overrun.)

0 No overrun occurred.

1 One or more characters in the received data stream have been lost. OE is set upon receipt of a
new character when the FIFO is full and a character is already in the shift register waiting for an
empty FIFO position. When this occurs, the character in the receiver shift register and its break
detect, framing error status, and parity error, if any, are lost. OE is cleared by the RESET ERROR
STATUS command in UCRn.

3 TXEMP | Transmitter empty. For UART1, the function of TXEMP depends on which mode is used.

UART mode:

0 The transmitter buffer is not empty. Either a character is being shifted out, or the transmitter is
disabled. The transmitter is enabled/disabled by programming UCRn[TC].

1 The transmitter has underrun (both the transmitter holding register and transmitter shift registers
are empty). This bit is set after transmission of the last stop bit of a character if there are no
characters in the transmitter holding register awaiting transmission.

Modem mode:

0 The transmitter does not have underrun as described above.

1 The transmitter has underrun, which means the number of bytes in the Tx FIFO is zero, the Tx
shift register is empty, and a frame sync occurs. In other words, the time has come to transmit a
new sample but no sample is available in the Tx shift register. Unlike UART mode, TXEMP high
indicates an error condition similar to the overrun condition (OE = 1), and as such it is now
cleared the same way as OE, by a RESET ERROR STATUS command in the UCRn and not by a
RESET TRANSMITTER command in the UCRn.

2 TxRDY | Transmitter ready.

UARTO:

0 The CPU loaded the transmitter holding register or the transmitter is disabled.

1 The transmitter holding register is empty and ready for a character. TXRDY is set when a
character is sent to the transmitter shift register and when the transmitter is first enabled. If the
transmitter is disabled, characters loaded into the transmitter holding register are not sent.

UART1 (in UART or modem modes):

0 The transmitter FIFO is not empty, or the transmitter is disabled.

1 The transmitter FIFO is empty, as defined by TXLVL. TxRDY is set when the number of bytes in
the Tx FIFO falls to, or below, the TXLVL value, due to the transfer of a sample (1 or 2 bytes) from
the Tx FIFO to the Tx shift register.

(M) moToroLA Chapter 14. UART Modules 14-11

ister Descriptions

Table 14-7. USRn Field Descriptions (Continued)

Bits | Name Description

1 FFULL | FIFO full.

UARTO:

0 The FIFO is not full but may hold up to two unread characters.

1 A character was received and is waiting in the receiver buffer FIFO.

UART1 (in UART or modem modes):

1 Rx FIFO is full, as defined by the RXLVL. FFULL is set as soon as the number of bytes in the Rx
FIFO exceeds the RXLVL value, due to the transfer of a sample (1 or 2 bytes) from the Rx shift
register to the Rx FIFO.

0 RxRDY | Receiver ready (in UART or modem modes).
0 The CPU has read the receiver buffer and no characters remain in the FIFO after this read.
1 One or more characters were received and are waiting in the receiver buffer FIFO.

14.3.7 UART Clock-Select Registers (UCSRn)

The UART clock-select registers (UCSRn) select an external clock on the TIN input
(divided by 1 or 16) or a prescaled CLKIN as the clocking source for the transmitter and
receiver. See Section 14.5.1, “Transmitter/Receiver Clock Source.” UCSRI1 is used in
UART mode only. The transmitter and receiver can use different clock sources. To use
CLKIN for both, set UCSR# to 0xDD.

7 4 3 0
Field RCS TCS
Reset 0000_0000
R/W Write only
Address MBAR + 0x1C4 (UCSRO0), 0x204 (UCSR1)

Figure 14-8. UART Clock-Select Register (UCSRn)

Table 14-8 describes UCSR# fields.
Table 14-8. UCSRn Field Descriptions

Bits Name Description

7-4 RCS | Receiver clock select. Selects the clock source for the receiver channel.
1101 Prescaled CLKIN

1110 TIN divided by 16

1111 TIN

3-0 TCS | Transmitter clock select. Selects the clock source for the transmitter channel.
1101 Prescaled CLKIN

1110 TIN divided by 16

1111 TIN

14.3.8 Receive Samples Available Register (RSMP)

The receive samples available register (RSMP), Figure 14-9, shows the current byte count
for the Rx FIFO. It is in UART1 only and can be used in both UART and modem modes.

14-12 MCF5407 User’s Manual @ MOTOROLA

Register Descriptions

7 5 4 0
Field — RSMP
Reset — 0_0000
R/W Read only
Address MBAR + 0x206

Figure 14-9. Receive Samples Available Register (RSMP)

Table 14-9 describes RSMP fields.
Table 14-9. RSMP Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.
4-0 | RSMP | Number of bytes in the Rx FIFO.

14.3.9 Transmit Space Available Register (TSPC)

The transmit space available register (TSPC), Figure 14-10, shows available bytes in Tx
FIFO. TSPC supports UART1 only and can be used in UART and modem modes.

7 5 4 0
Field - TSPC
Reset — 0_0000
R/W Read only
Address MBAR + 0x207

Figure 14-10. Tx Space Available Register (TSPC)

Table 14-10 describes TSPC fields.
Table 14-10. TSPC Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.

4-0 | TSPC | Number of empty bytes in the Tx FIFO.

14.3.10 UART Command Registers (UCRN)

The UART command registers (UCRn), Figure 14-11, supply commands to the UART in
both UART and modem modes. Only multiple commands that do not conflict can be
specified in a single write to a UCR#n. For example, RESET TRANSMITTER and ENABLE
TRANSMITTER cannot be specified in one command.

(M) moToroLA Chapter 14. UART Modules 14-13

ister Descriptions

7 6 4 3 2 1 0
Field — MISC TC RC
Reset 0000_0000
R/W Write only
Address MBAR + 0x1C8, 0x208

Figure 14-11. UART Command Register (UCRn)

Table 14-11 describes UCRn fields and commands. Examples in Section 14.5.2,
“Transmitter and Receiver Operating Modes,” show how these commands are used.

Table 14-11. UCRn Field Descriptions

Bits | Value Command Description
7 — — Reserved, should be cleared.
6-4 MISC Field (This field selects a single command.)

000 | NO COMMAND —

001 | RESET MODE Causes the mode register pointer to point to UMR1n.

REGISTER POINTER

010 | RESET RECEIVER Immediately disables the receiver, clears USRn[FFULL,RxRDY], and reinitializes
the receiver FIFO pointer. No other registers are altered. Because it places the
receiver in a known state, use this command instead of RECEIVER DISABLE when
reconfiguring the receiver.

011 | RESET In UART mode, immediately disables the transmitter and clears

TRANSMITTER USRN[TXEMP,TxRDY]. No other registers are altered. Because it places the
transmitter in a known state, use this command instead of TRANSMITTER DISABLE
when reconfiguring the transmitter. When UART1 is in modem mode, TXEMP is
not cleared by this soft reset. It is cleared the same way as the Rx overflow bit,
by a RESET ERROR STATUS command.

100 | RESET ERROR In UART mode, clears USRn[RB,FE,PE,OE]. Also used in block mode to clear all

STATUS error bits after a data block is received. When UART1 is in modem mode, this
command also clears TXEMP.

101 | RESET BREAK— Clears the delta break bit, UISRn[DB]. This command has no effect in modem

CHANGE INTERRUPT | mode.

110 | START BREAK Forces TxD low. If the transmitter is empty, the break may be delayed up to one
bit time. If the transmitter is active, the break starts when character transmission
completes. The break is delayed until any character in the transmitter shift
register is sent. Any character in the transmitter holding register is sent after the
break. The transmitter must be enabled for the command to be accepted. This
command ignores the state of CTS and has no effect in modem mode.

111 | STOP BREAK Causes TxD to go high (mark) within two bit times. Any characters in the
transmitter buffer are sent.

14-14 MCF5407 User’s Manual (M) moToroLA

Register Descriptions

Table 14-11. UCRn Field Descriptions (Continued)

Bits | Value

Command

Description

TC Field (This field selects a single command)

00

NO ACTION TAKEN

Causes the transmitter to stay in its current mode: if the transmitter is enabled, it
remains enabled; if the transmitter is disabled, it remains disabled.

01

TRANSMITTER
ENABLE

Enables operation of the channel’s transmitter. USRn[TXEMP, TxRDY] are set. If
the transmitter is already enabled, this command has no effect.

For UART1 in modem mode, Tx FIFO can be loaded while the transmitter is
disabled, unlike in UART mode. Therefore, this command does not affect the
behavior of TxRDY. It does not automatically set TXRDY and TxEMP; however, if
no data is written to the Tx FIFO, TXEMP is set at the first frame sync after the
transmitter is enabled.

In AC ‘97 mode, TXEMP is set if Tx FIFO is empty, the transmitter is enabled, the
receiver detects a coded ready condition, and a frame sync occurs before
samples are written to the Tx FIFO.

10

TRANSMITTER
DISABLE

Terminates transmitter operation and clears USRn[TXEMP, TxRDY]. If a character
is being sent when the transmitter is disabled, transmission completes before the
transmitter becomes inactive. If the transmitter is already disabled, the command
has no effect.

In modem mode, the transmitter does not clear USRn[TxRDY] unless UART1 is
in remote loop-back or auto-echo mode. This is because in modem mode, unlike
in UART mode, the Tx FIFO may be loaded while the Tx is disabled.

11

Reserved, do not use.

RC (This field selects a single command)

00

NO ACTION TAKEN

Causes the receiver to stay in its current mode. If the receiver is enabled, it
remains enabled; if disabled, it remains disabled.

01

RECEIVER ENABLE

If the UART module is not in multidrop mode (UMR1n[PM] = 11), RECEIVER
ENABLE enables the channel's receiver and forces it into search-for-start-bit state.
If the receiver is already enabled, this command has no effect.

10

RECEIVER DISABLE

Disables the receiver immediately. Any character being received is lost. The
command does not affect receiver status bits or other control registers. If the
UART module is programmed for local loop-back or multidrop mode, the receiver
operates even though this command is selected. If the receiver is already
disabled, the command has no effect.

When UART1 is in modem mode, if the receiver is disabled while a character is
being received, reception completes before the receiver becomes inactive.

11

Reserved, do not use.

14.3.11 UART Receiver Buffers (URBn)

The receiver buffer for UARTO contains one serial shift register and three receiver holding
registers, which act as a FIFO. RxD is connected to the serial shift register. The CPU reads
from the top of the stack while the receiver shifts and updates from the bottom when the
shift register is full (see Figure 14-29). RB contains the character in the receiver.

@ MOTOROLA

Chapter 14. UART Modules 14-15

A

ister Descriptions

7 0
Field RB
Reset 0000_0000
R/W Read only
Address MBAR + 0x1CC

Figure 14-12. UART Receiver Buffer for UARTO (URBO0)
Figure 14-13 shows the configuration of URB1.

31 24 23 16 15 8 7 0
Field RB[31:24] RB[23:16] RB[15:8] ‘ RB[7:0]
Reset 0000_0000_0000_0000_0000_0000_0000_0000
R/W Read only

Address MBAR + 0x20C

Figure 14-13. UART Receiver Buffer for UART1 (URB1)

14.3.12 UART Transmitter Buffers (UTBn)

The transmitter buffer for UARTO consists of the transmitter holding register and the
transmitter shift register. The holding register accepts characters from the bus master if
channel’s USRn[TxRDY] is set. A write to the transmitter buffer clears TxRDY, inhibiting
any more characters until the shift register can accept more data. When the shift register is
empty, it checks if the holding register has a valid character to be sent (TxXRDY = 0). If there
is a valid character, the shift register loads it and sets USRn[TxRDY] again. Writes to the
transmitter buffer when the channel’s TXRDY = 0 and when the transmitter is disabled have
no effect on the transmitter buffer.

Figure 14-14 shows UTBO. TB contains the character in the transmitter buffer.

7 0
Field B
Reset 0000_0000
R/W Write only
Address MBAR + 0x1CC

Figure 14-14. UART Transmitter Buffer for UARTO (UTBO0)

The transmitter buffer in UART1 consists of the transmitter shift register and the Tx FIFO,
as described in Section 14.5.2.6, “FIFOs in UART1.” The Tx FIFO in UART1 accepts
characters/samples from the bus master if there is room for them in the FIFO. A write to the
transmitter buffer clears TXRDY if the number of bytes in the FIFO exceeds the threshold
level in TXLVL. When the shift register is empty, it checks if the FIFO has a valid
character/sample to be sent. Valid characters are loaded into the shift register. Unlike UART

14-16 MCF5407 User’s Manual @ MOTOROLA

Register Descriptions
mode, in modem mode the Tx FIFO in UART1 can be loaded while the Tx is disabled. For
UART1, FIFOs can be accessed as longwords.

Figure 14-15 shows the configuration of the UTB1. These bits contain the samples in the
transmitter buffer for UART1.

31 24 23 16 15 8 7 0
Field TB[31:24] TB[23:16] TB[15:8] TB[7:0]
Reset 0000_0000_0000_0000_0000_0000_0000_0000
R/W Write only
Address MBAR + 0x20C

Figure 14-15. UART Transmitter Buffer for UART1 (UTB1)

14.3.13 UART Input Port Change Registers (UIPCRn)

The input port change registers (UIPCRn), Figure 14-16, hold the current state and the
change-of-state for CTS.

7 5 4 3 1 0
Field — | cos 111 cTS
Reset 0000 0 ‘ 11 CTS
R/W Read only
Address MBAR + 0x1D0 (UIPCRO), 0x210 (UIPCR1)

Figure 14-16. UART Input Port Change Register (UIPCRn)

Table 14-12 describes UIPCRu# fields.
Table 14-12. UIPCRn Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.

4 | COS | Change of state (high-to-low or low-to-high transition). Not used in modem mode.

0 No change-of-state since the CPU last read UIPCRn. Reading UIPCRn clears UISRn[COS].

1 A change-of-state longer than 25-50 us occurred on the CTS input. UACRn can be programmed to
generate an interrupt to the CPU when a change of state is detected.

31 — Reserved, should be cleared.

0 | CTS | Current state. Starting two serial clock periods after reset, CTS reflects the state of CTS. If CTS is
detected asserted at that time, COS is set, which initiates an interrupt if UACRN[IEC] is enabled. This
bit is not used in modem mode.

0 The current state of the CTS input is asserted.

1 The current state of the CTS input is negated.

14.3.14 UART Auxiliary Control Register (UACRN)
The UART auxiliary control registers (UACR#n), Figure 14-12, control the input enable.

(M) moToroLA Chapter 14. UART Modules 14-17

A

ister Descriptions

7 1 0
Field — IEC
Reset 0000_0000
R/W Write only
Address MBAR + 0x1D0 (UACRO), 0x210 (UACR1)

Figure 14-17. UART Auxiliary Control Register (UACRn)

Table 14-13 describes UACRn= fields.
Table 14-13. UACRN Field Descriptions

Bits | Name Description
7-1 —_ Reserved, should be cleared.
0 IEC | Input enable control. This bit is not used in modem mode.

0 Setting the corresponding UIPCRn bit has no effect on UISRn[COS].
1 UISRn[COS] is set and an interrupt is generated when the UIPCRn[COS] is set by an external
transition on the CTS input (if UIMRNn[COS] = 1).

14.3.15 UART Interrupt Status/Mask Registers
(UISRn/UIMRnN)

The UART interrupt status registers (UISRn), Figure 14-18, provide status for all potential
interrupt sources. UISRn contents are masked by UIMRa. If corresponding UISR#n and
UIMRn bits are set, the internal interrupt output is asserted. If a UIMR# bit is cleared, the
state of the corresponding UISR# bit has no effect on the output.

NOTE:

True status is provided in the UISR#n regardless of UIMRn
settings. UISR# is cleared when the UART module is reset.

7 6 3 2 1 0
Field COS —_ ‘ DB ‘ FFULL/RxRDY| TxRDY
Reset 0000_0000
R/W Read only
Address MBAR + 0x1D4 (UISRO0), 0x214 (UISR1); MBAR + 0x1D4 (UIMRO), 0x214 (UIMR1)

Figure 14-18. UART Interrupt Status/Mask Registers (UISRn/UIMRn)
Table 14-14 describes UISR#n and UIMR~ fields.

14-18 MCF5407 User’s Manual @ MOTOROLA

Register Descriptions

Table 14-14. UISRn/UIMRnN Field Descriptions

Bits | Name Description
7 |COS Change-of-state. Not used by UART1 in modem mode.
0 UIPCRn[COS] is not selected.
1 Change-of-state occurred on CTS and was programmed in UACRN[IEC] to cause an interrupt.
6-3 | — Reserved, should be cleared.
2 |DB Delta break. Not used by UART1 in modem mode.
0 No new break-change condition to report. Section 14.3.10, “UART Command Registers (UCRn),”
describes the RESET BREAK-CHANGE INTERRUPT command.
1 The receiver detected the beginning or end of a received break.
1 | FFULL/ | RXRDY (receiver ready) if UMR1n[FFULL/RxRDY] = O; FIFO full (FFULL) if UMR1n[FFULL/RxRDY]
RxRDY | = 1. Duplicate of USRn[FFULL/RxRDY]. Used by UART1 in modem mode. If FFULL is enabled for
UARTO or UART1, DMA channels 2 or 3 are respectively interrupted when the FIFO is full.
0 | TxRDY | Transmitter ready. This bit is the duplication of USRn[TxRDY]. Used by UART1 in modem mode.
0 The transmitter holding register was loaded by the CPU or the transmitter is disabled. Characters
loaded into the transmitter holding register when TxRDY = 0 are not sent.
1 The transmitter holding register is empty and ready to be loaded with a character.
14.3.16 UART Divider Upper/Lower Registers (UDUn/UDLn)

The UDUn registers (formerly called UBG1#n) holds the MSB, and the UDLn registers
(formerly UBG2n) hold the LSB of the preload value. UDUn and UDL#% concatenate to
provide a divider to CLKIN for transmitter/receiver operation, as described in
Section 14.5.1.2.1, “CLKIN Baud Rates.”

7 0
Field Divider MSB
Reset 0000_0000
R/W RW
Address MBAR + 0x1D8 (UDUO), 0x218 (UDU1)
Figure 14-19. UART Divider Upper Register (UDUn)
7 0
Field Divider LSB
Reset 0000_0000
R/W RW
Address MBAR + 0x1DC (UDLO), 0x21C (UDL1)

Figure 14-20. UART Divider Lower Register (UDLn)

NOTE:

The minimum value that can be loaded on the concatenation of
UDUn with UDL#n is 0x0002. Both UDUn and UDL#n are
write-only and cannot be read by the CPU.

(M) moToroLA Chapter 14. UART Modules 14-19

A

ister Descriptions

14.3.17 UART Interrupt Vector Register (UIVRn)

The UIVRn, Figure 14-21, contain the 8-bit internal interrupt vector number (IVR).

7 0
Field IVR
Reset 0000_1111
RW R/W
Address MBAR + 0x1F0 (UIVRO0), 0x230 (UIVR1)

Figure 14-21. UART Interrupt Vector Register (UIVRn)

Table 14-15 describes UIVR# fields.
Table 14-15. UIVRn Field Descriptions

Bits | Name Description

7-0 IVR | Interrupt vector. Indicates the vector number where the address of the exception handler for the

specified interrupt is located. UIVRn is reset to OxOF, indicating an uninitialized interrupt condition.

14.3.18 UART Input Port Register (UIPn)

The UART input port registers (UIPn), Figure 14-22, show the current state of the CTS
input when the processor is in UART mode.

7 1 0
Field — CTS
Reset 1111_1111
R/W Read only
Address MBAR + 0x1F4 (UIP0), 0x234 (UIP1)

Figure 14-22. UART Input Port Register (UIPn)

Table 14-16 describes UIPn fields.
Table 14-16. UIPn Field Descriptions

Bits | Name Description

71 — Reserved, should be cleared.

0 CTS | Current state. The CTS value is latched and reflects the state of the input pin when UIPn is read.
Note: This bit has the same function and value as UIPCRn[RTS].

0 The current state of the CTS input is logic 0.

1 The current state of the CTS input is logic 1.

When UART1 is in modem mode, CTS toggles when a frame sync occurs. It is used during testing to
synchronize test code running on the CPU with frames transferred on the serial interface.

14-20 MCF5407 User’s Manual @ MOTOROLA

UART Module Signal Definitions

14.3.19 UART Output Port Data Registers (UOP1n/UOPON)

In UART mode, the RTS output can be asserted by writing a 1 to UOP1x[RTS] and negated
by writing a 1 to UOPOn[RTS]. UOP registers have no effect in modem mode. See
Figure 14-23.

7 1 0
Field — RTS
Reset 0000_0000
R/W Write only
Addr UARTO: MBAR + 0x1F8 (UOP1), 0x1FC (UOPO); UART1 0x238 (UOP1), 0x23C (UOPO)

Figure 14-23. UART Output Port Data 1 Register (UOP1/UOPO0)

Table 14-17 describes UOP1 fields.
Table 14-17. UOP1/UOPO Field Descriptions

Bits | Name Description
7-1 — Reserved, should be cleared.
0 RTS Output port parallel output. Controls assertion (UOP1)/negation (UOPO) of RTS output.

0 Not affected.
1 Asserts RTS (UOP1). Negates RTS (UOPO).

14.4 UART Module Signal Definitions

Figure 14-24 shows both the external and internal signal groups.

CLIO(rIN - Clock Source
External Clock (TIN) Generator
‘ Output Port RTS
UART Module I
Internal Bus ‘ Input Port <CTS
A
— Control
> External
Internal Interface
Control Four-Character RxD Signals
Interface Address Bus Logic < - < Receive Buffer
to CPU
Data Two-Character TxD
— ’ Transmit Buffer _
To Interrupt
Controller - IRQ
(SIM)
\

Figure 14-24. UART Block Diagram Showing External and Internal Interface Signals

(M) moToroLA Chapter 14. UART Modules 14-21

T Module Signal Definitions

An internal interrupt request signal (IRQ) is provided to notify the interrupt controller of an
interrupt condition. The output is the logical NOR of unmasked UISR# bits. The interrupt
level of a UART module is programmed in the interrupt controller in the system integration
module (SIM). The UART can use the autovector for the programmed interrupt level or
supply the vector from the UIVRn when the UART interrupt is acknowledged.

The interrupt level, priority, and auto-vectoring capability is programmed in SIM register
ICR4 for UARTO and ICRS for UART1. See Section 9.2.1, “Interrupt Control Registers
(ICRO-ICRY).”

Note that the UARTSs can also automatically transfer data by using the DMA rather than
interrupting the core. When UIMR[FFULL] is 1 and a receiver’s FIFO is full, it can send
an interrupt to a DMA channel so the FIFO data can be transferred to memory. Note also
that UARTO and UARTT!’s interrupt requests are connected to DMA channel 2 and
channel 3, respectively.

Table 14-18 briefly describes the UART module signals.

NOTE:

The terms ‘assertion’ and ‘negation’ are used to avoid
confusion between active-low and active-high signals.
‘Asserted’ indicates that a signal is active, independent of the
voltage level; ‘negated’ indicates that a signal is inactive.

Table 14-18. UART Module Signals

Signal Description

Transmitter In UART mode, TxD is held high (mark condition) when the transmitter is disabled, idle, or operating
Serial Data in the local loop-back mode. Data is shifted out on TxD on the falling edge of the clock source, with
Output (TxD) | the least significant bit (Isb) sent first. For UART1 in modem mode, TxD is held low when the
transmitter is disabled or idle. Data is shifted out on TxD on the rising edge of the clock signal driving
UART1’s CTS input. UART1 transfers can be specified as either Isb or msb first.

Receiver Data received on RxD is sampled on the rising edge of the clock source, with the Isb received first.
Serial Data For UART1 in modem mode, data received on RxD is sampled on the falling edge of the clock signal
Input (RxD) driving UART1’s CTS input. UART1 transfers can be specified as either Isb or msb first.

Clear-to- This input can generate an interrupt on a change of state. For UART1 in modem mode, CTS must be
Send (CTS) | driven by the serial bit clock from the external CODEC or AC ‘97 controller.

Request-to- | This output can be programmed to be negated or asserted automatically by either the receiver or the
Send (RTS) | transmitter. When connected to a transmitter's CTS, RTS can control serial data flow. For UART1 in
AC ‘97 mode, RTS serves as the frame sync or start-of-frame (SOF) output to the external AC ‘97
controller. When this mode is used, the AC ‘97 BIT_CLK, which is input on CTS, is divided by 256.

Timer Input When UART1 in modem mode is used as an 8- or 16-bit CODEC interface, TIN1 must be driven by
(TIN1) the frame sync or SOF output from the external CODEC. SOF is sampled on the falling edge of the
bit clock driving CTS. TIN1 can still be used in all timer modes except capture mode when UART1 is
being used as an 8- or 16-bit CODEC interface. See Table 14-26.

Figure 14-25 shows a signal configuration for a UART/RS-232 interface.

14-22 MCF5407 User’s Manual @ MOTOROLA

Operation

UART RS-232 Transceiver
RTS » DI2
CTS = DO2
TxD »| DI1
RxD = DO1

Figure 14-25. UART/RS-232 Interface

Figure 14-26 shows a signal configuration for a UART1/CODEC interface.

UART1 MC143416 CODEC
TINT = SSYNCO
CTS = SCLKO
TxD » SRx0
RxD = STx0

Figure 14-26. UART1/CODEC Interface

Figure 14-27 shows a signal configuration for a UART1/CODEC interface. An MCF5407
general-purpose 1/0 (GPIO) is used as a reset to the AC ‘97 device.

UART1 AC 97
RTS » FRAME SYNC
CTS = BIT_CLK
TxD » SDATA_OUT
RxD (== SDATA_IN

GPIO » RESET

Figure 14-27. UART1/AC *97 Interface

14.5 Operation

This section describes operation of the clock source generator, transmitter, and receiver.

14.5.1 Transmitter/Receiver Clock Source

CLKIN serves as the basic timing reference for the clock source generator logic, which
consists of a clock generator and a programmable 16-bit divider dedicated to the UART.
The clock generator cannot produce standard baud rates if CLKIN is used, so the 16-bit
divider should be used.

(M) moToroLA Chapter 14. UART Modules 14-23

ration

14.5.1.1 Programmable Divider
As Figure 14-28 shows, the UART transmitter and receiver can use the following clock
sources:

* Anexternal clock signal on the TIN pin that can be divided by 16. When not divided,
TIN provides a synchronous clock mode; when divided by 16, it is asynchronous.

* CLKIN supplies an asynchronous clock source that is divided by 32 and then
divided by the 16-bit value programmed in UDUn and UDLxn. See Section 14.3.16,
“UART Divider Upper/Lower Registers (UDUn/UDLn).”

The choice of TIN or CLKIN is programmed in the UCSR.

TOUT =
On-Chi
Timer Module

TIN ’

UART

Clocking sources programmed in UCSR

TxD = 1 Tx Buffer N
A — x1 <
Prescaler
X e[|
- x16 | TIN
< : Prescaler [
Rx —
Clock || 16-Bit | | x32
Y Generator Divider Prescaler
RxD [Rx Buffer A

CLKIN
Figure 14-28. Clocking Source Diagram

NOTE:
If TIN is a clocking source for either the timer or UART, as is
the case for UART1 used as an 8- or 16-bit CODEC interface,
the timer module cannot use TIN for timer capture.
14.5.1.2 Calculating Baud Rates
The following sections describe how to calculate baud rates.
14.5.1.2.1 CLKIN Baud Rates

When CLKIN is the UART clocking source, it goes through a divide-by-32 prescaler and
then passes through the 16-bit divider of the concatenated UDUr and UDLn registers.
Using a 54-MHz CLKIN, the baud-rate calculation is as follows:

14-24 MCF5407 User’s Manual @ MOTOROLA

Operation

54MHz

Baudrate = ——>4MHZ_
aucrate = 35 divider]

Let baud rate = 9600; the divider can be calculated as follows:

[SSZL;;[OZO] = 176(decimal) = 0x00BO
X

Divider =
Therefore UDUn = 0x00 and UDL#n = 0xBO.
14.5.1.2.2 External Clock

An external source clock (TIN) can be used as is or divided by 16.

Externalclockfrequency
16o0r1

Baudrate =

14.5.2 Transmitter and Receiver Operating Modes

Figure 14-29 is a functional block diagram of the transmitter and receiver showing the
command and operating registers, which are described generally in the following sections
and described in detail in Section 14.3, “Register Descriptions.”

UARTO
UART Command Register (UCRO0) w
UART Mode Register 1 (UMR1) R/W
UART Mode Register 2 (UMR2) R/W
‘ UART Status Register (USRO) R
External
UART ; ; ; W
Transmitter Buffer Transmitter Holding Register Interface
(UTBO) ‘ : ! :
(2 Registers) Transmitter Shift Register —» TXD
. ' . FIFO (32-byte
R e
<}:< Receiver Holding Register 1 FIFOs on
‘ Receiver Holding Register 2 UART1)
‘ Receiver Holding Register 3
UART Receive - - -
Buffer (URBO; < ‘ Receiver Shift Register L RXD
(4 Registers

Figure 14-29. Transmitter and Receiver Functional Diagram

(M) moToroLA Chapter 14. UART Modules 14-25

ration

14.5.2.1 Transmitting in UART Mode

The transmitter is enabled through the UART command register (UCR#). When it is ready
to accept a character, the UART sets USRa[TxRDY]. The transmitter converts parallel data
from the CPU to a serial bit stream on TxD. It automatically sends a start bit followed by
the programmed number of data bits, an optional parity bit, and the programmed number
of stop bits. The Isb is sent first. Data is shifted from the transmitter output on the falling
edge of the clock source.

After the stop bits are sent, if no new character is in the transmitter holding register, the TxD
output remains high (mark condition) and the transmitter empty bit, USRa[TXEMP], is set.
Transmission resumes and TXEMP is cleared when the CPU loads a new character into the
UART transmitter buffer (UTB#n). If the transmitter receives a disable command, it
continues until any character in the transmitter shift register is completely sent.

If the transmitter is reset through a software command, operation stops immediately (see
Section 14.3.10, “UART Command Registers (UCRn)”). The transmitter is reenabled
through the UCR~# to resume operation after a disable or software reset.

If the clear-to-send operation is enabled, CTS must be asserted for the character to be
transmitted. If CTS is negated in the middle of a transmission, the character in the shift
register is sent and TxD remains in mark state until CTS is reasserted. If the transmitter is
forced to send a continuous low condition by issuing a SEND BREAK command, the
transmitter ignores the state of CTS.

If the transmitter is programmed to automatically negate RTS when a message transmission
completes, RTS must be asserted manually before a message is sent. In applications in
which the transmitter is disabled after transmission is complete and RTS is appropriately
programmed, RTS is negated one bit time after the character in the shift register is
completely transmitted. The transmitter must be manually reenabled by reasserting RTS
before the next message is to be sent.

Figure 14-30 shows the functional timing information for the transmitter.

14-26 MCF5407 User’s Manual (M) moToroLA

Operation

/ C1 in transmission

I I T
XD cit| | c2 C3 |, |Break C4 | | ce
| |
\
\ / \ / \ |
Transmitter ! ! ! ! |
Enabled \ \ \ \ |
\ \ \ \
k [
W
USRN[TxRDY] ‘\ V\ HV\ V\ T | w\
\ \ \ \ / \
\
internal ‘
select i
C1 c2 C3 Start C4 Stop c5 | Ccé
break break not |
transmitted
cTs® \ |
|
T
\
RTS4 Manually asserted Manually
by BIT-SET command asserted

1 Cn = transmit characters
2W = write

3 UMR2n[TXCTS] = 1

4 UMR2n[TXRTS] = 1

Figure 14-30. Transmitter Timing Diagram

14.5.2.2 Transmitter in Modem Mode (UART1)

After a hardware reset, UART1 is in UART mode. UART1 can be put in one of the modem
modes by writing the appropriate value for MODCTL[MODE], as described in
Section 14.3.4, “Modem Control Register (MODCTL).” The other MODCTL fields should
be initialized at the same time. Set the Tx FIFO threshold as described in Section 14.3.5,
“Tx FIFO Threshold Register (TXLVL).”

The serial bit clock is always an input to UART1 in modem mode (on CTS). For an 8- or
16-bit CODEC, the frame sync is also an input to UARTI (on TIN1). However for an
AC ‘97 controller, UART1 provides the frame sync (on RTS). Figure 14-31 shows an
example timing for UART1-CODEC interfaces (Isb first).

cs [o7
TIN1 Frame Sync [|

TxD DO D1 D2 D14 D15

RxD D0 X Dt D2 D14 D15

Figure 14-31. 16-Bit CODEC Interface Timing (Isb First)

(M) moToroLA Chapter 14. UART Modules 14-27

3
4

'
A

ration

Figure 14-32 is an example timing diagram for the UART1-CODEC interface (msb first).

cs [L L7 Ly N i I O I
TIN1 __ [Frame Sync] |

TxD D7 D6 D5 D1 DO

RxD X D7 X D6 D5 D1 DO

Figure 14-32. 8-Bit CODEC Interface Timing (msb First)

Figure 14-33 shows an example timing diagram for the UART1-AC ‘97 interface.

CTS
I I

RTS J | Frame Sync \ \ Frame Sync
\ \
0 207, bits X 207, bis X X207, bits
| Slot 2 Slot 3 Slot13 | Slot1
|
RxD (ot bi2) (bit13)(bitt 4Xbitt5Xbitt6X_20°, bits X_20°, bits K207, bits X

Slot 2 Slot 3 Slot 13 ! Slot 1
j«¢——— Slot 1 \

\ \
. Tl £ 1 11 B EE—

Figure 14-33. AC ‘97 Interface Timing

For more information about interfacing to an AC ‘97 controller, refer to the Audio
CODEC ‘97 Component Specification.

When interfaced to an 8- or 16-bit CODEC (MODCTL[MODE] =01 or 10), UART1 starts
to send a sample either during the 1-bit clock cycle after the rising edge of frame sync,
according to the value of MODCTL[DTS1]. The width of the frame sync pulse makes no
difference. MODCTL[SHDIR] controls whether bits are shifted out msb or Isb first. After
the 8- or 16-bit sample is sent, zeros are sent until the next frame sync.

When interfacing to an AC ‘97 controller (MODCTL[MODE] = 11), UART1 starts to
transmit time slot 1 data one bit-clock cycle after the rising edge of frame sync, regardless
of the value of MODCTL[DTS1]. However, MODCTL[SHDIR] must be O, because the
shift order must be msb first. UART1 divides the bit clock by 256 to generate a frame sync
pulse that is high for 16-bit clock cycles. The transmitter sends zeros until the receiver
detects the CODEC-ready condition (a 1 in the first bit of a new frame).

Because Rx data is sampled on the falling edge of the bit clock, for transmit purposes, the
frame has already started when the receiver detects a CODEC-ready condition. For this
reason, transmission starts at the next frame sync after the CODEC-ready condition is
detected. UART stops transmission at the end of the frame in which the first bit of the
received frame is detected low (CODEC not ready). During transmission, UART]1 fills each
of the 13 time slots of the AC ‘97 frame with samples from the Tx FIFO.

14-28 MCF5407 User’s Manual @ MOTOROLA

Operation

14.5.2.2.1 AC ‘97 Low-Power Mode

A general-purpose I/O (GPIO) must be used as an AC ‘97 reset output pin. UARTI
monitors the first three time slots of each Tx frame to detect the power-down condition for
the AC ‘97 digital interface. The power-down condition is detected as follows:

1. The first 3 bits of slot 1 must be set, indicating that the Tx frame and slots 1 and 2
are valid.

2. Slot 2 holds the address of the power-down register (0x26) in the external AC ‘97
device.

3. Slot 3 contains a 1 in the fourth bit (bit 12/PR4 in power-down register 1), as defined
in the AC °97 specification.

Low-power mode can be left through either a warm or cold reset. The CPU performs a
warm reset by setting MODCTL[AWR] for at least 1 us. This negates RTS, which is used
as the frame sync output in AC ‘97 mode. The CPU performs a cold reset in two steps:

1. Writes a 0 to whichever GPIO is being used as the active low AC ‘97 reset pin for
the minimum time specified in the AC ‘97 specification.

2. Writes a0 to UART1’s MODCTL[ACRB] (bit 7). The CPU sets this bit after writing
a 1 to the GPIO used for the AC ‘97 reset pin.

Step 2 is required so UART1 knows when an AC ‘97 cold reset is occurring.

14.5.2.3 Receiver

The receiver is enabled through its UCRn, as described in Section 14.3.10, “UART
Command Registers (UCRn).” Figure 14-34 shows receiver functional timing.

(M) moToroLA Chapter 14. UART Modules 14-29

ration

I I
o | Jor|i[feefi[o] | [e] CSﬁ o] | for] [[
\

CG C7, and C8 will be lost

T
|
) |
Receiver | |
Enabled ‘ ‘ I
‘ |
USRNn[RxRDY] A ‘ |
||
USRn[FFULL] |
il |
internal H_H/ |
module
select Status | Status, Status Status
Data ‘05 will Data Data
(C1) be lost (C2) | (C3) (C4)
\
Overrun Reset by
USRnN[OE] \ command
\
— Manually asserted first time, Automatically asserted
RTS automatically negated if overrun occurs when ready to receive
UOPO[RTS] = 1

Figure 14-34. Receiver Timing

When the receiver detects a high-to-low (mark-to-space) transition of the start bit on RxD,
the state of RxD is sampled each 16x clock for eight clocks, starting one-half clock after
the transition (asynchronous operation) or at the next rising edge of the bit time clock
(synchronous operation). If RxD is sampled high, the start bit is invalid and the search for
the valid start bit begins again.

If RxD is still low, a valid start bit is assumed and the receiver continues sampling the input
at one-bit time intervals, at the theoretical center of the bit, until the proper number of data
bits and parity, if any, is assembled and one stop bit is detected. Data on the RxD input is
sampled on the rising edge of the programmed clock source. The Isb is received first. The
data is then transferred to a receiver holding register and USRn[RxRDY] is set. If the
character is less than eight bits, the most significant unused bits in the receiver holding
register are cleared.

After the stop bit is detected, the receiver immediately looks for the next start bit. However,
if a non-zero character is received without a stop bit (framing error) and RxD remains low
for one-half of the bit period after the stop bit is sampled, the receiver operates as if a new
start bit were detected. Parity error, framing error, overrun error, and received break
conditions set the respective PE, FE, OE, RB error and break flags in the USR#n at the
received character boundary and are valid only if USR#[RxRDY] is set.

If a break condition is detected (RxD is low for the entire character including the stop bit),
a character of all zeros is loaded into the receiver holding register (RHR) and
USR#[RB,RxRDY] are set. RxD must return to a high condition for at least one-half bit
time before a search for the next start bit begins.

14-30 MCF5407 User’s Manual @ MOTOROLA

Operation

The receiver detects the beginning of a break in the middle of a character if the break
persists through the next character time. If the break begins in the middle of a character, the
receiver places the damaged character in the Rx FIFO stack and sets the corresponding
USR~# error bits and USR#[RxRDY]. Then, if the break lasts until the next character time,
the receiver places an all-zero character into the Rx FIFO and sets USRn[RB,RxRDY].

14.5.2.4 UART1 in UART Mode

After a hardware reset, UART1 is in UART mode and differs from UARTO only with
respect to receiver overrun, which is a function of Rx FIFO depth. UARTO has an effective
depth of 4 bytes counting the Rx shift register, whereas UART1 has an effective depth of
33 bytes counting the Rx shift register. As a result, an overrun error won’t occur in UART1
until 34 bytes are received without a CPU read from the Rx FIFO. In UARTO, an overrun
error would occur after 5 bytes are received without a CPU read from the Rx FIFO. In all
other respects, UART1 in UART mode operates identically to UARTO.

14.5.2.4.1 Receiver in Modem Mode (UART1)

After a hardware reset, UART1 is in UART mode. Modem modes are chosen by setting
MODCTL[MODE)]. Other MODCTL fields should be initialized at the same time, as
described in Section 14.3.4, “Modem Control Register (MODCTL).” Set the Rx FIFO
threshold as described in Section 14.3.3, “Rx FIFO Threshold Register (RXLVL).”

The serial bit clock is always an input to UART1 in modem mode (on CTS). When
interfacing to an 8- or 16-bit CODEC, the frame sync is also an input to UART1 (on TIN1).
However when an AC ‘97 controller is used, UART1 provides the frame sync (on RTS).

Figure 14-31 on page 14-27 and Figure 14-32 on page 14-28 show timing diagrams for the
UART1-CODEC interfaces. Figure 14-33 shows an example timing diagram for the
UART1-AC ‘97 interface.

When an 8- or 16-bit CODEC is specified (MODCTL[MODE] =01 or 10), UART1 starts
to receive a sample either at the rising edge of frame sync or 1 bit clock cycle after the rising
edge of frame sync, according to the value of MODCTL[DTS1]. The width of the frame
sync pulse makes no difference. MODCTL[SHDIR] controls whether the sample is shifted
in msb or Isb first. After the 8- or 16-bit sample is received, the receiver shift register shuts
off until the next frame sync occurs.

When an AC ‘97 controller is specified (MODCTL[MODE] = 11), UART1 starts to receive
time slot 1 data one bit-clock cycle after the rising edge of frame sync, regardless of the
MODCTL[DTS1] value. However, MODCTL[SHDIR] must be 0 because the shift order
must be msb first. Until the receiver detects the CODEC ready condition (a 1 in the first bit
of a new frame), no data is put into the Rx FIFO for that frame. When a CODEC ready
condition is detected, the receiver starts loading the Rx FIFO with the received time slot
samples and continues to do so until a O is received in the first bit of a new frame.

(M) moToroLA Chapter 14. UART Modules 14-31

ration

14.5.2.5 FIFO Stack in UARTO

The FIFO stack is used in the UART’s receiver buffer logic. The stack consists of three
receiver holding registers. The receive buffer consists of the FIFO and a receiver shift
register connected to the RxD (see Figure 14-29). Data is assembled in the receiver shift
register and loaded into the top empty receiver holding register position of the FIFO. Thus,
data flowing from the receiver to the CPU is quadruple-buffered.

In addition to the data byte, three status bits, parity error (PE), framing error (FE), and
received break (RB), are appended to each data character in the FIFO; OE (overrun error)
is not appended. By programming the ERR bit in the channel’s mode register (UMR1n),
status is provided in character or block modes.

USR#[RxRDY] is set when at least one character is available to be read by the CPU. A read
of the receiver buffer produces an output of data from the top of the FIFO stack. After the
read cycle, the data at the top of the FIFO stack and its associated status bits are popped and
the receiver shift register can add new data at the bottom of the stack. The FIFO-full status
bit (FFULL) is set if all three stack positions are filled with data. Either the RxRDY or
FFULL bit can be selected to cause an interrupt.

The two error modes are selected by UMR1#[ERR] as follows:

e Incharacter mode (UMRI1#[ERR] =0, status is given in the USR# for the character
at the top of the FIFO.

* In block mode, the USR#n shows a logical OR of all characters reaching the top of
the FIFO stack since the last RESET ERROR STATUS command. Status is updated as
characters reach the top of the FIFO stack. Block mode offers a data-reception speed
advantage where the software overhead of error-checking each character cannot be
tolerated. However, errors are not detected until the check is performed at the end of
an entire message—the faulting character is not identified.

In either mode, reading the USR# does not affect the FIFO. The FIFO is popped only when
the receive buffer is read. The USR# should be read before reading the receive buffer. If all
three receiver holding registers are full, a new character is held in the receiver shift register
until space is available. However, if a second new character is received, the contents of the
the character in the receiver shift register is lost, the FIFOs are unaffected, and USR#[OE]
is set when the receiver detects the start bit of the new overrunning character.

To support flow control, the receiver can be programmed to automatically negate and assert
RTS, in which case the receiver automatically negates RTS when a valid start bit is detected
and the FIFO stack is full. The receiver asserts RTS when a FIFO position becomes
available; therefore, overrun errors can be prevented by connecting RTS to the CTS input
of the transmitting device.

14-32 MCF5407 User’s Manual @ MOTOROLA

Operation

NOTE:

The receiver can still read characters in the FIFO stack if the
receiver is disabled. If the receiver is reset, the FIFO stack, RTS
control, all receiver status bits, and interrupt requests are reset.
No more characters are received until the receiver is reenabled.

14.5.2.6 FIFOs in UART1

For UART1, FIFOs can be accessed as longwords. Other properties are as follows:

8-bit CODEC mode (MODCTL[MODE] =01):
— Can access FIFOs either one, two, or four 1-byte samples at a time.
— For one-sample accesses, the sample occupies internal data bus bits 31-24.

For two-sample accesses, the samples occupy internal data bus bits 31-16.16-bit
CODEC mode (MODCTL[MODE] = 10):

— Can access FIFOs one or two 2-byte samples at a time.

— For one-sample accesses, the sample occupies internal data bus bits 31-16.
AC ‘97 mode (MODCTL[MODE] = 11):

— Must access FIFOs one sample at a time

— Because time slot 1 has 16 bits, compared to 20 for all other time slots in a frame,
time slot 1 data occupies internal data bus bits 31-16.

— All 20-bit time slots occupy internal data bus bits 31-12 for Tx and Rx FIFOs.

— In addition, when the Rx FIFO is being read, a 1 in internal data bus bit 11 marks
this sample as the first time slot of a new frame.

The Tx FIFO functions as follows:

AC ‘97 mode—Tx FIFO is effectively a 16 x 20 dual-port RAM to hold sixteen
20-bit AC ‘97 time slots. One sample/time slot is written to Tx FIFO per internal bus
cycle.

For all other modes the Tx FIFO is effectively 8 x 32.

— 8-bit CODEC or as a UART —Tx FIFO can hold thirty-two 8-bit samples. One,
two, or four bytes/samples can be written to Tx FIFO per internal bus cycle.

— 16-bit CODEC—Tx FIFO can hold sixteen 16-bit samples. Either one or two
16-bit samples can be written to Tx FIFO per internal bus cycle.

The Rx FIFO functions as follows:

AC ‘97 mode—Rx FIFO is effectively a 16 x 21 dual-port RAM to hold sixteen
20-bit AC ‘97 time slots. The extra flag bit is set to indicate the first time slot of a
new AC ‘97 frame. One sample/time slot is read from Rx FIFO per internal bus
cycle.

(M) moToroLA Chapter 14. UART Modules 14-33

ration

* For all other modes, the Rx FIFO is effectively 8 x 32.

— 8-bit CODEC or as a UART —Rx FIFO holds thirty-two 8-bit samples. One, two,
or four bytes/samples can be read from the Rx FIFO per internal bus cycle.

— 16-bit CODEC —Rx FIFO holds sixteen 16-bit samples. Either one or two 16-bit
samples can be read from the Rx FIFO per internal bus cycle.

14.5.3 Looping Modes

The UART can be configured to operate in various looping modes as shown in Figure 14-34
on page 14-30. These modes are useful for local and remote system diagnostic functions
and can be used by UART1 in modem mode as well as UART mode. The modes are
described in the following paragraphs and in Section 14.3, “Register Descriptions.”

The UART’s transmitter and receiver should be disabled when switching between modes.
The selected mode is activated immediately upon mode selection, regardless of whether a
character is being received or transmitted.

14.5.3.1 Automatic Echo Mode

In automatic echo mode, shown in Figure 14-35, the UART automatically resends received
data bit by bit. The local CPU-to-receiver communication continues normally, but the
CPU-to-transmitter link is disabled. In this mode, received data is clocked on the receiver
clock and resent on TxD. The receiver must be enabled, but the transmitter need not be.

< Rx < RxD Input

CPU

| Disabled | 1y | Disabled, _ 1,p Input

Figure 14-35. Automatic Echo

Because the transmitter is inactive, USRxn[TXEMP,TxRDY] are inactive and data is sent as
it is received. Received parity is checked but is not recalculated for transmission. Character
framing is also checked, but stop bits are sent as they are received. A received break is
echoed as received until the next valid start bit is detected.

14.5.3.2 Local Loop-Back Mode

Figure 14-36 shows how TxD and RxD are internally connected in local loop-back mode.
This mode is for testing the operation of a local UART module channel by sending data to
the transmitter and checking data assembled by the receiver to ensure proper operations.

< Rx - Disabled_ RxD Input

CPU

» Tx Disabled 1,p Input

Figure 14-36. Local Loop-Back

14-34 MCF5407 User’s Manual @ MOTOROLA

Operation

Features of this local loop-back mode are as follows:
* Transmitter and CPU-to-receiver communications continue normally in this mode.
e RxD input data is ignored
e TxD is held marking

* The receiver is clocked by the transmitter clock. The transmitter must be enabled,
but the receiver need not be.

14.5.3.3 Remote Loop-Back Mode

In remote loop-back mode, shown in Figure 14-37, the channel automatically transmits
received data bit by bit on the TxD output. The local CPU-to-transmitter link is disabled.
This mode is useful in testing receiver and transmitter operation of a remote channel. For
this mode, the transmitter uses the receiver clock.

Because the receiver is not active, received data cannot be read by the CPU and error status
conditions are inactive. Received parity is not checked and is not recalculated for
transmission. Stop bits are sent as they are received. A received break is echoed as received
until the next valid start bit is detected.

,DiiabEdDiéabEd«i RxD Input
,Digab@dDiéabEdi._. TXD Input

Figure 14-37. Remote Loop-Back

CPU

14.5.4 Multidrop Mode

Setting UMR1#[PM] programs the UART to operate in a wake-up mode for multidrop or
multiprocessor applications. In this mode, a master can transmit an address character
followed by a block of data characters targeted for one of up to 256 slave stations.

Although slave stations have their channel receivers disabled, they continuously monitor
the master’s data stream. When the master sends an address character, the slave receiver
channel notifies its respective CPU by setting USR#[RxRDY] and generating an interrupt
(if programmed to do so). Each slave station CPU then compares the received address to its
station address and enables its receiver if it wishes to receive the subsequent data characters
or block of data from the master station. Slave stations not addressed continue monitoring
the data stream. Data fields in the data stream are separated by an address character. After
a slave receives a block of data, its CPU disables the receiver and repeats the process.

(M) moToroLA Chapter 14. UART Modules 14-35

ration

Functional timing information for multidrop mode is shown in Figure 14-38.

Master Station
A/D Al

D | N A/‘D
‘ ‘ o m ADWW

T
TxD ‘ ‘ADD11‘ ‘ ‘ Cco
|
Transmitter ‘ ‘
Enabled | |
L
\ \

pe—— \
[TXRDY] %_[N

internal

module
select
UMR1n[PM] =11 ADD 1 A Co A ADD 2
UMR1Nn[PT] =1 UMR1n[PT] =0 UMR1n[PT] =2

Peripheral Station

AD A/D A/D N A/D A/D ,\(
\ T T T T
RO || | jopii] | | co O\ NJ moo21) | | o
| | | |
\ \

Receiver | | |
Enabled ‘ ‘ ‘
f

|
USRN[RxRDY] ’—‘ E N &
e | IR I

UMR1Nn[PM] = 11 ADD 1 Status Data Status Data
UMR1n[PM] = 11 (Co) (ADD 2)

Figure 14-38. Multidrop Mode Timing Diagram

A character sent from the master station consists of a start bit, a programmed number of
data bits, an address/data (A/D) bit flag, and a programmed number of stop bits. A/D =1
indicates an address character; A/D = 0 indicates a data character. The polarity of A/D is
selected through UMRI1x[PT]. UMRI1#n should be programmed before enabling the
transmitter and loading the corresponding data bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless
of whether it is enabled or disabled. If the receiver is disabled, it sets the RXRDY bit and
loads the character into the receiver holding register FIFO stack provided the received A/D
bit is a one (address tag). The character is discarded if the received A/D bit is zero (data
tag). If the receiver is enabled, all received characters are transferred to the CPU through
the receiver holding register stack during read operations.

In either case, the data bits are loaded into the data portion of the stack while the A/D bit is
loaded into the status portion of the stack normally used for a parity error (USRn[PE]).

Framing error, overrun error, and break detection operate normally. The A/D bit takes the
place of the parity bit; therefore, parity is neither calculated nor checked. Messages in this
mode may still contain error detection and correction information. One way to provide error

14-36 MCF5407 User’s Manual @ MOTOROLA

Operation

detection, if 8-bit characters are not required, is to use software to calculate parity and
append it to the 5-, 6-, or 7-bit character.

14.5.5 Bus Operation

This section describes bus operation during read, write, and interrupt acknowledge cycles
to the UART module.

14.5.5.1 Read Cycles

The UART module responds to reads with byte data. Reserved registers return zeros.

14.5.5.2 Write Cycles

The UART module accepts write data as bytes. Write cycles to read-only or reserved
registers complete normally without exception processing, but data is ignored.
NOTE:

The UART module is accessed by the CPU with zero wait
states, as CLKIN is used for the UART module.

14.5.5.3 Interrupt Acknowledge Cycles

The UART module supplies the interrupt vector in response to a UART IACK cycle. If
UIVRn~ is not initialized to provide a vector number, a spurious exception is taken if an
interrupt is generated. This works in conjunction with the interrupt controller, which allows
a programmable priority level.

14.5.6 Programming

The software flowchart, Figure 14-39, consists of the following:

e UART module initialization — These routines consist of SINIT and CHCHK (sheets
1 and 2). Before SINIT is called at system initialization, the calling routine allocates
2 words on the system stack. On return to the calling routine, SINIT passes UART
status data on the stack. If SINIT finds no errors, the transmitter and receiver are
enabled. SINIT calls CHCHK to perform the checks. When called, SINIT places the
UART in local loop-back mode and checks for the following errors:
— Transmitter never ready
— Receiver never ready
— Parity error
— Incorrect character received

e I/O driver routine — This routine (sheets 4 and 5) consists of INCH, the terminal
input character routine which gets a character from the receiver, and OUTCH, which
sends a character to the transmitter.

(M) moToroLA Chapter 14. UART Modules 14-37

'
A

ration

Interrupt handling— Consists of SIRQ (sheet 4), which is executed after the UART
module generates an interrupt caused by a change-in-break (beginning of a break).
SIRQ then clears the interrupt source, waits for the next change-in-break interrupt
(end of break), clears the interrupt source again, then returns from exception
processing to the system monitor.

14.5.6.1 UART Module Initialization Sequence

NOTE:

UART module registers can be accessed by word or byte
operations, but only data byte D[7:0] is valid.

Table 14-19 shows the UART module initialization sequence.

Table 14-19. UART Module Initialization Sequence

Register Setting

UCRn

Reset the receiver and transmitter—UART or modem modes.
Reset the mode pointer (MISC[2—-0] = 0b001)—UART or modem modes.

UIVRn Program the vector number for a UART module interrupt—UART or modem modes.
UIMRn Enable the preferred interrupt sources—UART or modem modes.
UACRn Initialize the input enable control (IEC bit) —UART mode only.
UCSRn | Select the receiver and transmitter clock. Use timer as source if required—UART mode only.
UMR1n If preferred, program operation of receiver ready-to-send (RxRTS bit)—UART mode only.
Select receiver-ready or FIFO-full notification (RxRDY/FFULL bit)—UART or modem modes.
Select character or block error mode (ERR bit)—UART mode only.
Select parity mode and type (PM and PT bits)—UART mode only.
Select number of bits per character (B/Cx bits)—UART mode only.
UMR2n Select the mode of operation (CMx bits)—UART or modem modes.
If preferred, program operation of transmitter ready-to-send (TxRTS)—UART mode only.
If preferred, program operation of clear-to-send (TxCTS bit)—UART mode only.
Select stop-bit length (SBx bits)—UART mode only.
RXLVL UART1 only, UART or modem modes—Choose Rx FIFO full threshold level.
TXLVL UART1 only, UART or modem modes—Choose Tx FIFO empty threshold level.

MODCTL | Modem mode only

Choose the desired modem mode.

Choose whether msb or Isb is to be transferred first.

Choose 0- or 1-bit delay between rising edge of frame sync and first bit of time slot 1.
Choose 1 or 2 DMA channels to service UART1.

Activate/deactivate AC ‘97 warm and cold resets.

UCRn

Enable the receiver and transmitter—UART or modem modes.

14-38

MCF5407 User’s Manual (M) moToroLA

Operation

ENABLE
SERIAL MODULE Y
ERRORS
SINIT)
Y ?
INITIATE: \
CHANNEL
INTERRUPTS
ENABLE RECEIVER
CHK1
Y
CALL CHCHK ASSERT
REQUEST TO SEND
SAVE CHANNEL SINITR
STATUS
RETURN

Figure 14-39. UART Mode Programming Flowchart (Sheet 1 of 5)

(M) moToroLA Chapter 14. UART Modules 14-39

ration

(CHCHK)

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK
MODE

ENABLE
TRANSMITTER CLEAR
STATUS WORD

TxCHK

IS
TRANSMITTER

READY
?

Y
SNDCHR

SEND CHARACTER
TO TRANSMITTER

WAITED

TOO LONG
?

RxCHK

HAS
CHARACTER BEE
RECEIVED

WAITED
TOO LONG
?

SET TRANSMITTER-
NEVER-READY FLAG

SET RECEIVER-
NEVER-READY FLAG

g

Figure 14-39. UART Mode Programming Flowchart (Sheet 2 of 5)

14-40

MCF5407 User’s Manual

@ MOTOROLA

Figure 14-39. UART Mode Programming Flowchart (Sheet 3 of 5)

@ MOTOROLA

SET FRAMING
ERROR FLAG

Y

RSTCHN

DISABLE
TRANSMITTER

RESTORE
TO ORIGINAL MODE

PRCHK

HAVE
PARITY ERROR
?

SET PARITY
ERROR FLAG

CHRCHK

GET CHARACTER
FROM RECEIVER

TRANSMITTED
CHARACTE|
2

SET INCORRECT
CHARACTER FLAG

9

Chapter 14. UART Modules

‘ RETURN ’

Operation

14-41

ration

DOES
CHANNEL A
RECEIVER HAVE A
CHARACTE

~ WAS
IRQ CAUSED
BY BEGINNING
QF A BREA

CLEAR CHANGE-IN- PLACE CHARACTER
BREAK STATUS BIT IN DO

ABRKI1

(RETURN)
ND-OF-BREAI v

IRQ ARRIVED
YET

CLEAR CHANGE-IN-
BREAK STATUS BIT

REMOVE BREAK
CHARACTER FROM
RECEIVER FIFO

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

SIRQR

RTE

Figure 14-39. UART Mode Programming Flowchart (Sheet 4 of 5)

14-42 MCF5407 User’s Manual @ MOTOROLA

@ MOTOROLA

(o)

OUTCH

IS
TRANSMITTER
READY
?

Y

SEND CH

ARACTER

TO TRANSMITTER

(RETURN ,

Figure 14-39. UART Mode Programming Flowchart (Sheet 5 of 5)

Chapter 14. UART Modules

Operation

14-43

g |

ration

14-44

MCF5407 User’s Manual

@ MOTOROLA

Chapter 15
Parallel Port (General-Purpose 1/0O)

This chapter describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers. It includes a code example for setting up
the parallel port.

15.1 Parallel Port Operation

The MCF5407 parallel port module has 16 signals, which are programmed as follows:
* The pin assignment register (PAR) selects the function of the 16 multiplexed pins.

* Port A data direction register (PADDR) determines whether pins configured as
parallel port signals are inputs or outputs.

* The Port A data register (PADAT) shows the status of the parallel port signals.
The operations of the PAR, PADDR, and PADAT are described in the following sections.

15.1.1 Pin Assignment Register (PAR)

The pin assignment register (PAR), which is part of the system integration module (SIM),
defines how each PAR bit determines each pin function, as shown in Figure 15-1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field | PAR15 | PAR14 | PAR13 | PAR12 | PAR11| PAR10 |PAR9 | PAR8 | PAR7 | PAR6 | PAR5 |PAR4| PAR3 | PAR2 |PAR1|PARO

PAR[n] = 0| PP15 | PP14 | PP13 | PP12 | PP11 | PP10 | PP9 | PP8 | PP7 | PP6 | PP5 | PP4 | PP3 | PP2 | PP1 | PPO

PAR[n]=1| A31 | A30 | A29 | A28 | A27 | A26 | A25 | A24 | TIP |DREQO|DREQT|TM2 | TM1/ | T™MO/ | TT1 | TTO
DACK1 | DACKO

Reset|Determined by driving D4/ADDR_CONFIG with a 1 or 0 when RSTI negates. The system is configured as
PP[15:0] if D4 is low; otherwise alternate pin functions selected by PAR[n] = 1 are used.

R/W R/W

Address Address MBAR + 0x004

Figure 15-1. Parallel Port Pin Assignment Register (PAR)

If PP[9:8]/A[25:24] are unavailable because A[25:0] are needed for external addressing,
PP[15:10]/A[31:26] can be configured as general-purpose I/O. Table 15-1 summarizes
MCEF5407 parallel port pins, described in detail in Chapter 17, “Signal Descriptions.”

@ MOTOROLA Chapter 15. Parallel Port (General-Purpose I/0) 15-1

llel Port Operation

Table 15-1. Parallel Port Pin Descriptions

Pin Description

PP[15:8)/ MSB of the address bus/parallel port. Programmed through PAR[15-8]. If a PAR bit is O, the associated
A[31:24] pin functions as a parallel port signal. If a bit is 1, the pin functions as an address bus signal. If all pins
are address signals, as much as 4 Gbytes of memory space are available.

TIP/PP7 Transfer-in-progress output/parallel port bit 7. Programmed through PAR[7]. Assertion indicates a bus
transfer is in progress; negation indicates an idle bus cycle if the bus is still granted to the processor.
Note that TIP is held asserted on back-to-back bus cycles.

DREQI1:0)/ | DMA request inputs/two bits of the parallel port. Programmed through PAR[6-5]. These inputs are
PP[6:5] asserted by a peripheral device to request a DMA transfer.

TM[2:0)/ Transfer type outputs/parallel port bits 4—-2. Programmed through PAR[4-2]. For DMA transfers, these
PP[4:2)/ signals provide acknowledge information or can be programmed to function as DMA acknowledge
DACK]1:0] | signals. For emulation transfers, TM[2:0] indicate user or data transfer types. For CPU space transfers,
TMI[2:0] are low. For interrupt acknowledge transfers, TM[2:0] carry the interrupt level being
acknowledged.

TT[1:0)/ Transfer type outputs/parallel port bits 1-0. Programmed through PAR[1-0].
PP[1:0] When the MCF5407 is bus master, it outputs these signals. They indicate the current bus access type.

15.1.2 Port A Data Direction Register (PADDR)

The PADDR determines the signal direction of each parallel port pin programmed as a
general-purpose 1/O port in the PAR.

15 0
Field PADDR
Reset 0000_0000_0000_0000
R/W R/W
Address Address MBAR + 0x244

Figure 15-2. Port A Data Direction Register (PADDR)

Table 15-2 describes PADDR fields.
Table 15-2. PADDR Field Description

Bits Name Description

15-0 | PADDR | Data direction bits. Each data direction bit selects the direction of the signal as follows:
0 Signal is defined as an input.
1 Signal is defined as an output.

15.1.3 Port A Data Register (PADAT)

The PADAT value for inputs corresponds to the logic level at the pin; for outputs, the value
corresponds to the logic level driven onto the pin. Note the following:

* PADAT has no effect on pins not configured for general-purpose I/O.

15-2 MCF5407 User’s Manual (M) moToroLa

Parallel Port Operation

* PADAT settings do not affect inputs. PADAT bit values determine the corresponding
logic levels of pins configured as outputs.

* PADAT can be written to anytime. A read from PADAT returns values of
corresponding pins configured as general-purpose I/O in the PAR and designated as

inputs by the PADDR.
15 0
Field PADAT
Reset 0000_0000_0000_0000
R/W R/W
Address Address MBAR+0x248

Figure 15-3. Port A Data Register (PADAT)

Table 15-3 shows relationships between PADAT bits and parallel port pins when PADAT is
accessed. The effect differs when the parallel port pin is an input or output.
The following results occur when a parallel port pin is configured as an input:
e When the PADAT is read, the value returned is the logic value on the pin.
* When the PADAT is written, the register contents are updated without affecting the
logic value on the pin.
The following results occur when a parallel port pin is configured as an output:

e When the PADAT is read, the register contents are returned and the pin is the logic
value of the register.

* When the PADAT is written, the register contents are updated and the pin is the logic
value of the register.

These relationships are also described in Table 15-3.
Table 15-3. Relationship between PADAT Register and Parallel Port Pin (PP)

PP Status | PADAT R/'W Effect on PADAT Effect on PP
Read Register bit value is the pin’s logic value No effect. Source of logic value
Input Write Register contents updated No effect on the logic value at the pin
Read Register contents are returned Pin is the logic value of the register bit
Output Write Register contents updated Pin is the logic value of the register bit
NOTE:

Although external devices cannot access the MCF5407’s
on-chip memories or MBAR, they can access any parallel port
module registers in the SIM.

@ MOTOROLA Chapter 15. Parallel Port (General-Purpose I/0) 15-3

A 4

‘ k llel Port Operation

15.1.4 Code Example

The following code example shows how to set up the parallel port. Here, PP[7:0] are
general-purpose 1/0, PP[3:0] are inputs, and PP[7:4] are outputs.

MBARx EQU 0x00010000

PAR EQU MBARx+0x004
PADDR EQU MBARx+0x244
PADAT EQU MBARx+0x248

move.l #MBARx,D0O ;because MBAR is an internal register, MBARxX is used as
movec DO, MBAR ;label for the memory map address

move.w #0x00FF,D0

move.w DO,PAR ;set up the PAR. PP[7:0] set up as I/0

move.w #0x00F0,DO

move.w DO,PADDR ;set PP[7:4] as outputs; PP[3:0] as inputs

move.b #0xA0,D0

move.b DO,PADAT ;0xA0 written into PADAT; PP[7:4] being outputs,

;PP[7:4] becomes 1010; i.e. PP7, PP5 = 1 and
:PP6, PP4 = 0

15-4 MCF5407 User’s Manual (M) moToroLA

Part IV
Hardware Interface

Intended Audience

Part IV is intended for hardware designers who need to know the functions and electrical
characteristics of the MCF5407 interface. It includes a pinout, and both electrical and
functional descriptions of the MCF5407 signals. It also describes how these signals interact
to support the variety of bus operations shown in timing diagrams.

Contents

Part IV contains the following chapters:

Chapter 16, “Mechanical Data,” provides a functional pin listing and package
diagram for the MCF5407.

Chapter 17, “Signal Descriptions,” provides an alphabetical listing of MCF5407
signals. This chapter describes the MCF5407 signals. In particular, it shows which
are inputs or outputs, how they are multiplexed, which signals require pull-up
resistors, and the state of each signal at reset.

Chapter 18, “Bus Operation,” describes data transfers, error conditions, bus
arbitration, and reset operations. It describes transfers initiated by the MCF5407 and
by an external bus master, and includes detailed timing diagrams showing the
interaction of signals in supported bus operations. Note that Chapter 11,
“Synchronous/Asynchronous DRAM Controller Module,” describes DRAM cycles.

Chapter 19, “IEEE 1149.1 Test Access Port JTAG),” describes configuration and
operation of the MCF5407 JTAG test implementation. It describes the use of JTAG
instructions and how to disable JTAG functionality.

Chapter 20, “Electrical Specifications,” describes AC and DC electrical
specifications and thermal characteristics for the MCF5407. Because additional
speeds may have become available since the publication of this book, consult
Motorola’s ColdFire web page, http://www.motorola.com/coldfire, to confirm that
this is the latest information.

@ MOTOROLA Part IV.Hardware Interface IV-i

Suggested Reading

The following literature may be helpful with respect to the topics in Part IV:

* [EEE Standard Test Access Port and Boundary-Scan Architecture

* [EEE Supplement to Standard Test Access Port and Boundary-Scan Architecture

(1149.1)

Acronyms and Abbreviations

Table I'V-i describes acronyms and abbreviations used in Part I'V.

Table IV-i. Acronyms and Abbreviated Terms

Term Meaning
BDM Background debug mode
BIST Built-in self test
BSDL Boundary-scan description language
DMA Direct memory access
DSP Digital signal processing
EDO Extended data output (DRAM)
GPIO General-purpose 1/0
1’c Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
PCLK Processor clock
PLL Phase-locked loop
POR Power-on reset
PQFP Plastic quad flat pack

IV-ii

MCF5407 User’s Manual

@ MOTOROLA

Table IV-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit

@ MOTOROLA

Part IV.Hardware Interface

IV-iii

g |

IV-iv

MCF5407 User’s Manual

@ MOTOROLA

Chapter 16
Mechanical Data

This chapter provides a function pin listing and package diagram for the MCF5407. See the
website [http://www.motorola.com/coldfire] for any updated information.

16.1 Package
The MCF5407 is assembled in a 208-pin, thermally enhanced plastic QFP package.

16.2 Pinout

The MCF5407 pinout is detailed in the following tables, including the primary and
secondary functions of multiplexed signals. Additional columns indicate the output drive
capability of each pin, whether it is internally synchronized, and if the signal can change
on a negative clock transition. Note that the pin names IVCC and EVCC indicate which
pins require 1.8- and 3.3-V power inputs, respectively.

These tables show MCF5407 pin numbers, including signal multiplexing. Additional
columns indicate the direction, description, and output drive capability of each pin.

Table 16-1. Pins 1-52 (Left, Top-to-Bottom)

e ﬁ:}ﬁ::f:: (e} Description I(:::X()e

No | Name

1 IVCC — — 1.8-V power input —
2 A0 — /0 | Address bus bit 8
3 Al — I/O | Address bus bit 8
4 GND — — | Ground pin —
5 A2 — /0 | Address bus bit 8
6 A3 — I/O | Address bus bit 8
7 | EVCC — — | 3.3-V power input —
8 A4 — /0 | Address bus bit 8
9 A5 — I/O | Address bus bit 8
10 | GND — — | Ground pin —
11 A6 — /0 | Address bus bit 8

(M) moToroLA Chapter 16. Mechanical Data 16-1

ut

16-2

Table 16-1. Pins 1-52 (Left, Top-to-Bottom) (Continued)

Pin

Y r— ':::::t‘f;: /0 Description I()n:IX()e
12 A7 — /O | Address bus bit 8
13 | EVCC — — | 3.3-V power input —
14 A8 — /0 | Address bus bit 8
15 A9 — /O | Address bus bit 8
16 A10 — I/O | Address bus bit 8
17 | GND — — | Ground pin —
18 A1 —_ /0 | Address bus bit 8
19 Al12 — I/O | Address bus bit 8
20 A13 — /0 | Address bus bit 8
21 | EVCC — — | 3.3-V power input —
22 Al4 — I/O | Address bus bit 8
23 A15 — /0 | Address bus bit 8
24 A16 — I/O | Address bus bit 8
25 | GND — — | Ground pin —
26 A17 — /0 | Address bus bit 8
27 A18 — I/O | Address bus bit 8
28 A19 — I/O | Address bus bit 8
29 | EVCC — — | 3.3-V power input —
30 A20 — I/O | Address bus bit 8
31 A21 — I/O | Address bus bit 8
32 A22 — /0 | Address bus bit 8
33 | GND — — | Ground pin —
34 A23 — I/O | Address bus bit 8
35 PP8 A24 /0 | Parallel port bit/Address bus bit 8
36 PP9 A25 1/0 | Parallel port bit/Address bus bit 8
37 | EVCC — — | 3.3-V power input —
38 | PP10 A26 /0 | Parallel port bit/Address bus bit 8
39 | PP11 A27 1/0 | Parallel port bit/Address bus bit 8
40 | PP12 A28 /0 | Parallel port bit/Address bus bit 8
41 GND — — | Ground pin —
42 | PP13 A29 1/0 | Parallel port bit/Address bus bit 8
43 | PP14 A30 /0 | Parallel port bit/Address bus bit 8
44 | PP15 A31 /0 | Parallel port bit/Address bus bit 8
45 | EVCC — — | 3.3-V power input —
46 | SIZ0 — I/O | Size attribute 8

MCF5407 User’s Manual

@ MOTOROLA

Table 16-1. Pins 1-52 (Left, Top-to-Bottom) (Continued)

@ MOTOROLA

e ':::::t‘f;: /0 Description I()n:IX()e

No | Name

47 | SIZA —_ /0 | Size attribute 8
48 | GND — — | Ground pin —
49 OE — (6] Output enable for chip selects 8
50 CSo — (0] Chip select 8
51 | CS1 — O | Chip select 8
52 | EVCC — — | 3.3-V power input —

Table 16-2. Pins 53—-104 (Bottom, Left-to-Right)
Fn ﬁ:}s::f;: o] Description l()r:IVS

No | Name

53 GND — — | Ground pin —
54 Ccs2 — O | Chip select 8
55 CS3 — (0] Chip select 8
56 Cs4 — O | Chip select 8
57 IVCC — — 1.8-V power input —
58 CS5 — O | Chip select 8
59 CS6 — (0] Chip select 8
60 Ccs7 — O | Chip select 8
61 GND — — | Ground pin —
62 AS — I/O | Address strobe 8
63 RW — I/O | Read/Write 8
64 TA — /0 | Transfer acknowledge 8
65 EVCC — — | 8.3-V power input —
66 TS — I/O | Transfer start 8
67 | RSTI — | Reset —
68 | IRQ7 — | Interrupt request —
69 GND — — | Ground pin —
70 TRQ5 IRQ4 | Interrupt request —
71 TRQ3 IRQ6 | Interrupt request —
72 IRQ1 IRQ2 | Interrupt request —
73 IVCC — — | 1.8-V power input —
74 BR — O | Busrequest 8
75 BD — O | Busdriven 8
76 BG — | Bus grant —

Chapter 16. Mechanical Data

Pinout

16-3

ut

Table 16-2. Pins 53-104 (Bottom, Left-to-Right) (Continued)

Pin ':::s::;t: o] Description I(Jr:X?

No | Name

77 GND — — | Ground pin —
78 | TOUT1 — (0] Timer output 8
79 | TOUTO — (0] Timer output 8
80 TINO — [Timer input —
81 EVCC — — | 8.3-V power input —
82 TIN1 — | Timer input —
83 | RASO — O | DRAM row address strobe 16
84 | RAST — O | DRAM row address strobe 16
85 GND — — | Ground pin —
86 | CASO — O | DRAM column address strobe 16
87 CAS1 — o DRAM column address strobe 16
88 CAS2 — o} DRAM column address strobe 16
89 EVCC — — | 8.3-V power input —
90 CAS3 — O DRAM column address strobe 16
91 | DRAMW — O | DRAM write 16
92 | SRAS — O | SDRAM row address strobe 16
93 GND — — | Ground pin —
94 | SCAS — o} SDRAM column address strobe 16
95 | SCKE — O | SDRAM clock enable 16
96 BEO BWEO O | Byte enable/byte write enable 8
97 EVCC — — | 8.3-V power input —
98 BET BWET O | Byte enable/byte write enable 8
99 BE2 BWE2 O | Byte enable/byte write enable 8
100 | BE3 BWE3 O | Byte enable/byte write enable 8
101 GND — — | Ground pin —
102 | SCL — I/OD ' | Serial clock line 8
103 SDA — 1/0D ! | Serial data line 8
104 GND — | Ground pin —

1

16-4

OD: Open-drain output

MCF5407 User’s Manual

@ MOTOROLA

Table 16-3. Pins 105-156 (Right, Bottom-to-Top)

Pin ﬁ:}ﬁ;ﬁ: /o] Description I();:X";
No Name
105 IVCC — — | 1.8-V power input —
106 D31 — I/O | Data bus 8
107 D30 — I/O | Data bus 8
108 D29 — I/O | Data bus 8
109 GND — — | Ground pin —
110 D28 — I/O | Data bus 8
111 D27 — I/O | Data bus 8
112 D26 — I/O | Data bus 8
113 EVCC — — | 3.3-V power input —
114 D25 — I/O | Data bus 8
115 D24 — I/O | Data bus 8
116 D23 — I/O | Data bus 8
117 GND — — | Ground pin —
118 D22 — I/O | Data bus 8
119 D21 — I/O | Data bus 8
120 D20 — I/O | Data bus 8
121 EVCC — — | 38.3-V power input —
122 D19 — I/O | Data bus 8
123 D18 — I/O | Data bus 8
124 D17 — I/O | Data bus 8
125 GND — — | Ground pin —
126 D16 — I/O | Data bus 8
127 D15 — I/O | Data bus 8
128 D14 — I/O | Data bus 8
129 EVCC — — | 3.3-V power input —
130 D13 — I/O | Data bus 8
131 D12 — I/O | Data bus 8
132 D11 — I/O | Data bus 8
133 GND — — | Ground pin —
134 D10 — I/O | Data bus 8
135 D9 — I/O | Data bus 8
136 D8 — I/O | Data bus 8
137 EVCC — — | 3.3-V power input —
138 D7 CS_CONF2 1/0 | Data bus/Chip select configuration 8

@ MOTOROLA

Chapter 16. Mechanical Data

Pinout

16-5

ut

Table 16-3. Pins 105-156 (Right, Bottom-to-Top) (Continued)

Pin '::::;Tia(:: /0 Description I()n';ll‘-’\()e
No Name

139 D6 CS_CONF1 1/0 | Data bus/Chip select configuration 8

140 D5 CS_CONFO 1/0 | Data bus/Chip select configuration 8

141 GND — — | Ground pin —

142 D4 ADDR_CONF | I/O | Data bus/Address configuration 8

143 D3 BE_CONFIGO | I/O | Data bus/Byte enable configuration 8

144 D2 DIVIDE2 1/0 | Data bus/Divide control PCLK:CLKIN 8

145 EVCC — — | 3.3-V power input —

146 D1 DIVIDE1 1/0 | Data bus/Divide control PCLK:CLKIN 8

147 DO DIVIDEO 1/0 | Data bus/Divide control PCLK:CLKIN 8

148 GND — — | Ground pin —

149 | DSCLK TRST | | Debug serial clock/JTAG Reset —

150 TCK TCK I | JTAG clock —

151 DSO TDO O | Debug serial out/JTAG data out 8

152 IVCC — — | 1.8-V power input —

153 DSI TDI | Debug serial input/JTAG data in —

154 BKPT TMS | Debug breakpoint/JTAG mode select —

155 HIZ — | High impedance override —

156 GND — — | Ground pin —

Table 16-4. Pins 157-208 (Top, Right-to-Left)

in I;::z;rt‘iaot: /0 Description I();.:x(;
No Name
157 IVCC — — | 1.8-V power input —
158 CTS1 — | | UART1 clear-to-send —
159 RTST — O | UART1 request-to-send 8
160 RXD1 — I | UART1 receive data —
161 TXD1 — O | UART1 transmit data 8
162 GND — — | Ground pin —
163 CTSO — | | UARTO clear-to-send —
164 RTSO — O | UARTO request-to-send 8
165 RXDO - I | UARTO receive data —_
166 TXDO — O | UARTO transmit data 8
167 EVCC — — | 8.3-V power input —

16-6 MCF5407 User’s Manual @ MOTOROLA

Table 16-4. Pins 157-208 (Top, Right-to-Left) (Continued)

Pinout

Pin ':::s;?ia;: /o] Description I()r:x‘;

No Name

168 | EDGESEL — I | SDRAM bus clock edge select —
169 GND — — | Ground pin —
170 BCLKO — O | Bus clock output 16
171 IVCC — — | 1.8-V power input —
172 RSTO — O | Processor reset output 8
173 GND — — | Ground pin —
174 CLKIN — I | Clock input —_
175 IVCC — — | 1.8-V power input —
176 MTMODO — I | JTAG/BDM select (Tie high or low) —
177 | MTMOD1 - I | Tie high or low —_
178 PGND — — | PLL ground pin —
179 NC — 0] —
180 PVCC — — | 1.8-V filter supply for PLL —
181 MTMOD2 — || Tie high or low —
182 | MTMOD3 — I | Tie high or low —
183 GND — — | Ground pin —
184 PSTCLK — O | Processor status clock 8
185 IVCC — — | 1.8-V power input —
186 | PSTDDATAO — O | Processor status/debug data 8
187 | PSTDDATA1 — O | Processor status/debug data 8
188 GND — — | Ground pin —
189 | PSTDDATA2 — O | Processor status/debug data 8
190 | PSTDDATA3 — O | Processor status/debug data 8
191 EVCC — — | 8.3-V power input —
192 | PSTDDATA4 — O | Processor status/debug data 8
193 | PSTDDATA5 — O | Processor status/debug data 8
194 GND — — | Ground pin —
195 | PSTDDATA6 — O | Processor status/debug data 8
196 | PSTDDATA7 — O | Processor status/debug data 8
197 IVCC — — | 1.8-V power input —
198 PP7 TIP 1/0 | Parallel port bit/transfer in progress 8
199 PP6 DREQO 1/0 | Parallel port bit/DMA request 8
200 PP5 DREQ1 1/0 | Parallel port bit/DMA request 8
201 GND — — | Ground pin —
202 PP4 T™2 I/O | Parallel port bit/Transfer modifier 8

@ MOTOROLA

Chapter 16. Mechanical Data

16-7

hanical Diagram

Table 16-4. Pins 157-208 (Top, Right-to-Left) (Continued)

Pin ':::s;?ia(:: /o] Description ?;:X?

No Name

203 PP3 TM1/DACK1' | I/O | Parallel port bit/Transfer modifier/DMA acknowledge 8
204 PP2 TMO/DACKO' | 1/O | Parallel port bit/Transfer modifier/DMA acknowledge 8
205 EVCC — — | 8.3-V power input —
206 PP1 TT1 1/0 | Parallel port bit/Transfer type 8
207 PPO TTO 1/0 | Parallel port bit/Transfer type 8
208 GND — — | Ground pin —

T When the internal DMA is used, PP3 and PP2 (PP[3:2)/TM[1:0]) can be programmed to a third
function, (DACK([1:0]), which indicates DMA acknowledge.

16.3 Mechanical Diagram
Figure 16-1 is a mechanical diagram of the 208-pin QFP MCF5407.

16-8 MCF5407 User’s Manual (M) moToroLa

h

IVCC
[——1 PSTDDATA7
195/C—— PSTDDATA6
[——1 PSTDDATA5
[1 PSTDDATA4
[—— EVCC
190/L—— PSTDDATA3
[——1 PSTDDATA2
[—— GND
[——1 PSTDDATA1
[——1 PSTDDATAO

N
=1
=3
[—— GND
[—— PPO
[—1 PP1
205/C—— EVCC
[—— PP2
200/L—— PP5
[——1 PP6
[——1 PP7
C—
[—— GND

S
Zc)O

20

25

30

35

40

[1s) Q 10 o 0
0 © © ~ N~

] =[S QL= OEawa =
SRBBRAR S e SrpReRRRCaRE et
2

[—— MTMOD2

180/C——= PVCC

[— NC

[——1 PGND
[——1 MTMOD1
[—— MTMODO

Case Drawing

[—— CTST

[——1 EDGESEL

[—— EVCC

[——1 TXDO
RXDO

[——1 RTISO

[—— TXD1
RXD1

[——1 RTST
Ivce

[—
170f/C—= BCLKO
[——1 GND

C—
a
N

156

165/ C—
160 [L—

150

140

135

130

125

120

105

;wommoo ‘m04<o
LR D OLUE2 oS
m%oom Do E05hs

D

Figure 16-1. Mechanical Diagram

16.4 Case Drawing

Figure 16-2 and Figure 16-3 show the MCF5407 case drawings.

@ MOTOROLA

Chapter 16. Mechanical Data

16-9

2 Drawing

|

D/2

B1/2

_Mm“=====m=___:_:_:_

VIEW A

(TR
gooaooud

[0.2|H[A-B[D]

|0.2[c[Aa-B|D]

g :

—

-
([0 1]

~

SEATING
PLANE

i Iy

L.ﬂl

—m — 204X E]

Figure 16-2. MCF5407 Case Drawing (General View)

@ MOTOROLA

MCF5407 User’s Manual

16-10

A ¥ 4
4\
‘ o= BASE
— METAL
- A
i)
—— T —
I x. B DR D
e/2

View A: Three Places

—=|5
51
‘ /—R R1
_}
R R2
— ey
By
(L1)—
View B

ey U

Case Drawing

PLATING

I
]

0. oad[Cl4-B[D]

—

N

Section A-A: 160 Places Rotated 90° CW

. £ — - GAGE PLANE

Figure 16-3. Case Drawing (Details)

The dimensions in Figure 16-2 and Figure 16-3 are referenced in Table 16-5.

Table 16-5. Dimensions

Dimension (Millimeters)
Reference
Minimum Maximum

A — 4.10
A1 0.25 0.50
A2 3.20 3.60
b 0.17 0.27
b1 0.17 0.23
c 0.09 0.20
cl 0.09 0.16
D 30.60 BSC

@ MOTOROLA

Chapter 16. Mechanical Data

16-11

2 Drawing

16-12

Table 16-5. Dimensions (Continued)

Dimension (Millimeters)

Reference
Minimum Maximum

D1 28.00 BSC

0.50 BSC
E 30.60 BSC
E1 28.00 BSC
L 0.45 0.75
L1 1.30 REF
R1 0.08 —
R2 0.08 0.25
S 0.20 —
O 0* 8
91 0* —
92 5* 16*

MCF5407 User’s Manual

@ MOTOROLA

Chapter 17
Signal Descriptions

This chapter describes MCF5407 signals. It includes an alphabetical listing of signals,
showing multiplexing, whether it is an input or output to the MCF5407, the state at reset,
and whether a pull-up resistor should be used. The following chapter, Chapter 18, “Bus
Operation,” describes how these signals interact.

NOTE:

The terms ‘assertion’ and ‘negation’ are used to avoid
confusion when dealing with a mixture of active-low and
active-high signals. The term ‘asserted’ indicates that a signal
is active, independent of the voltage level. The term ‘negated’
indicates that a signal is inactive.

Active-low signals, such as SRAS and TA, are indicated with
an overbar.

17.1 Overview
Figure 17-1 shows the block diagram of the MCF5407 with the signal interface.

(M) moToroLA Chapter 17. Signal Descriptions 17-1

rview

BR TDO/DSO -— _
BG TCK — 2
BD BZET JTAG %
ASTI TMS/BKPT —~ “p(ri o
RSTO TDI/DS| —-| P N
AS TRST/DSCLK —-| =T
ﬂ <
15 ColdFire V4 Core g
) : 2 Test
roypRol £ | o
[R /W] > PSTDDATA[7:0]
TIP/PP7 NN 2 2-Kbyte SRAMs | 8
D[31:0] DIV MAC
2 External
A[23:0] <‘_\§> o Internal | | §Rbvte |18-Kbyte Parallel
8 Bus Port!
A[31:24]/PP[15:8] <}%ﬁ>
TM[2:0]/PP[4:2] .T {} {}
CS[7:0] ~—E— Chi -
__ = p Internal Bus Arbiter
BE[3:0/BWE[3:0] -~*~ Selects <i‘ |
= 0
IRQ7
IRQ5 Interrupt
IRQ3 Controller ‘ ‘ % % {}
IRQ1 > s
. \ ystem
RAS[1:0] 4 Integration
CAS[3:0] ~——| Module DMA USARTO UART1 TDuaI 2c
DRAMW erial Serial imer
SRAS CDR'[A'\I/I| (SIM) Module /0 I/0 Module | |Module 2
SCAS ontroller (synch)
SCKE
EDGESEL ol « o o
BCLKO
PLL =1 2 SALEL LI A &
CLKIN e o 388@3Goaobn 2 2 o §
PSTCLK Y e XXEEXXEFE = m ® »
ow LV Fooio - oicio Z bk
mo, oS F 3
‘D: o <o (]
0o Ao =
1 Parallel port pins (PPn) are multiplexed with other bus functions as shown.

2[2C is a Philips proprietary interface.

Figure 17-1. MCF5407 Block Diagram with Signal Interfaces

Table 17-1 lists the MCF5407 signals grouped by functionality.

17-2

MCF5407 User’s Manual

@ MOTOROLA

Table 17-1. MCF5407 Signal Index

Overview

Signal Name Abbreviation Function ‘ 1/e] ‘ Reset ‘ Pull-Up | Page
Section 17.2, “MCF5407 Bus Signals” 17-7
Address A[31:0] 32-bit address bus. A[4:2] indicate /0 | Three 17-7
the interrupt level for external state
interrupts.
Data D[31:0] Data bus. D[7:0] are loaded at reset | I/O | Three 17-8
for bus configuration. state
Read/Write R/W Identifies read and write transfers /O | Three Up 17-8
state
Size SIZ[1:0] Indicates the data transfer size /0 | Three 17-8
state
Transfer start TS Indicates the start of a bus transfer | I/O | Three 17-9
state
Address strobe AS Indicates a bus cycle has been /0 | Three Up 17-9
initiated and address is stable state
Transfer acknowledge | TA Assertion terminates transfer /0 | Three Up 17-9
synchronously state
Transfer in progress TIP/PP7 Indicates a bus cycle is in progress; | O | Parallel 17-10
multiplexed with PP7 port
Transfer type TT[1:0] Indicates transfer type: normal, CPU | O | Parallel 17-10
space, emulator mode, or DMA; port
multiplexed with PP[1:0]
Transfer modifier TMI[2:0] Provides transfer modifier O | Parallel 17-10
information; multiplexed with port
TM2/PP4 and
TM[1:0]/PP[3:2)/DACK[1:0]
Section 17.3, “Interrupt Control Signals” 17-12
Interrupt request 1RQ7, IRQ5, Four external interrupts are set to | — Up 17-12
IRQ3, IRQ1 default levels 1,3,5,7; user-alterable.
Section 17.4, “Bus Arbitration Signals” 17-12
Bus request BR Indicates processor needs bus (o} High 17-12
Bus grant BG Arbiter asserts to grant mastership. | — Note 1 |17-12
Bus driven BD Indicates processor is driving bus o} High 17-13
Section 17.5, “Clock and Reset Signals” 17-13
Reset in RSTI Processor reset input | — Up 17-13
Clock input CLKIN Input used to clock internal logic | — 17-13
Bus clock out BCLKO Bus clock reference output (0] — 17-13
Reset out RSTO Processor reset output (0] Low 17-13
Auto-acknowledge AA_CONFIG Controls auto acknowledge timing | — 17-14
configuration 2 for CSO at reset
Port size configuration 2 | PS_CONFIG[1:0] | Controls port size for CS0 at reset | — User cfg | 17-14
@ MOTOROLA Chapter 17. Signal Descriptions 17-3

rview

Table 17-1. MCF5407 Signal Index (Continued)

Signal Name Abbreviation Function /0 | Reset | Pull-Up | Page
Address configuration 2 | ADDR_CONFIG | Programs parallel /O ports | — User cfg | 17-15
BE[3:0] configuration BE_CONFIG Programs byte enable pins | — User cfg | 17-15
Divide control PCLK to | DIVIDE[2:0] Selects CLKIN/PCLK ratio | — User cfg | 17-15
CLKIN 2

Section 17.6, “Chip-Select Module Signals” 17-15
Chip selects[7:0] CS[7:0] Enables peripherals at programmed | O High 17-15
addresses; CSO0 provides boot ROM
selection.
Byte enable[3:0)/ BE[3:0)/ BE[3:0] select bytes in memory. (o} High 17-16
Byte write enable[3:0] BWE[3:0] Programmed at reset for CSO
Output enable OE Output enable for chip select read (o} High 17-16
cycles
Section 17.7, “DRAM Controller Signals” 17-16
Row address strobe RASI[1:0] DRAM row address strobe (0] High 17-16
Column address strobe | CAS[3:0] DRAM column address strobe (0] High 17-16
DRAM write DRAMW Asserted for DRAM write; negated (0] High 17-16
for DRAM read
Synchronous column SCAS SDRAM column address strobe (0] High 17-17
address strobe
Synchronous row SRAS SDRAM row address strobe 0} High 17-17
address strobe
Synchronous clock SCKE Clock enable for external SDRAM (0] Low 17-17
enable
Synchronous edge EDGESEL Timing select for external SDRAM | — User cfg | 17-17
select
Section 17.8, “DMA Controller Module Signals” 17-17
DMA request DREQI1:0] External DMA transfer request; | — 17-17
multiplexed with PP[6:5]
DMA acknowledge DACK]1:0] Indicates DMA transfer terminated; O | Parallel 17-18
multiplexed with TM[1:0]/PP[3:2] port
Section 17.9, “Serial Module Signals” 17-18
Receive data RxD[1:0] Receive serial data input for UART | — 17-19
Transmit data TxD[1:0] Transmit serial data output for UART | O High 17-18
Request-to-send RTS[1:0] UART asserts when ready to (0] High 17-19
receive data query.
Clear-to-send CTS[1:0] Signals UART that data can be sent | — 17-19
to peripheral
Section 17.10, “Timer Module Signals” 17-19
Timer input TIN[1:0] Clock input to timer or trigger to | — 17-19
timer value capture logic
17-4 MCF5407 User’s Manual (M) moToroLA

Table 17-1. MCF5407 Signal Index (Continued)

Overview

Signal Name Abbreviation Function /0 | Reset | Pull-Up | Page
Timer outputs TOUT[1:0] Outputs waveform or pulse. (0] High 17-19
Section 17.11, “Parallel I/O Port (PP[15:0])” 17-19
Parallel port PP[15:0] Interfaces with 1/0; multiplexed with | I/O Input 17-19
bus address and attribute signals.
Section 17.12, “I2C Module Signals” 17-20
Serial clock line SCL Clock signal for I2C operation /0 | Open Up 17-20
drain
Serial data line SDA Serial data port for I°C operation /0 | Open Up 17-20
drain
Section 17.13, “Debug and Test Signals” 17-20
Motorola test mode MTMODO Puts processor in functional or | — User cfg | 17-20
emulator mode
Motorola test mode MTMOD[3:1] Reserved | — Down |17-20
High impedance HIZ Assertion three-states all outputs I — Up [17-20
Processor clock out PSTCLK Output clock used for PSTDDATA (0] — 17-21
Processor status/debug | PSTDDATA[7:0] | Displays captured processor data (0] Driven 17-21
data and breakpoint status
Section 17.14, “Debug Module/JTAG Signals” 17-21
Test clock TCK Clock signal for IEEE 1149.1 JTAG | — Low |17-22
Test reset/ TRST/DSCLK Asynchronous reset for JTAG; | — Up 17-21
Development serial debug module clock input
clock
Test mode select/ TMS/BKPT TMS (JTAG)/hardware breakpoint | — Up 17-21
Breakpoint (debug)
Test data input/ TDI/DSI Multiplexed serial input for the JTAG | — Up 17-22
Development serial or background debug module
input
Test data output/ TDO/DSO Multiplexed serial output for the (0] Driven 17-22
Development serial JTAG or background debug module
output
T If there is no arbiter, BG should be tied low; otherwise, it should be negated.
2 These data pins are sampled at reset for configuration.
Table 17-2 lists signals in alphabetical order by abbreviated name.
Table 17-2. MCF5407 Alphabetical Signal Index
Abbreviation Signal Name Function /0 | Page
AA_CONFIG Auto-acknowledge configuration Clock/reset [17-14
ADDR_CONFIG | Address configuration Clock/reset | 17-15
AS Address strobe Bus 110 | 17-9
@ MOTOROLA Chapter 17. Signal Descriptions 17-5

rview

Table 17-2. MCF5407 Alphabetical Signal Index (Continued)

Abbreviation Signal Name Function /O | Page
A[31:0] Address Bus 110 17-7
BCLKO Bus clock out Clock/reset o 17-13
BD Bus driven Bus arbitration (0] 17-13
BE[3:0/BWE[3:0] | Byte enable[3:0]/Byte write enable[3:0] Chip select O | 17-16
BG Bus grant Bus arbitration | 17-12
BR Bus request Bus arbitration (0] 17-12
CAS[3:0] Column address strobe DRAM O |17-16
CLKIN Clock input Clock/reset | 17-13
C9[7:0] Chip selects[7:0] UART O |17-15
CTS[1:0] Clear-to-send Serial module | 17-19
DACK]1:0] DMA acknowledge DMA (0] 17-18
DIVIDE[2:0] Divide control PCLK to CLKIN Clock/reset | 17-15
DRAMW DRAM write DRAM o | 17-16
DREQ[1:0] DMA request DMA | 17-17
D[31:0] Data Bus /0 17-8
EDGESEL Sync edge select DRAM | 17-17
HIZ High impedance Debug | 17-20
1RQ7, IRQ5, Interrupt request Interrupt control | 17-12
IRQS3, IRQ1
MTMOD][3:0] Motorola test mode Debug | 17-20
OE Output enable Chip select O | 17-16
PP[15:0] Parallel port Parallel port /0 | 17-19
PSTCLK Processor clock out Debug (0] 17-20
PSTDDATA[7:0] | Processor status/debug data Debug o} 17-20
PS_CONFIG[1:0] | Port size configuration Clock/reset | 17-14
RW Read/Write Bus /10 | 17-8
RAS[1:0] Row address strobe DRAM O | 17-16
RSTI Reset In Clock/reset | 17-13
RSTO Reset Out Clock/reset o 17-13
RTS[1:0] Request-to-send Serial module (0] 17-19
RxD[1:0] Receive data Serial module [17-19
SCAS Synchronous column address strobe DRAM (0] 17-17
SCKE Synchronous clock enable DRAM (0] 17-17
SCL Serial clock line 12C /O | 17-20
SDA Serial data line 1’c /O | 17-20
SIZ[1:0] Size Bus /0 17-8

17-6 MCF5407 User’s Manual (M) moToroLa

MCF5407 Bus Signals

Table 17-2. MCF5407 Alphabetical Signal Index (Continued)

Abbreviation Signal Name Function /0 | Page
SRAS Synchronous row address strobe DRAM (0] 17-17
TA Transfer acknowledge Bus /0 | 17-9
TCK Test clock JTAG [17-22
TDI/DSI Test data input/Development serial input JTAG | 17-22
TDO/DSO Test data output/Development serial output JTAG (0] 17-22
TIN[1:0] Timer input Timer | 17-19
TIP Transfer in progress Bus O |17-10
TMS/BKPT Test mode select/Breakpoint JTAG | 17-21
TM[2:0] Transfer modifier Bus (0] 17-10
TOUT[1:0] Timer outputs Timer (0] 17-19
TRST/DSCLK Test reset/Development serial clock JTAG | 17-21
TS Transfer start Bus /0 | 17-9
TT[1:0] Transfer type Bus (0] 17-10
TxD[1:0] Transmit data Serial module (0] 17-18

17.2 MCF5407 Bus Signals

The bus signals provide the external bus interface to the MCF5407.

17.2.1 Address Bus

The address bus provides the address of the byte or most-significant byte (MSB) of the
word or longword being transferred. The address lines also serve as the DRAM addressing,
providing multiplexed row and column address signals. When an external device has
ownership of the MCF5407 bus, the device must drive the address bus and assert TS or AS
to indicate the start of a bus cycle. During an interrupt acknowledge access, A[4:2] indicate
the interrupt level being acknowledged.

17.2.1.1 Address Bus (A[23:0])

The lower 24 bits of the address bus become valid when TS is asserted. A[4:2] indicate the
interrupt level during interrupt acknowledge cycles.

17.2.1.2 Address Bus (A[31:24]/PP[15:8])

These multiplexed pins can serve as the most-significant byte of the address bus, or as the
most-significant byte of the parallel port. Programming the PAR in the system integration
module (SIM) determines the function of each of these eight multiplexed pins. These pins
are programmable on a bit-by-bit basis.

(M) moToroLA Chapter 17. Signal Descriptions 17-7

‘5407 Bus Signals

e A[31:24]—Pins are configured as address bits by setting corresponding PAR bits;
they represent the most-significant address bus bits. As much as 4 Gbytes of
memory are available when all of these pins are programmed as address signals.

e PP[15:8]—Pins are configured as parallel port signals by clearing corresponding
PAR bits; these represent the most-significant parallel port bits.

17.2.2 Data Bus (D[31:0])

The data bus is bidirectional and non-multiplexed. Data is sampled by the MCF5407 on the
rising CLKIN edge. The data bus port width, wait states, and internal termination are
initially defined for the boot chip select by D[7:0] during reset. The port width for each chip
select and DRAM bank are programmable. The data bus uses a default configuration if none
of the chip selects or DRAM bank match the address decode. The default configuration is
a 32-bit port with external termination and burst-inhibited transfers. The data bus can
transfer byte, word, or longword data widths. All 32 data bus signals are driven during
writes, regardless of port width and operand size.

D[7:0] are used during reset initialization as inputs to configure the functions as described
in Table 17-3. They are defined in Section 17.5.5, “Data/Configuration Pins (D[7:0]).”

Table 17-3. Data Pin Configuration

Pin Function Section

D7 | Auto-acknowledge configuration Section 17.5.5.2, “D7—Auto Acknowledge Configuration
(AA_CONFIG) (AA_CONFIG)”

D[6:5] | Port size configuration (PS_CONFIG[1:0]) | Section 17.5.5.3, “D[6:5]—Port Size Configuration
(PS_CONFIG[1:0])”

D4 | Address configuration (ADDR_CONFIG/D4) | Section 17.5.6, “D4—Address Configuration
(ADDR_CONFIG)”

D3 | Byte enable configuration (BE_CONFIG) Section 17.5.5.4, “D3—Byte-Enable Configuration
(BE_CONFIG)”

D[2:0] | Divide control (DIVIDE[2:0]) Section 17.5.6.1, “D[2:0]—Divide Control (DIVIDE[2:0])"

17.2.3 Read/Write (R/W)

When the MCF5407 is the bus master, it drives the R/W signal to indicate the direction of
subsequent data transfers. It is driven high during read bus cycles and driven low during
write bus cycles. This signal is an input during an external master access.

17.2.4 Size (SIZ[1:0])

When it is the bus master, the MCF5407 outputs these signals to indicate the requested data
transfer size. Table 17-4 shows the definition of the bus request size encodings. When the
MCF5407 device is not the bus master, these signals function as inputs.

Note that for misaligned transfers, SIZ[1:0] indicate the size of each transfer. For example,

17-8 MCF5407 User’s Manual (M) moToroLa

MCF5407 Bus Signals

if alongword access occurs at a misaligned offset of Ox 1, a byte is transferred first (SIZ[1:0]
= 01), a word is next transferred at offset 0x2 (SIZ[1:0] = 10), then the final byte is
transferred at offset 0x4 (SIZ[1:0] =01).
For aligned transfers larger than the port size, SIZ[1:0] behaves as follows:

e If bursting is used, SIZ[1:0] stays at the size of transfer.

» If bursting is inhibited, SIZ[1:0] first shows the size of the transfer and then shows
the port size.

Table 17-4. Bus Cycle Size Encoding

SIZ[1:0] Port Size
00 Longword
01 Byte
10 Word
11 Line

For burst-inhibited transfers, SIZ[1:0] changes with each TS assertion to reflect the next
transfer size. For transfers to port sizes smaller than the transfer size, SIZ[1:0] indicates the
size of the entire transfer on the first access and the size of the current port transfer on
subsequent transfers. For example, for a longword write to an 8-bit port, SIZ[1:0] = 00 for
the first byte transfer and 01 for the next three.

17.2.5 Transfer Start (TS)

The MCF5407 asserts TS during the first clock cycle when address and attributes (TM, TT,
TIP, R/W, and SIZ) are valid. TS is negated in the following clock cycle. When the
MCF5407 is not the bus master, TS is an input.

17.2.6 Address Strobe (AS)

Address strobe (AS) is asserted to indicate when the address is stable at the start of a bus
cycle. The address and attributes are guaranteed to be valid during the entire period that AS
is asserted. This signal is asserted and negated on the falling edge of the clock. When the
MCF5407 is not the bus master, AS is an input.

17.2.7 Transfer Acknowledge (TA)

When the MCF5407 is bus master, the external system drives this input to terminate the bus
transfer. The bus continues to be driven until this synchronous signal is asserted. For write
cycles, the processor continues to drive data one clock after TA is asserted. During read
cycles, the peripheral must continue to drive data until TA is recognized.

If all bus cycles support fast termination, TA can be tied low. However, note that TA cannot
be tied low if potential external bus masters are present. The MCF5407 drives TA for an

(M) moToroLA Chapter 17. Signal Descriptions 17-9

‘5407 Bus Signals

external master access. This condition is indicated by the AM bit in the chip-select mask
register (CSMR) being cleared. See Chapter 10, “Chip-Select Module.”

17.2.8 Transfer In Progress (TIP/PP7)

The TIP/PP7 pin is programmed in the PAR to serve as the transfer-in-progress output or
as a parallel port bits. The TIP output is asserted indicating a bus transfer is in progress. It
is negated during idle bus cycles if the bus is still granted to the processor. It is three-stated
for external master accesses. Note that TIP is held asserted on back-to-back bus cycles.

17.2.9 Transfer Type (TT[1:0]/PP[1:0])

The TT[1:0]/PP[1:0] pins are programmed in the PAR to serve as the transfer type outputs
or as two parallel port bits. When the MCF5407 is bus master and TT[1:0] are enabled,
these signals are driven as outputs only. If an external master owns the bus and TT[1:0] are
enabled, these pins are three-stated by the MCF5407 and can be driven by the external
master. Table 17-5 shows the definition of the encodings.

Table 17-5. Bus Cycle Transfer Type Encoding

TT[1:0] Transfer Type
00 Normal access
01 DMA access
10 Emulator access
11 CPU space or interrupt acknowledge

17.2.10 Transfer Modifier (TM[2:0]/PP[4:2]/DACK]1:0])

The TM[2:0]/PP[4:2] pins are programmed in the PAR to serve as the transfer modifier
outputs or as three parallel port bits. These outputs provide supplemental information for
each transfer type; see Table 17-6 through Table 17-10.

When the MCF5407 is the bus master and TM[2:0] are enabled, these signals are driven as
outputs only. If an external device is bus master and TM[2:0] are enabled, these pins are
three-stated by the MCF5407 and can be driven by the external master.

Table 17-6. TM[2:0] Encodings for TT = 00 (Normal Access)

TM[2:0] Transfer Modifier
000 Cache push access
001 User data access
010 User code access

011-100 Reserved

101 Supervisor data access

17-10 MCF5407 User’s Manual @ MOTOROLA

MCF5407 Bus Signals

Table 17-6. TM[2:0] Encodings for TT = 00 (Normal Access) (Continued)

TM[2:0] Transfer Modifier
110 Supervisor code access
111 Reserved

As shown in Table 17-7, if the DMA is bus master (TT = 01), TM[2:0] indicate the type of
DMA access and provide the DMA acknowledgement information for channels O and 1. In
addition, TM[1:0] are multiplexed with DMA acknowledge signals for channels 0 and 1.

NOTE:

When TT=01, the TM2 encoding is independent from TM[1:0]
encoding.

Table 17-7. TM2 Encoding for DMA as Master (TT = 01)

TM2 Transfer Modifier Encoding
0 Single-address access negated
1 Single-address access

Table 17-8. TM[1:0] Encoding for DMA as Master (TT = 01)

TM[1:0] Transfer Modifier Encoding

00 DMA acknowledges negated

01 DMA acknowledge, channel 0

10 DMA acknowledge, channel 1

11 Reserved

Table 17-9 shows TM[2:0] encodings for emulator mode accesses.
Table 17-9. TM[2:0] Encodings for TT = 10 (Emulator Access)

TM[2:0] Transfer Modifier
000-100 Reserved
101 Emulator mode data access
110 Emulator mode code access
111 Reserved

The TM signals indicate user or data transfer types during emulation transfers, while for
interrupt acknowledge transfers, the TM signals carry the interrupt level being
acknowledged; see Table 17-10.

(M) moToroLA Chapter 17. Signal Descriptions 17-11

‘rupt Control Signals

Table 17-10. TM[2:0] Encodings for TT = 11 (Interrupt Level)

TM[2:0] Transfer Modifier

000 CPU Space

001 Interrupt level 1 acknowledge
010 Interrupt level 2 acknowledge
011 Interrupt level 3 acknowledge
100 Interrupt level 4 acknowledge
101 Interrupt level 5 acknowledge
110 Interrupt level 6 acknowledge
111 Interrupt level 7 acknowledge

17.3 Interrupt Control Signals

The interrupt control signals supply the external interrupt level to the MCF5407 device.

17.3.1 Interrupt Request (IRQ1/IRQ2, IRQ3/IRQ6, IRQ5/IRQ4,
and IRQ7)

The IRQ1, IRQ3, IRQ5, and IRQ7 signals are the default interrupt request signals (IRQn).
However, by setting the appropriate bit in the interrupt port assignment register IRQPAR),
IRQ1, IRQ3, and IRQS5 can be changed to function as IRQ2, IRQ6, and IRQ4, respectively.
See Section 9.2.4, “Interrupt Port Assignment Register (IRQPAR).”

17.4 Bus Arbitration Signals

The bus arbitration signals provide the external bus arbitration control for the MCF5407.

17.4.1 Bus Request (BR)

The BR output indicates to an external arbiter that the processor is requesting to be bus
master for one or more bus cycles. BR is negated when the MCF5407 begins an access to
the external bus with no other internal accesses pending. BR remains negated until another
internal request occurs.

17.4.2 Bus Grant (BG)

An external arbiter asserts the BG input to indicate that the MCF5407 can take control of
the bus on the next rising edge of CLKIN. When the arbiter negates BG, the MCF5407 will
release the bus as soon as the current transfer completes. The external arbiter must not grant
the bus to any other master until both BD and BG are negated.

17-12 MCF5407 User’s Manual @ MOTOROLA

Clock and Reset Signals

17.4.3 Bus Driven (BD)
The MCF5407 asserts BD to indicate that it is the current master and is driving the bus. The
MCF5407 behaves as follows:

 If the MCF5407 is the bus master but is not using the bus, BD is asserted.

¢ If the MCF5407 loses mastership during a transfer, it completes the last transfer of
the access, negates BD, and three-states all bus signals on the rising edge of CLKIN.

e If the MCF5407 loses bus mastership during an idle clock cycle, it three-states all
bus signals on the rising edge of CLKIN.

« BD cannot be negated unless BG is negated.

17.5 Clock and Reset Signals

The clock and reset signals configure the MCF5407 and provide interface signals to the
external system.

17.5.1 Reset In (RSTI)

Asserting RSTI causes the MCF5407 to enter reset exception processing. When RSTI is
g:ognized, BR and BD are negated and the address bus, data bus, TT, SIZ, R/W, AS, and
TS are three-stated. RSTO is asserted automatically when RSTI is asserted.

17.5.2 Clock Input (CLKIN)

CLKIN is the MCF5407 input clock frequency to the on-board phase-locked-loop (PLL)
clock generator. CLKIN is used to internally clock or sequence the MCF5407 internal bus
interface at a selected multiple of the input frequency used for internal module logic.
CLKIN should be used as the bus timing reference.

17.5.3 Bus Clock Output (BCLKO)

The internal PLL generates BCLKO. It has the same frequency as CLKIN, which is used
as the bus timing reference by the external devices. BCLKO is provided for compatibility
with earlier devices.

17.5.4 Reset Out (RSTO)

After RSTI is asserted, the PLL temporarily loses its lock, during which time RSTO is
asserted. When the PLL regains its lock, RSTO negates again. This signal can be used to
reset external devices.

(M) moToroLA Chapter 17. Signal Descriptions 17-13

V¥ ¢

‘ k k and Reset Signals

17.5.5 Data/Configuration Pins (D[7:0])

This section describes data pins, D[7:0], that are read at reset for configuration. Table 17-11
shows pin assignments.

Table 17-11. Data Pin Configuration

Pin Function

D7 | Auto-acknowledge configuration (AA_CONFIG)
D[6:5] | Port size configuration (PS_CONFIG[1:0])

D4 Address configuration (ADDR_CONFIG/D4)

D3 Byte enable configuration (BE_CONFIG)
D[2:0] | Divide control (DIVIDE[2:0])

17.5.5.1 D[7:5,3]—Boot Chip-Select (CS0) Configuration

D[7:5,3] determine defaults for the global chip select (CS0), the only chip select valid at
reset. These signals correspond to bits in chip-select configuration register O (CSCRO).

17.5.5.2 D7—Auto Acknowledge Configuration (AA_CONFIG)

At reset, the enabling and disabling of auto acknowledge for boot CSO0 is determined by the
logic level driven on D7 at the rising edge of RSTL. AA_CONFIG is multiplexed with D7
and sampled only at reset. The D7 logic level is reflected as the reset value of CSCR[AA].
Table 17-12 shows how the D7 logic level corresponds to the auto acknowledge timing for
CSO at reset. Note that auto acknowledge can be disabled by driving a logic 0 on D7 at reset.

Table 17-12. D7 Selection of CS0 Automatic Acknowledge

D7 (CSCRO[AA]) Boot CS0 AA
0 Disabled
1 Enabled with 15 wait states

17.5.5.3 D[6:5]—Port Size Configuration (PS_CONFIG[1:0])

The default port size value of the boot CSO is determined by the logic levels driven on
D[6:5] at the rising edge of RSTI, which are reflected as the reset value of CSCR[PS]. Table
17-13 shows how the logic levels of D[6:5] correspond to the CSO port size at reset.

Table 17-13. D6 and D5 Selection of CS0 Port Size

D[6:5] (CSCRO[PS]) Boot CSO Port Size

00 32-bit port
01 8-bit port
1x 16-bit port

17-14 MCF5407 User’s Manual @ MOTOROLA

Chip-Select Module Signals

17.5.5.4 D3—Byte-Enable Configuration (BE_CONFIG)

The default byte-enable mode of the boot CSO0 is determined by the logic level driven on
D3 at the rising edge of RSTL This logic level is reflected as the reset value of
CSCRO[BEM]. Table 17-13 shows how the logic levels of D[6:5] correspond to the port
size for CSO at reset.

Table 17-14. D3/BE_CONFIG, BE[3:0] Boot Configuration

D3 (CSCRO[BEM]) Boot CS0 Byte Enable Configuration
0 Neither BE nor BWE is asserted for read. BWE is generated for data write only.
1 BE is asserted for read; BWE is asserted for write.

17.5.6 D4—Address Configuration (ADDR_CONFIG)

The address configuration signal (ADDR_CONFIG) programs the PAR of the parallel I/O
port to be either parallel I/O or to be the upper address bus bits along with various attribute
and control signals at reset to give the user the option to access a broader addressing range
of memory if desired. ADDR_CONFIG is multiplexed with D4 and its configuration is
sampled at reset as shown in Table 17-15.

Table 17-15. D4/ADDR_CONFIG, Address Pin Assignment

D4/ADDR_CONFIG PAR Configuration at Reset
0 PP[15:0], defaulted to inputs upon reset
1 A[31:24)/TIP/DREQ[1:0/TM[2:0)/TT[1:0]

17.5.6.1 D[2:0]—Divide Control (DIVIDE[2:0])

The divide control input bus, DIVIDE[2:0], indicates the CLKIN/PCLK ratio. These
signals are sampled on the rising edge of RSTI to indicate the ratios described in
Chapter 20, “Electrical Specifications.”

17.6 Chip-Select Module Signals

The MCF5407 device provides eight programmable chip-select signals that can directly
interface with SRAM, EPROM, EEPROM, and peripherals. These signals are asserted and
negated on the falling edge of the clock.

17.6.1 Chip-Select (CS[7:0])

Each chip select can be programmed for a base address location and for masking addresses,
port size and burst-capability indication, wait-state generation, and internal/external
termination.

Reset clears all chip select programming; CSO is the only chip select initialized out of reset.
CS0 is also unique because it can function at reset as a global chip select that allows boot

(M) moToroLA Chapter 17. Signal Descriptions 17-15

M Controller Signals

ROM to be selected at any defined address space. Port size and termination (internal vs.
external) for boot CSO are configured by the levels on D[7:5,3] on the rising edge of RSTI,
as described in Section 17.5.5.1, “D[7:5,3]—Boot Chip-Select (CS0) Configuration.”

The chip-select implementation is described in Chapter 10, “Chip-Select Module.”

17.6.2 Byte Enables/Byte Write Enables (BE[3:0]/BWE[3:0])

The four byte enables are multiplexed with the MCF5407 byte-write-enable signals. Each
pin can be individually programmed through the chip-select control registers (CSCRs). For
each chip select, assertion of byte enables for reads and byte-write enables for write cycles
can be programmed. Alternatively, users can program byte-write enables to assert on writes
and no byte enable assertion for read transfers.

17.6.3 Output Enable (OE)

The output enabl_e(ﬁ) signal is sent to the interfacing memory and/or peripheral to enable
a read transfer. OE is asserted only when a chip select matches the current address decode.

17.7 DRAM Controller Signals

The DRAM signals in the following sections interface to external DRAM. DRAM with
widths of 8, 16, and 32 bits are supported and can access as much as 512 Mbytes of DRAM.

17.7.1 Row Address Strobes (RAS[1:0])

The row address strobes (RAS[1:0]) interface to RAS inputs on industry-standard
ADRAMs. When SDRAMs are used, these signals interface to the chip-select lines of the
SDRAMs within a memory block. Thus, there is one RAS line for each memory block
(because the MCF5407 supports only two memory blocks).

17.7.2 Column Address Strobes (CAS[3:0])

The column address strobes (CAS[3:0]) interface to CAS inputs on industry-standard
DRAMs. These provide CAS for a given ADRAM block. When SDRAMs are used, CAS
signals control the byte enables for standard SDRAMs (referred to as DQMx). CAS3
accesses the LSB and CASO accesses the MSB of data.

17.7.3 DRAM Write (DRAMW)

The DRAM write signal (DRAMW) is asserted to signify that a DRAM write cycle is
underway. A read bus cycle is indicated by the negation of DRAMW.

17-16 MCF5407 User’s Manual @ MOTOROLA

DMA Controller Module Signals

17.7.4 Synchronous DRAM Column Address Strobe (SCAS)

The synchronous DRAM column address strobe (SCAS) is registered during synchronous
mode to route directly to the SCAS signal of SDRAM:s.

17.7.5 Synchronous DRAM Row Address Strobe (SRAS)

The synchronous DRAM row address strobe output (SRAS) is registered during
synchronous mode to route directly to the SRAS signal of external SDRAMs.

17.7.6 Synchronous DRAM Clock Enable (SCKE)

The synchronous DRAM clock enable output (SCKE) is registered during synchronous
mode to route directly to the SCKE signal of external SDRAMs. This signal provides the
clock enable to the SDRAM.

17.7.7 Synchronous Edge Select (EDGESEL)

The synchronous edge select input (EDGESEL) helps select additional output hold times
for signals that interface to external SDRAMs. It provides the following three modes of
operation for SDRAM control signals:

* When EDGESEL is tied high, SDRAM control signals change on the rising edge of
CLKIN.

e When EDGESEL is tied low, SDRAM control signals change on the falling edge of
CLKIN.

e When EDGESEL is tied to the external clock (normally buffered CLKIN), which
drives the SDRAM and other devices, SDRAM signals are generated within the
MCF5407 make a transition on the rising edge of the SDRAM clock. See
Figure 11-14 on page 11-19. This loop-back configuration provides additional
output hold time for MCF5407 interface signals provided to the SDRAM. In this
case, the SDRAM clock operates at the CLKIN frequency, with a possible slight
phase delay.

17.8 DMA Controller Module Signals

The DMA controller module uses the signals in the following subsections to provide
external request for either a source or destination.

17.8.1 DMA Request (DREQ[1:0])/PP[6:5])

The DMA request pins (DREQ[1:0]/PP[6:5]) can serve as the DMA request inputs or as
two bits of the parallel port, as determined by individually programmable bits in the PAR.

These inputs are asserted by a peripheral device to request an operand transfer between that
peripheral and memory by either channel O or 1 of the on-chip DMA.

(M) moToroLA Chapter 17. Signal Descriptions 17-17

al Module Signals

17.8.2 Transfer Modifier/DMA Acknowledge
(TM[2:0]/DACK]1:0])

Although the MCF5407 provides similar encodings on TM[2:0], DMA acknowledgement
pins (DACKJ1:0]) are now combined with PP[3:2]/TM[1:0], resulting in three-to-one
multiplexed signals, PP[3:2]/TM[1:0]/DACK][1:0]. TM2 is still multiplexed only with PP4.
When properly connected, TM[2:0] can be used in MCF5407 designs as on MCF5307
designs, or DACK[1:0] can be used for DMA transfers, as shown in Figure 17-2.

MCF5307 Function Pin Pin MCF5407 Function

Single/dual cycle access TMO TMO | DMA 0 acknowledge
DMA 0 acknowledge configuration ™1 & TM1 | DMA 1 acknowledge
DMA 1 acknowledge configuration T™M2 TM2 | Single/dual cycle access

Figure 17-2. MCF5307 to MCF5407 TM[2:0] Pin Remapping

To enable DACK]J1:0], first enable TM[1:0] through the PAR and then program the
interrupt assignment register (IRQPAR) in the MCF5407 SIM module to enable bits 0—1.

When IRQPAR[ENBDACKI1] = 1 and PAR is programmed to enable TM1, DACK1 for
DMA channel 1 is driven in place of TM1 for DMA transfers. Clearing ENBDACKI1
disables this function and only the TM1 encoding is driven. Likewise, setting ENBDACKO
enables DACKO to be driven; clearing ENBDACKO disables this function and drives the
TMO encoding.

Although the MCF5407 TM[2:0] signals can drive DMA access encoding, the bit positions
of these encodings differ from the MCF5307. Single-address access indication is now
encoded on TM2 when the PAR is set to enable the transfer modifier signal and an external
master or DMA transfer is occurring. This encoding is driven by TMO on the MCF5307. In
addition, DMA acknowledge encodings are driven on TM[1:0] on the MCF5407, as
opposed to TM[2:1] on the MCF5307.

17.9 Serial Module Signals

The signals in the following sections are used to transfer serial data between the two UART
modules and external peripherals.

17.9.1 Transmitter Serial Data Output (TxD)

In UART mode, TxD is held high (mark condition) when the transmitter is disabled, idle,
or operating in the local loop-back mode. Data is shifted out least-significant bit (Isb) first
on TxD on the falling edge of the clock source. For UART1 in modem mode, TxD is held
low when the transmitter is disabled or idle. Data is shifted out on TxD on the rising edge
of the clock signal driving UART1’s CTS input. UART1 transfers can be specified as either
Isb or msb first.

17-18 MCF5407 User’s Manual @ MOTOROLA

Timer Module Signals

17.9.2 Receiver Serial Data Input (RxD)

Data received on RxD is sampled on the rising edge of the clock source, with the Isb
received first. For UART1 in modem mode, data received on RxD is sampled on the falling
edge of the clock signal driving UART1’s CTS input. UART1 transfers can be specified as
either Isb or msb first.

17.9.3 Clear to Send (CTS)

This input can generate an interrupt on a change of state. For UART1 in modem mode, CTS
must be driven by the serial bit clock from the external CODEC or AC97 controller.

17.9.4 Request to Send (RTS)

This output can be programmed to be negated or asserted automatically by either the
receiver or the transmitter. When connected to a transmitter’s CTS, RTS can control serial
data flow. For UART1 in AC97 mode, RTS serves as the frame sync or start of frame (SOF),
output to the external AC97 controller. When this mode is used, the AC97 BIT_CLK, which
is input on CTS, is divided by 256.

17.10 Timer Module Signals

The signals in the following sections are external interfaces to the two general-purpose
MCF5407 timers. These 16-bit timers can capture timer values, trigger external events or
internal interrupts, or count external events.

17.10.1 Timer Inputs (TIN[1:0])

TIN[1:0] can be programmed as clocks that cause events in the counter and prescalers.
They can also cause captures on the rising edge, falling edge, or both edges.

17.10.2 Timer Outputs (TOUT1, TOUTO)

The programmable timer outputs (TOUT1 and TOUTO) pulse or toggle on various timer
events.

17.11 Parallel I/0 Port (PP[15:0])

This 16-bit bus is dedicated for general-purpose I/O. The parallel port is multiplexed with
the A[31:24], TT[1:0], TM[2:0], TIP, and DREQ[1:0]. These 16 bits are programmed for
functionality with the PAR in the SIM.

The system designer controls the reset value of this register by driving D4 with a 1 or O on
the rising edge of RSTI (reset input to MCF5407 device). At reset, the system is configured
as PP[15:0] if D4 is 0; otherwise alternate pin functions selected by PAR = 1 are used.

(M) moToroLA Chapter 17. Signal Descriptions 17-19

Vlodule Signals

Motorola recommends that D4 be driven during reset to a logic level.

17.12 12C Module Signals

The I2C module acts as a two-wire, bidirectional serial interface between the MCF5407 and
peripherals with an IC interface (such as LED controller, A-to-D converter, or D-to-A
converter). Devices connected to the I>C must have open-drain or open-collector outputs.

17.12.1 12C Serial Clock (SCL)

The bidirectional, open-drain IC serial clock signal (SCL) is the clock signal for 1’C
module operation. The I>C module controls this signal when the bus is in master mode; all
IC devices drive this signal to synchronize 1’C timing.

17.12.2 12C Serial Data (SDA)

The bidirectional, open-drain I2C serial data signal (SDA) is the data input/output for the
serial I2C interface.

17.13 Debug and Test Signals

The signals in this section interface with external I/O to provide processor status signals.

17.13.1 Test Mode (MTMODI[3:0])

The test mode signals choose between multiplexed debug module and JTAG signals. If
MTMODO is low, the part is in normal and background debug mode (BDM); if it is high,
it is in normal and JTAG mode. All other MTMOD values are reserved; MTMOD[3:1]
should be tied to ground and MTMOD[3:0] should not be changed while RSTI is negated.

17.13.2 High Impedance (HIZ)

The assertion of HIZ forces all output drivers to high-impedance state. The timing on HIZ
is independent of the clock. Note that HIZ does not override the JTAG operation;
TDO/DSO can be forced to high impedance by asserting TRST.

17.13.3 Processor Clock Output (PSTCLK)

The internal PLL generates this output signal, and is the processor clock output that is used
as the timing reference for the debug bus timing (PSTDDATA[7:0]). PSTCLK is at the
same frequency as the core processor and cache memory.

17-20 MCF5407 User’s Manual @ MOTOROLA

Debug Module/JTAG Signals

17.13.4 Processor Status Debug Data (PSTDDATA[7:0])

Processor status data outputs indicate both processor status and captured address and data
values. They operate at half the processor’s frequency, using PSTCLK. Given that real-time
trace information appears as a sequence of 4-bit data values, there are no alignment
restrictions; that is, PST values and operands may appear on either PSTDDATA[7:0]
nibble. The upper nibble, PSTDDATA[7:4], is most significant. See Chapter 5, “Debug
Support.”

17.14 Debug Module/JTAG Signals

The MCF5407 complies with the IEEE 1149.1a JTAG testing standard. JTAG test pins are
multiplexed with background debug pins. Except for TCK, these signals are selected by the
value of MTMODO. If MTMODO is high, JTAG signals are chosen; if it is low, debug
module signals are chosen. MTMODO should be changed only while RSTI is asserted.

17.14.1 Test Reset/Development Serial Clock
(TRST/DSCLK)

If MTMODO is high, TRST is selected. TRST asynchronously resets the internal JTAG
controller to the test logic reset state, causing the JTAG instruction register to choose the
bypass instruction. When this occurs, JTAG logic is benign and does not interfere with
normal MCF5407 functionality.

Although TRST is asynchronous, Motorola recommends that it makes an
asserted-to-negated transition only while TMS is held high. TRST has an internal pull-up
resistor so if it is not driven low, it defaults to a logic level of 1. If TRST is not used, it can
be tied to ground or, if TCK is clocked, to Vpp. Tying TRST to ground places the JTAG
controller in test logic reset state immediately. Tying it to Vpp causes the JTAG controller
(if TMS is a logic level of 1) to eventually enter test logic reset state after 5 TCK clocks.

If MTMODO is low, DSCLK is selected. DSCLK is the development serial clock for the
serial interface to the debug module. The maximum DSCLK frequency is 1/5 CLKIN. See
Chapter 5, “Debug Support.”

17.14.2 Test Mode Select/Breakpoint (TMS/BKPT)

If MTMODO is high, TMS is selected. The TMS input provides information to determine
the JTAG test operation mode. The state of TMS and the internal 16-state JTAG controller
state machine at the rising edge of TCK determine whether the JTAG controller holds its
current state or advances to the next state. This directly controls whether JTAG data or
instruction operations occur. TMS has an internal pull-up resistor so that if it is not driven
low, it defaults to a logic level of 1. But if TMS is not used, it should be tied to Vpp.

If MTMODO is low, BKPT is selected. BKPT signals a hardware breakpoint to the

(M) moToroLA Chapter 17. Signal Descriptions 17-21

h -

ug Module/JTAG Signals

processor in debug mode. See Chapter 5, “Debug Support.”

17.14.3 Test Data Input/Development Serial Input (TDI/DSI)

If MTMODO is high, TDI is selected. TDI provides the serial data port for loading the
various JTAG boundary scan, bypass, and instruction registers. Shifting in data depends on
the state of the JTAG controller state machine and the instruction in the instruction register.
Shifts occur on the TCK rising edge. TDI has an internal pull-up resistor, so when not
driven low it defaults to high. But if TDI is not used, it should be tied to Vpp.

If MTMODO is low, DSI is selected. DSI provides the single-bit communication for debug
module commands. See Chapter 5, “Debug Support.”

17.14.4 Test Data Output/Development Serial Output
(TDO/DSO0)

If MTMODO is high, TDO is selected. The TDO output provides the serial data port for
outputting data from JTAG logic. Shifting out data depends on the JTAG controller state
machine and the instruction in the instruction register. Data shifting occurs on the falling
edge of TCK. When TDO is not outputting test data, it is three-stated. TDO can be
three-stated to allow bused or parallel connections to other devices having JTAG.

If MTMODO is low, DSO is selected. DSO provides single-bit communication for debug
module responses. See Chapter 5, “Debug Support.”

17.14.5 Test Clock (TCK)

TCK is the dedicated JTAG test logic clock independent of the MCF5407 processor clock.
Various JTAG operations occur on the rising or falling edge of TCK. Holding TCK high or
low for an indefinite period does not cause JTAG test logic to lose state information. If TCK
is not used, it must be tied to ground.

17-22 MCF5407 User’s Manual (M) moToroLa

Chapter 18
Bus Operation

This chapter describes data-transfer operations, error conditions, bus arbitration, and reset
operations. It describes transfers initiated by the MCF5407 and by an external bus master,
and includes detailed timing diagrams showing the interaction of signals in supported bus
operations. Chapter 11, “Synchronous/Asynchronous DRAM Controller Module,”
describes DRAM cycles.

18.1 Features

The following list summarizes bus operation features:
* Up to 32 bits of address and data
e 8-, 16-, and 32-bit port sizes
* Byte, word, longword, and line size transfers
* Bus arbitration for external devices
e Burst and burst-inhibited transfer support
* Internal termination for core and DMA bus cycles

» External termination of bus cycles controlled by an external bus master

Note that, throughout this manual, an overbar indicates an active-low signal.

18.2 Bus and Control Signals

Table 18-1 summarizes MCF5407 bus signals described in Chapter 17, “Signal
Descriptions.”
Table 18-1. ColdFire Bus Signal Summary
Signal Name Description MCF5407 Master External Master Edge

AS Address strobe (e} | Falling
A[31:0] Address bus (0] | Rising
BE/BWE ! Byte enable/Byte write enable | O O Falling
Cs[7:01 ! Chip selects e} e} Falling
D[31:0] Data bus 110 1/0 Rising

@ MOTOROLA

Chapter 18. Bus Operation

18-1

k Characteristics

Table 18-1. ColdFire Bus Signal Summary (Continued)

Signal Name Description MCF5407 Master External Master Edge
1RQ[7,5,3,1] Interrupt request | | Rising
OE'’ Output enable o) I Falling
RW Read/write (o) | Rising
SIZ[1:0] Transfer size (0] | Rising
TA Transfer acknowledge | O Rising
TIP Transfer in progress o} Three-state Rising
TMI[2:0] Transfer modifier (0] Three-state Rising
TS Transfer start (o] I Rising
TT[1:0] Transfer type (0] Three-state Rising

T These signals change after the falling edge. In Chapter 20, “Electrical Specifications;” these signals are specified
off the rising edge because CLKIN is squared up internally.

18.3 Bus Characteristics

The MCF5407 uses an input clock signal (CLKIN) to generate its internal clock and
outputs BCLKO, which is provided for backwards compatibility for MCF5307 designs.
CLKIN is the bus clock rate, where all bus operations are synchronous to the rising edge of
CLKIN. Some of the bus control signals (BE/BWE, OE, CSx, and AS) are synchronous to
the falling edge, shown in Figure 18-1. Bus characteristics may differ somewhat for
interfacing with external DRAM.

Rising—Edge
ignals

FaIIing-Edge
ignals

CLKIN / N / N
tvo tho
tvo tho
tS| thi

Inputs

tyo=Propagation delay of signal relative to CLKIN edge

tho=Output hold time relative to CLKIN edge

tsi=Required input setup time relative to CLKIN edge
thi=Required input hold time relative to CLKIN edge

Figure 18-1. Signal Relationship to CLKIN for Non-DRAM Access

18.4 Data Transfer Operation

Data transfers between the MCF5407 and other devices involve the following signals:

18-2

MCF5407 User’s Manual

@ MOTOROLA

Data Transfer Operation

e Address bus (A[31:0])

e Data bus (D[31:0])

 Control signals (TS and TA)

« AS, CSx, OE, BE/BWE

 Attribute signals (R/W, SIZ, TT, TM, and TIP)
The address bus, write data, TS, and all attribute signals change on the rising edge of
CLKIN. Read data is latched into the MCF5407 on the rising edge of CLKIN. AS, CSx,
OE, and BE/BWE change on the falling edge.

The MCF5407 bus supports byte, word, and longword operand transfers and allows
accesses to 8-, 16-, and 32-bit data ports. Transfer parameters such as port size, the number
of wait states for the external slave being accessed, and whether internal transfer
termination is enabled, can be programmed in the chip-select control registers (CSCRs) and
DRAM control registers (DACRs).
For aligned transfers larger than the port size, SIZ[1:0] behaves as follows:

e If bursting is used, SIZ[1:0] stays at the size of transfer.

e If bursting is inhibited, SIZ[1:0] first shows the size of the transfer and then shows

the port size.

Table 18-2 shows encoding for SIZ[1:0].

Table 18-2. Bus Cycle Size Encoding

SIZ[1:0] Port Size
00 Longword
01 Byte
10 Word
11 Line

Figure 18-2 shows the byte lanes that external memory should be connected to and the
sequential transfers if a longword is transferred for three port sizes. For example, an 8-bit
memory should be connected to D[31:24] (BEO). A longword transfer takes four transfers
on D[31:24], starting with the MSB and going to the LSB.

(M) moToroLA Chapter 18. Bus Operation 18-3

| Transfer Operation

Byte Enable BEO BE1 BE2 BE3
Processor
Extomal | DI3124] | Di23:16] | D158] | D[:0] |
Data Bus
32-Bit Port
Memory l Byte 0 l Byte 1 l Byte 2 l Byte 3 ‘
16-Bit Port Byte 0 Byte 1 Driven with
Memory Byte 2 Byte 3 indeterminate values
8-Bit Port Byte 0
Memory
Byte 1 Driven with
Byte 2 indeterminate values
Byte 3

Figure 18-2. Connections for External Memory Port Sizes

The timing relationships between CLKIN and chip select (CS[7:0]), byte enable/byte write
enables (BE/BWE[3:0]), and output enable (OE) are similar to their relationships with
address strobe (AS) in that all transitions occur during the low phase of CLKIN. However,
as shown in Figure 18-3, differences in on-chip signal routing and external loading may
prevent signals from asserting simultaneously.

1
co
_ T8[7:0] -

E/BWE[3:0 ‘
i AN\ &

Figure 18-3. Chip-Select Module Output Timing Diagram

1
:
\
:
‘
\
‘
‘
‘
\
\
T

18.4.1 Bus Cycle Execution

When a bus cycle is initiated, the MCF5407 first compares its address with the base address
and mask configurations programmed for chip selects 0—7 (CSCRO-CSCR7) and for
DRAM blocks 0 and 1 address and control registers (DACRO and DACRI1). If the driven
address matches a programmed chip select or DRAM block, the appropriate chip select is
asserted or the DRAM block is selected using the specifications programmed in the
respective configuration register. Otherwise, the following occurs:

e [f the address and attributes do not match in CSCR or DACR, the MCF5407 runs an
external burst-inhibited bus cycle with a default of external termination on a 32-bit
port.

e If an address and attribute match in multiple CSCRs, the matching chip-select
signals are driven; however, the MCF5407 runs an external burst-inhibited bus cycle
with external termination on a 32-bit port.

* Ifan address and attribute match both DACRs or a DACR and a CSCR, the operation
is undefined.

18-4 MCF5407 User’s Manual (M) moToroLa

Data Transfer Operation

Table 18-3 shows the type of access as a function of match in the CSCRs and DACRs.

Table 18-3. Accesses by Matches in CSCRs and DACRs

Number of CSCR Matches Number of DACR Matches Type of Access

0 0 External

1 0 Defined by CSCRs

Multiple 0 External, burst-inhibited, 32-bit
0 1 Defined by DACRs

1 1 Undefined

Multiple 1 Undefined

0 Multiple Undefined

1 Multiple Undefined

Multiple Multiple Undefined

Basic bus operations occur in three clocks, as follows:

1.

2.

During the first clock, the address, attributes, and TS are driven. AS is asserted at the
falling edge of the clock to indicate that address and attributes are valid and stable.

Data and TA are sampled during the second clock of a bus-read cycle. During a read,
the external device provides data and is sampled at the rising edge at the end of the
second bus clock. This data is concurrent with TA, which is also sampled at the
rising clock edge.

During a write, the MCF5407 drives data from the rising clock edge at the end of the
first clock to the rising clock edge at the end of the bus cycle. Wait states can be
added between the first and second clocks by delaying the assertion of TA. TA can
be configured to be generated internally through the DACRs and CSCRs. If TA is
not generated internally, the system must provide it externally.

The last clock of the bus cycle uses what would be an idle clock between cycles to
provide hold time for address, attributes, and write data. Figure 18-6 and
Figure 18-8 show the basic read and write operations.

18.4.2 Data Transfer Cycle States

The data transfer operation in the MCF5407 is controlled by an on-chip state machine. Each
bus clock cycle is divided into two states. Even states occur when CLKIN is high and odd
states occur when CLKIN is low. The state transition diagram for basic and fast-termination
read and write cycles is shown in Figure 18-4.

(M) moToroLA Chapter 18. Bus Operation 18-5

| Transfer Operation

Next Cycle

Basic
Read/Write

Fast
Termination

States

Figure 18-4. Data Transfer State Transition Diagram

Table 18-4 describes the states as they appear in subsequent timing diagrams. Note that the
TT[1:0], TM[2:0], and TIP functions are chosen in the PAR, as described in Section 15.1.1,
“Pin Assignment Register (PAR).”

Table 18-4. Bus Cycle States

State Cycle CLKIN Description

SO All High The read or write cycle is initiated. On the rising edge of CLKIN, the MCF5407
places a valid address on the address bus, asserts TIP, and drives R/W high for
aread and low for a write, if these signals are not already in the appropriate
state. The MCF5407 asserts TT[1:0], TM[2:0], SIZ[1:0], and TS on the rising
edge of CLKIN.

S1 All Low AS asserts on the falling edge of CLKIN, indicating that the address and
attributes are stable. The appropriate CSx, BE/BWE, and OE signals assert on
the CLKIN falling edge.

Fast termination TA must be asserted during S1. Data is made available by the external device
and is sampled on the rising edge of CLKIN with TA asserted.

S2 Read/write High TS is negated on the rising edge of CLKIN.

(skipped for fast

termination)

Write The data bus is driven out of high impedance as data is placed on the bus on
the rising edge of CLKIN.

S3 Read/write Low The MCF5407 waits for TA assertion. If TA is not sampled as asserted before
(skipped for fast the rising edge of CLKIN at the end of the first clock cycle, the MCF5407 inserts
termination) wait states (full clock cycles) until TA is sampled as asserted.

Read Data is made available by the external device on the falling edge of CLKIN and
is sampled on the rising edge of CLKIN with TA asserted.

S4 All High The external device should negate TA.

Read (including The external device can stop driving data after the rising edge of CLKIN.
fast termination) However, data could be driven up to S5.
18-6 MCF5407 User’s Manual (M) moToroLA

Data Transfer Operation

Table 18-4. Bus Cycle States (Continued)

State

Cycle

CLKIN

Description

S5

S5

Read

Write

Low

AS, CS, BE/BWE, and OE are negated on the CLKIN falling edge. The
MCF5407 stops driving address lines and R/W on the rising edge of CLKIN,
terminating the read or write cycle. At the same time, the MCF5407 negates
TT[1:0], TM[2:0], TIP, and SIZ[1:0] on the rising edge of CLKIN.

Note that the rising edge of CLKIN may be the start of SO for the next access
cycle; in this case, TIP remains asserted and R/W may not transition,
depending on the nature of the back-to-back cycles.

The external device stops driving data between S4 and S5.

The data bus returns to high impedance on the rising edge of CLKIN. The rising
edge of CLKIN may be the start of SO for the next access.

NOTE:

An external device has at most two CLKIN cycles after the start
of S4 to three-state the data bus after data is sampled in S3. This
applies to basic read cycles, fast-termination cycles, and the
last transfer of a burst.

18.4.3 Read Cycle

During a read cycle, the MCF5407 receives data from memory or from a peripheral device.
Figure 18-5 is a read cycle flowchart.

The read cycle timing diagram is shown in Figure 18-6.

@ MOTOROLA

MCF5407

1. Set R/W to read
2. Place address on A[31:0]

3. Assert TT[1:0], TM[2:0], TIP,
and SIZ[1:0]

4. Assert TS
5. Assert AS
6. Negate TS

System

1. Sample TA low and latch data

A

Decode address and select the
appropriate slave device.

Drive data on D[31:0]
Assert TA

>

1. Start next cycle

e

Negate TA.
Stop driving D[31:0]

Figure 18-5. Read Cycle Flowchart

NOTE:

In the following timing diagrams, TA waveforms apply for chip
selects programmed to enable either internal or external

Chapter 18. Bus Operation

18-7

| Transfer Operation

termination. TA assertion should look the same in either case.

e ‘80‘81‘S2L/S\C:>_JS4‘85‘ ‘ ‘

R

TT[1:0], TM[2:0
SIZ[[1:O]], A[?E1:O% >< ><

&

D[31:0] Read

Figure 18-6. Basic Read Bus Cycle

Note the following characteristics of a basic read:

* In S3, data is made available by the external device on the falling edge of CLKIN
and is sampled on the rising edge of CLKIN with TA asserted.

* In S4, the external device can stop driving data after the rising edge of CLKIN.
However, data could be driven up to S5.

* For a read cycle, the external device stops driving data between S4 and S5.

States are described in Table 18-4.

18.4.4 Write Cycle

During a write cycle, the MCF5407 sends data to memory or to a peripheral device. The
write cycle flowchart is shown in Figure 18-7.

18-8 MCF5407 User’s Manual (M) moToroLa

Data Transfer Operation

MCF5407 System

1. Set R/W to write

2. Place address on A[31:0]
3. Assert TT[1:0], TM[2:0], TIP,
and SIZ[1:0]
4. Assert TS
5. Assert AS
6. Place data on D[31:0] >
. 1. Decode address
7. Negate TS
2. Store data on D[31:0]
1. Sample TA low < Assert TA
> Negate TA

1. Tree-state D[31:0]
2. Start next cycle

A

Figure 18-7. Write Cycle Flowchart

The write cycle timing diagram is shown in Figure 18-8.

SO S1 S

> s3 S S5
CLKIN _| \ | \ | ~] L L
A[31:0], TT[1:0]

TM[2:0]; SIZ[1:0] X X

4

b
2|

D[31:0] Write

Figure 18-8. Basic Write Bus Cycle

Table 18-4 describes the six states of a basic write cycle.

18.4.5 Fast-Termination Cycles

Two clock-cycle transfers are supported on the MCF5407 bus. In most cases, this is
impractical to use in a system because the termination must take place in the same half
clock during which AS is asserted. Because this is atypical, it is not referred to as the
zero-wait-state case but is called the fast-termination case. A fast-termination cycle is one
in which an external device or memory asserts TA as soon as TS is detected. This means
that the MCF5407 samples TA on the rising edge of the second cycle of the bus transfer.
Figure 18-9 shows a read cycle with fast termination. Note that fast termination cannot be
used with internal termination.

(M) moToroLA Chapter 18. Bus Operation 18-9

| Transfer Operation

SO S1 S4 S5

cen [| L L L

A[31:0],TT[1:0
TM[[2:O,]SIZ[[1 :O]% >< ><

by
2

4
bl

)
(@]
g

O
m

X,
D[31:

sy
lul

Read

h=]

=

Figure 18-9. Read Cycle with Fast Termination
Figure 18-10 shows a write cycle with fast termination.

SO S1 S4 S5

cwn [[L[L L[L

A[31:0], TT[1:0
TM[[2:O],]S|Z{1:O% >< ><

R

&l

o
b

&
(@]
2

o
=
m
e
o
m

D[31:0

Write

b=

Figure 18-10. Write Cycle with Fast Termination

18.4.6 Back-to-Back Bus Cycles

The MCF5407 runs back-to-back bus cycles whenever possible. For example, when a
longword read is started on a word-size bus, the processor performs two back-to-back word
read accesses. Back-to-back accesses are distinguished by the continuous assertion of TIP
throughout the cycle. Figure 18-11 shows a read back-to-back with a write.

18-10 MCF5407 User’s Manual @ MOTOROLA

Data Transfer Operation

S4 SO S2

||

—

CLKIN J L_J L_J L/\/J L_‘ m L_J

A[31:0], TT[1:0
TM[[2:0],]SIZ{1 :0% >< ><

RAW \

s\ / /
_AS, CSx
BE/BWEX

D[31:0] Read Write

0 __J ¥ |

Figure 18-11. Back-to-Back Bus Cycles

:
J
Y T RIRIR

Basic read and write cycles are used to show a back-to-back cycle, but there is no restriction
as to the type of operations to be placed back to back. The initiation of a back-to-back cycle
is not user definable.

18.4.7 Burst Cycles

The MCF5407 can be programmed to initiate burst cycles if its transfer size exceeds the
size of the port it is transferring to. For example, with bursting enabled, a word transfer to
an 8-bit port would take a 2-byte burst cycle for which SIZ[1:0] = 10 throughout. A line
transfer to a 32-bit port would take a 4-longword burst cycle, for which SIZ[1:0] = 11
throughout.

The MCF5407 bus can support 2-1-1-1 burst cycles to maximize cache performance and
optimize DMA transfers. A user can add wait states by delaying termination of the cycle.
The initiation of a burst cycle is encoded on the size pins. For burst transfers to smaller port
sizes, SIZ[1:0] indicates the size of the entire transfer. For example, if the MCF5407 writes
a longword to an 8-bit port, SIZ[1:0] = 00 for the first byte transfer and does not change.

CSCRs are used to enable bursting for reads, writes, or both. MCF5407 memory space can
be declared burst-inhibited for reads and writes by clearing the appropriate
CSCRx[BSTR,BSTW]. A line access to a burst-inhibited region is broken into separate
port-width accesses. Unlike a burst access, SIZ[1:0] = 11 only for the first port-width
access; for the remaining accesses, SIZ[1:0] reflects the port width, with individual
accesses separated by AS negations. The address changes if internal termination is used but
does not change if external termination is used, as shown in Figure 18-12 and Figure 18-14.

(M) moToroLA Chapter 18. Bus Operation 18-11

| Transfer Operation

18.4.7.1 Line Transfers

A line is a 16-byte-aligned, 16-byte value. Despite the alignment, a line access may not
begin on the aligned address; therefore, the bus interface supports line transfers on multiple
address boundaries. Table 18-5 shows allowable patterns for line accesses.

Table 18-5. Allowable Line Access Patterns

A[3:2] Longword Accesses
00 0-4-8-C
01 4-8-C-0
10 8-C-0-4
11 C-0-4-8

18.4.7.2 Line Read Bus Cycles

Figure 18-12 shows line read with zero wait states. The access starts like a basic read bus
cycle with the first data transfer sampled on the rising edge of S4, but the next pipelined
burst data is sampled a cycle later on the rising edge of S6. Each subsequent pipelined data
burst is single cycle until the last one, which can be held for up to 2 CLKIN cycles after TA
is asserted. Note that AS and CSx are asserted throughout the burst transfer. This example
shows the timing for external termination, which differs only from the internal termination
example in Figure 18-13 in that the address lines change only at the beginning (assertion of
TS and TIP) and end (negation of TIP) of the transfer.

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

pcs N N N OO D T O B A

A[31:0], TT[1:0
TM[[2:O],] SIZ%1:O{ >< ><

RW
TIP

TS

___AS,CSx
BE/BWEx, OE

D[31:0} Ready»»Ready»x Read)»» Read
.
Figure 18-12. Line Read Burst (2-1-1-1), External Termination

Figure 18-13 shows timing when internal termination is used.

18-12 MCF5407 User’s Manual @ MOTOROLA

Data Transfer Operation

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

cwnf] [[L4 L& L& L4 LT LI
A[31:0] X X X X X X

TT[1:0]
TM[2:0], SIZ{1:01 X X
RW

P

5
___AS, CSx
BE/BWEX, OF

D[31:0} Read)»>»Ready»» Ready»»» Read

TA

Figure 18-13. Line Read Burst (2-1-1-1), Internal Termination

Figure 18-14 shows a line access read with one wait state programmed in CSCRx to give
the peripheral or memory more time to return read data. This figure follows the same
execution as a zero-wait state read burst with the exception of an added wait state.

510911512513

S0 S1 52 83| WS S455 WS 5657 WS S8S9; WS

A[31:0], TT[1:0
TM[[2:0],] SIZ%1 :Oi >< X

RW /

D[31:0] Read)y - Ready - Ready>- Read

Figure 18-14. Line Read Burst (3-2-2-2), External Termination

Figure 18-15 shows a burst-inhibited line read access with fast termination. The external
device executes a basic read cycle while determining that a line is being transferred. The
external device uses fast termination for subsequent transfers.

(M) moToroLA Chapter 18. Bus Operation 18-13

| Transfer Operation

SO S1 S2 S3 S4 S5 S0 S1 S4 S5 SO S1 S4 S5 SO S1 S4 S5 S6 S7

A[31:0] X AB21=00 X as21=01 X AB21=10 X AB2l=11 X
R/W
™zo) X X
TP
SIZ[1:0] X Line X Longword X
s A1 AT B 1
BE/BV@%%

D[é1 :0] Read >77T Read >77T\Mead>777 Read
}4—»{8 <F—>‘<—>’<T>{

asic ast Fast
Figure 18-15. Line Read Burst-Inhibited, Fast, External Termination

18.4.7.3 Line Write Bus Cycles

Figure 18-16 shows a line access write with zero wait states. It begins like a basic write bus
cycle with data driven one clock after TS. The next pipelined burst data is driven a cycle
after the write data is registered (on the rising edge of S6). Each subsequent burst takes a
single cycle. Note that as with the line read example in Figure 18-12, AS and CSx remain
asserted throughout the burst transfer. This example shows the behavior of the address lines
for both internal and external termination. Note that with external termination, address
lines, like SIZ, TT, and TM, hold the same value for the entire transfer.

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S

L [s B B B
Internal Term?rggziﬂ >< >< >< >< ><

A[31:0] >< ><
External Termination

SIZ[1:0]
TM[1:0], TT[1:0] >< ><

D[31:0] Write W wite Y write Y write)

Figure 18-16. Line Write Burst (2-1-1-1), Internal/External Termination

18-14 MCF5407 User’s Manual @ MOTOROLA

Data Transfer Operation

Figure 18-17 shows a line burst write with one wait-state insertion.

SO S1 S2 S3| WS |S4 S5| WS |S6 S7| WS |S8 S9| WS [|S10S11
CLKIN

AL31:0] X X X X X
RWTP \
e i
nn
OE BE \ avi
D[31:0] ————————{ Write Ywrite Ywrite Awrite —
™ LN NG LY

Figure 18-17. Line Write Burst (3-2-2-2) with One Wait State, Internal Termination

Figure 18-18 shows a burst-inhibited line write. The external device executes a basic write
cycle while determining that a line is being transferred. The external device uses fast
termination to end each subsequent transfer.

SO S1 S2 S3 S4 S5 S0 S1 S4 S5 SO S1 S4 S5 SO S1 S4 S5

CLKIN

A[31:0] X A[3:2] = 00 X azzi=o1 X AB21=10 X AB2=11 X
RW,TP |\ | T
™20 X X
siZ[1:0] X Line X Longword X
TS
_AS, CSx
O%[EY\:,(I)E] ———{ write. X wite)\ write Y wiite
TA

Basic F Fast

ast Fast

Figure 18-18. Line Write Burst-Inhibited, Internal Termination

18.4.7.4 Transfers Using Mixed Port Sizes

Figure 18-19 shows timing for a longword read from an 8-bit port using external
termination. Figure 18-20 shows the same transfer with internal termination. For both,
SIZ[1:0] change only at the start of a new transfer because this burst is implemented as one

(M) moToroLA Chapter 18. Bus Operation 18-15

iligned Operands

transfer.

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

bt [[N Y S T O B O R S B e

A[31:0], TT[1:0
TM[[2:O],]SIZE1:O% >< ><

D[31:0] Ready»»Readyy»x Read)»» Read

TA

Figure 18-19. Longword Read from an 8-Bit Port, External Termination
Note that with external termination, address signals do not change. With internal
termination, Figure 18-20, A[1:0] increment for the same longword transfer.

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 812

e L L4 L4 L LA LT L
A[1:0] X X X X X X

A[31:2], TT[1:0
TM[[2:O],] SIZ%1 :0{ >< ><

E

d
3

D[31:0} Read)y > Read)»»Read)y»»<Read

TA

Figure 18-20. Longword Read from an 8-Bit Port, Internal Termination

18.5 Misaligned Operands

Because operands, unlike opcodes, can reside at any byte boundary, they are allowed to be
misaligned. A byte operand is properly aligned at any address, a word operand is
misaligned at an odd address, and a longword is misaligned at an address not a multiple of
four. Although the MCF5407 enforces no alignment restrictions for data operands
(including program counter (PC) relative data addressing), additional bus cycles are
required for misaligned operands.

18-16 MCF5407 User’s Manual @ MOTOROLA

Bus Errors

Instruction words and extension words (opcodes) must reside on word boundaries.
Attempting to prefetch a misaligned instruction word causes an address error exception.

The MCF5407 converts misaligned, cache-inhibited operand accesses to multiple aligned
accesses. Figure 18-21 shows the transfer of a longword operand from a byte address to a
32-bit port. In this example, SIZ[1:0] specify a byte transfer and a byte offset of 0x1. The
slave device supplies the byte and acknowledges the data transfer. When the MCF5407
starts the second cycle, SIZ[1:0] specify a word transfer with a byte offset of 0x2. The next
two bytes are transferred in this cycle. In the third cycle, byte 3 is transferred. The byte
offset is now 0x0, the port supplies the final byte, and the operation is complete.

31 24 23 1615 87 0 A[2:0]
Transfer 1 —_ Byte 0 —_ —_ 001
Transfer 2 —_ —_ Byte 1 Byte 2 010
Transfer 3 Byte 3 —_ —_ —_ 100

Figure 18-21. Example of a Misaligned Longword Transfer (32-Bit Port)

If an operand is cacheable and is misaligned across a cache-line boundary, both lines are
loaded into the cache. The example in Figure 18-22 differs from the one in Figure 18-21 in
that the operand is word-sized and the transfer takes only two bus cycles.

31 24 23 1615 87 o Al2:0]
Transfer 1 — — — Byte 0 001
Transfer 2 Byte 0 — — — 100

Figure 18-22. Example of a Misaligned Word Transfer (32-Bit Port)

NOTE:

External masters using internal MCF5407 chip selects and
default memory control signals must initiate aligned transfers.

18.6 Bus Errors

The MCF5407 has no bus monitor. If the auto-acknowledge feature is not enabled for the
address that generates the error, the bus cycle can be terminated by asserting TA or by using
the software watchdog timer. If it is required that the MCF5407 handle a bus error
differently, an interrupt handler can be invoked by asserting an interrupt to the core along
with TA when the bus error occurs.

18.7 Interrupt Exceptions

A peripheral device uses the interrupt-request signals (IRQx) to signal the core to take an
interrupt exception when it needs the MCF5407 or is ready to send information to it. The
interrupt transfers control to an appropriate routine.

(M) moToroLA Chapter 18. Bus Operation 18-17

3
4

y
A

‘rupt Exceptions

The MCF5407 has the following two levels of interrupt masking:

* Interrupt mask registers in the SIM compare interrupt inputs with programmable
interrupt mask levels. The SIM outputs only unmasked interrupts.

* The status register uses a 3-bit interrupt priority mask. The core recognizes only
interrupt requests of higher priority than the value in the mask. See Section 2.2.2.1,
“Status Register (SR).”

NOTE:

To mask a level 1-6 interrupt source, write a higher-level SR
interrupt mask before setting IMR. Then restore the mask to its
previous value. Do not mask a level 7 interrupt source.

The MCF5407 continuously samples and synchronizes external interrupt inputs. An
interrupt request must be held for at least two consecutive CLKIN periods to be considered
valid. To guarantee that the interrupt is recognized, the request level must be maintained
until the MCF5407 acknowledges the interrupt with an interrupt-acknowledge cycle.

NOTE:

Interrupt levels 1-7 are level-sensitive. Level 7 is also
edge-triggered. See Section 18.7.1, “Level 7 Interrupts.”

The MCF5407 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any higher-priority pending exception. Thus, the MCF5407
executes at least one instruction in an interrupt exception handler before recognizing
another interrupt request.

If autovector generation is used for internal interrupts (ICRn[AVEC] = 1), the interrupt
acknowledge vector is generated internally and no interrupt acknowledge cycle is generated
on the external bus.

If autovector generation is used for external interrupts, no interrupt acknowledge cycle is
shown on the external bus (AS is not asserted) unless AVR[BLK] is 0. Consequently, the
external interrupt must be cleared in the interrupt service routine. See Section 9.2.2,
“Autovector Register (AVR).”

18.7.1 Level 7 Interrupts

Level 7 interrupts are nonmaskable and are handled differently than other interrupts.
Level 7 interrupts are edge triggered by a transition from a lower priority request to the
level 7 request. Interrupts at all other levels are level sensitive. Therefore, if IRQ7 remains
asserted, the MCF5407 recognizes only one level 7 interrupt because only one transition
from a lower level request to a level 7evel 7 request occurred. For the processor to
recognize two consecutive level 7 interrupts, one of the following must occur:

18-18 MCF5407 User’s Manual @ MOTOROLA

Interrupt Exceptions

The interrupt request on the interrupt control pins is raised to level 7 and stays there
until an interrupt-acknowledge cycle begins. The level later drops but then returns to
level 7, causing a second transition on the interrupt control lines.

The interrupt request on the interrupt control pins is raised to level 7 and stays there.
If the level 7 interrupt routine lowers the mask level, a second level 7 interrupt is
recognized without a transition of the interrupt control pins. After the level 7 routine
completes, the MCF5407 compares the mask level to the request level on the IRQx
signals. Because the mask level is lower than the requested level, the interrupt mask
is set back to level 7. To ensure it is recognized, the level 7 request on IRQ7 must be
held until the second interrupt-acknowledge bus cycle begins.

18.7.2 Interrupt-Acknowledge Cycle

When the MCF5407 processes an interrupt exception, it performs an interrupt-
acknowledge bus cycle to obtain the vector number that contains the starting location of the
interrupt exception handler. The interrupt-acknowledge bus cycle is a read transfer that
differs from normal read cycles in the following respects:

TT[1:0] = 0x3 to indicate a CPU space or acknowledge bus cycle.

TM[2:0] = the level of interrupt being acknowledged.

A[31:5] = 0x7F_FFFF.

A[4:2] = the interrupt request level being acknowledged (same as TM[2:0]).
A[1:0] =00.

During the interrupt-acknowledge bus cycle (a read cycle), the responding device places the
vector number on D[31:24] and the cycle is terminated normally with TA. Figure 18-23 is
a flow diagram for an interrupt-acknowledge cycle terminated with TA.

(M) moToroLA Chapter 18. Bus Operation 18-19

Arbitration

MCF5407 SYSTEM

Drive 0x7FFFFF on A[31:5]

Drive 0x0 on A[1:0]

Drive interrupt level on A[4:2]

Drive R/W to read (R/W = 1)

Drive SIZ[1:0] to indicate byte (S1Z[1:0] = 01)
Drive TT[1:0] and TM[2:0] to indicate interrupt
acknowledge (TT[1:0] = 11; TM[2:0] = interrupt
level)

7. Assert TS for one CLKIN cycle

Y

o oMb~

1. Negate TS
2. Drive TM[2:0] to indicate interrupt y -
acknowledge (TM[2:0] = interrupt level) 1. Decode address and select the appropriate slave
device.
1. Read and store data (D[31:24]) | 2. Drive data on D[31:24]
2. Recognize the transfer is done 3. Assert TA for one CLKIN cycle

Figure 18-23. Interrupt-Acknowledge Cycle Flowchart

18.8 Bus Arbitration

The MCF5407 bus protocol gives either the MCF5407 or an external device access to the
external bus. If more than one external device uses the bus, an external arbiter can prioritize
requests and determine which device is bus master. When the MCF5407 is bus master, it
uses the bus to fetch instructions and transfer data to and from external memory. When an
external device is bus master, the MCF5407 can monitor the external master’s transfers and
interact through its chip-select, DRAM control, and transfer termination signals. See
Section 10.4.1.3, “Chip-Select Control Registers (CSCRO-CSCR7),” and Chapter 11,
“Synchronous/Asynchronous DRAM Controller Module.”

Two-wire bus arbitration is used where the MCF5407 shares the bus with a single external
device. This mode uses BG and BD. The external device can ignore BR. Three-wire mode
is used where the MCF5407 shares the bus with multiple external devices. This requires an
external bus arbiter and uses BG, BD, and BR. In either mode, the MCF5407 bus arbiter
operates synchronously and transitions between states on the rising edge of CLKIN.

Table 18-6 shows the four arbitration states the MCF5407 can be in during bus operation.
Table 18-6. MCF5407 Arbitration Protocol States

State Master Bus BD Description
Reset None Not | Negated | The MCF5407 enters reset state from any other state when RSTI or
driven software watchdog reset is asserted. If both are negated, the MCF5407

enters implicit or external device mastership state, depending on BG.

Implicit | MCF5407 | Not | Negated | The MCF5407 is bus master (BG input is asserted) but is not ready to
master driven begin a bus cycle. It continues to three-state the bus until an internal bus
request.

18-20 MCF5407 User’s Manual (M) mororoLa

General Operation of External Master Transfers

Table 18-6. MCF5407 Arbitration Protocol States (Continued)

State Master Bus BD Description

Explicit | MCF5407 | Driven | Asserted | The MCF5407 is explicit bus master when BG is asserted and at least
master one bus cycle has been initiated. It asserts BD and retains explicit
mastership until BG is negated even if no active bus cycles are executed.
It releases the bus at the end of the current bus cycle, then negates BD
and three-states the bus signals.

External | External Not | Negated | An external device is bus master (BG negated to MCF5407). The
master driven MCF5407 can assert OE, CS[7:0], BE/BWE[3:0], TA, and all DRAM
controller signals (RAS[1:0], CAS[3:0], SRAS, SCAS, DRAMW, SCKE).

If the MCF5407 is the only possible master, BG can be tied to GND —no arbiter is needed.

18.8.1 Bus Arbitration Signals

Bus arbitration signal timings in Table 18-7 are referenced to the system clock, which is not
considered a bus signal. Clock routing is expected to meet application requirements.

Table 18-7. ColdFire Bus Arbitration Signal Summary

Signal | /0 Description

BR O | Bus request. Indicates to an external arbiter that the processor needs to become bus master. BR is
negated when the MCF5407 begins an access to the external bus with no other internal accesses
pending. BR remains negated until another internal request occurs.

BG | Bus grant. An external arbiter asserts BG to indicate that the MCF5407 can control the bus at the
next rising edge of CLKIN. When the arbiter negates BG, the MCF5407 must release the bus as
soon as the current transfer completes. The external arbiter must not grant the bus to any other
device until both BD and BG are negated.

BD O | Bus driven. The MCF5407 asserts BD to indicate it is current master and is driving the bus. If it loses
bus mastership during a transfer, it completes the last transfer of the current access, negates BD,
and three-states all bus signals on the rising edge of CLKIN. If it loses mastership during an idle
clock cycle, it three-states all bus signals on the rising edge of CLKIN.

18.9 General Operation of External Master Transfers

An external master asserts its hold signal (such as HOLDREQ) when it executes a bus
cycle, driving BG high and forcing the MCF5407 to hold all bus requests. During an
external master cycle, the MCF5407 can provide memory control signals (OE, CS[7:0],
BE/BWE]3:0], RAS[1:0], CAS[3:0]) and TA while the external master drives the address
and data bus and other required bus control signals. When the external master asserts TS or
AS to the MCF5407, the beginning of a bus cycle is identified and the MCF5407 starts
decoding the address driven.

Note the following regarding external master accesses:

(M) moToroLA Chapter 18. Bus Operation 18-21

|
y

'
A

eral Operation of External Master Transfers

* For the MCF5407 to assert a CSx during external master accesses, CSMRn[AM]
must be set. External master hits use the corresponding CSCR# settings for
auto-acknowledge, byte enables, and wait states. See Section 10.4.1.3, “Chip-Select
Control Registers (CSCRO-CSCR?7).”

* To enable DRAM control signals during external master accesses, DCMRn[AM]
must be set.

 During external master bus cycles, either TS or AS (but not both) should be driven
to the MCF5407. Driving both during a bus cycle causes indeterminate results.

External master transfers that use the MCF5407 to drive memory control signals and TA
are like normal MCF5407 transfers. Figure 18-24 shows timing for basic back-to-back bus
cycles during an external master transfer.

C1 C2 C3 C4 C5 Cé Cc7 C8 C9 C10 C11

EnininininEainigipinliniy
3?%?11:5%],%\} 558] j(><
RAW
™ [\
N v/

CS 1 \ / \
s OO0 (KRR

BG,BD? /
HOLDREQ |
‘4

i

External Master

! Depending on programming, these signals may or may not be driven by the processor.
This signal is driven by the processor for an external master transfer.

Figure 18-24. Basic No-Wait-State External Master Access

R/W is asserted high for reads and low for writes; otherwise, the transfers are the same. In
Figure 18-24, the MCF5407 chip select’s internal transfer acknowledge is enabled and the
MCF5407 drives TA as an output after a programmed number of wait states.

18-22 MCF5407 User’s Manual @ MOTOROLA

General Operation of External Master Transfers

NOTE:

Bus timing diagrams for external master transfers are not valid
for on-chip internal four-channel DMA accesses on the
MCF5407.

Timing diagrams describe transactions in general terms of bus
cycles (Cr) rather than the states (Sn) used in the bus diagrams.

Table 18-8 defines the cycles for Figure 18-24.

Table 18-8. Cycles for Basic No-Wait-State External Master Access

Cycle Definition

C1 The external master asserts HOLDREQ, signaling the MCF5407 to hold bus requests. BD should not be
asserted. The external master drives address, TS, R/W, TT[1:0], TM[2:0], TIP, and SIZ[1:0] as MCF5407
inputs.

C2-C3 | The MCF5407 decodes the external master’s address and control signals to identify the proper chip select
and byte enable assertion. The external master negates TS in C2.

C4 On the falling edge of CLKIN, the MCF5407 asserts the appropriate chip select for the external master
access along with the appropriate byte enables.

C5 On the rising edge of CLKIN, data is driven onto the bus by the device selected by CS. On the rising edge,
the MCF5407 asserts TA to indicate the cycle is complete.

[6]3] TA negates on the rising edge of CLKIN. On the falling edge, the MCF5407 negates the chip select and
byte enables and the next cycle can begin.

C7 | The external master negates TIP on the rising edge of CLKIN.

C8 | The external device retains bus mastership and drives the address bus, TS, R/W, TT[1:0], TM[2:0], TIP, and
SIZ[1:0] as inputs to the MCF5407.

C9 The MCF5407 decodes the external master’s address and control signals to identify the proper chip select
and byte enable assertion. The external master negates TS. The MCF5407 asserts BR on the rising edge of
CLKIN, signalling that it wants to arbitrate for the bus when the current cycle completes.

C10 | The MCF5407 continues to decode the external device’s address and control signals to identify the proper
chip select and byte enable assertion.

C11 | On the falling edge of CLKIN, the MCF5407 asserts the appropriate chip select for the external master

access along with the appropriate byte enables.

Figure 18-25 shows a burst line access for an external master transfer with the chip select
set to no-wait states and with internal transfer-acknowledge assertion enabled.

(M) moToroLA Chapter 18. Bus Operation 18-23

eral Operation of External Master Transfers

C1 Cc2 C3 C4 C5 Cé c7 C8 C9 Cc10 C11

S eEalnlipEaEsEaEnlipinlinl

woror) GO XA AXARARANAKR
| AL R AR TR

TT[1:0], TM[2:0] ><
SIZ[1:0]

™ [
iE

sese YRR

BG, BD 2
HOLDREQ

L

A

\
! External Master

1 Depending on programming, these signals may or may not be driven by the processor.
2 These signals are driven by the processor for an external master transfer.

Figure 18-25. External Master Burst Line Access to 32-Bit Port

Table 18-9 defines the cycles for Figure 18-25.
Table 18-9. Cycles for External Master Burst Line Access to 32-Bit Port

Cycle Definition

C1 The external device is bus master and asserts HOLDREQ, indicating to the MCF5407 to hold all bus
requests. In other words, BD should not be asserted. The external master drives address, TS, R/W, TT[1:0],
TMI[2:0], TIP, and SIZ[1:0] as inputs to the MCF5407. SIZ[1:0] inputs indicate a line transfer. The MCF5407
is not asserting BR.

C2-C3 | The MCF5407 decodes the external device’s address and control signals to identify the proper chip-select
and byte-enable assertion. The external device negates TS in C2. Address and R/W are latched in the
MCF5407 on the rising edge of CLKIN in C2. After C2, the address and R/W are ignored for the rest of the
burst transfer.

C4 On the falling edge of CLKIN, the MCF5407 asserts the appropriate chip select for the external device
access along with the appropriate byte enables.

C5 On the rising edge of CLKIN, data is driven onto the bus by the device selected by CS. The MCF5407
asserts TA on the rising edge of CLKIN, indicating the first data transfer is complete.

18-24 MCF5407 User’s Manual @ MOTOROLA

General Operation of External Master Transfers

Table 18-9. Cycles for External Master Burst Line Access to 32-Bit Port (Continued)

Cycle Definition

C6-C8 | No-wait state data transfers 2-4 occur on the rising edges of CLKIN. TA continues to be asserted indicating
completion of each transfer. TIP, CSx, and BE/BWE[3:0] are driven.

C9 TA negates on the rising edge of CLKIN along with external device’s negation of TIP. On the falling edge,
the MCF5407 negates chip select and byte enables, creating an opportunity for another cycle to begin.

18.9.1 Two-Device Bus Arbitration Protocol (Two-Wire
Mode)

Two-wire mode bus arbitration lets the MCF5407 share the external bus with a single
external bus device without requiring an external bus arbiter. Figure 18-26 shows the
MCF5407 connecting to an external device using the two-wire mode. The MCF5407 BG
input is connected to the HOLDREQ output of the external device; the MCF5407 BD
output is connected to the HOLDACK input of the external device. Because the external
device controls the state of HOLDREQ), it controls when the MCF5407 is granted the bus,
giving the MCF5407 lower priority.

BG |« HOLDREQ
BD »| HOLDACK
BR

A[31:0] | > A[31:0]

D[31:0] | »| D[31:0]
TS |- > TS
RW |« > R/W

SIZ[1:0] |- » SIZ[1:0]
TA <= > TA

MCFE5407 c YYYYY } : External Bus Master

To/from external memory and control

Figure 18-26. MCF5407 Two-Wire Mode Bus Arbitration Interface

When the external device is not using the bus, it negates HOLDREQ), driving BG low and
granting the bus to the MCF5407. When the MCF5407 has an internal bus request pending
and BG is low, the MCF5407 drives BD low, negating HOLDACK to the external device.
When the external bus device needs the external bus, it asserts HOLDREQ, driving BG
high, requesting the MCF5407 to release the bus. If BG is negated while a bus cycle is in
progress, the MCF5407 releases the bus at the completion of the bus cycle. Note that the
MCF5407 considers the individual transfers of a burst or burst-inhibited access to be a
single bus cycle and does not release the bus until the last transfer of the series completes.

When the bus has been granted to the MCF5407, one of two situations can occur. In tlﬁlrst
case, if the MCF5407 has an internal bus request pending, the MCF5407 asserts BD to
indicate explicit bus mastership and begins the pending bus cycle by asserting TS. As

(M) moToroLA Chapter 18. Bus Operation 18-25

|
y

'
A

eral Operation of External Master Transfers

shown in Figure 18-25, the MCF5407 continues to assert BD until the completion of the
bus cycle. If BG is negated by the end of the bus cycle, the MCF5407 negates BD. While
BG is asserted, BD remains asserted to indicate the MCF5407 is master, and it continuously
drives the address bus, attributes, and control signals.

C1 Cc2 C3 C4 C5 Cé c7 C8 C9

gt Y X
/ /

by
=

]
T

s TN L/ T\ /T

External Master MCF5407

Figure 18-27. Two-Wire Bus Arbitration with Bus Request Asserted

In the second situation, the bus is granted to the MCF5407, but it does not have an internal
bus request pending, so it takes implicit bus mastership. The MCF5407 does not drive the
bus and does not assert BD if the bus has an implicit master. If an internal bus request is
generated, the MCF5407 assumes explicit bus mastership. If explicit mastership was
assumed because an internal request was generated, the MCF5407 immediately begins an
access and asserts BD.

In Figure 18-28, the external device is bus master during C1 and C2. During C3 the external
device releases control of the bus by asserting BG to the MCF5407. At this point, there is
an internal access pending so the MCF5407 asserts BD during C4 and begins the access.
Thus, the MCF5407 becomes the explicit external bus master. Also during C4, the external
device removes the grant from the MCF5407 by negating BG. As the current bus master,
the MCF5407 continues to assert BD until the current transfer completes. Because BG is
negated, the MCF5407 negates BD during C9 and three-states the external bus, thereby
returning external bus mastership to the external device.

18-26 MCF5407 User’s Manual @ MOTOROLA

General Operation of External Master Transfers

C1 c2 C3 C4 C5 Cé Cc7 C8 C9

CLKIN

A[31:0], TT[1:0]

SIZ[1:0], TM[2:0] 3<
/

RW

X
/

TIP

Implicit Explicit

Mastership Mastership

>l
o

External Master MCF5407
Figure 18-28. Two-Wire Implicit and Explicit Bus Mastership

In Figure 18-28, the external device is master during C1 and C2. It releases bus control in
C3 by asserting BG to the MCF5407. During C4 and C5, the MCF5407 is implicit master
because no internal access is pending. In C5, an internal bus request becomes pending,
causing the MCF5407 to become explicit bus master in C6 by asserting BD. In C7, the
external device removes the bus grant to the MCF5407. The MCF5407 does not release the
bus (the MCF5407 continues to assert BD) until the transfer ends.

NOTE:

The MCF5407 can start a transfer in the clock cycle after BG
is asserted. The external master must not assert BG to the
MCF5407 while driving the bus or the part may be damaged.

Figure 18-29 is a MCF5407 bus arbitration state diagram. States are described in
Table 18-6.

(M) moToroLA Chapter 18. Bus Operation 18-27

eral Operation of External Master Transfers

External

Implicit
Master

D1 Master

Explicit
Master

Figure 18-29. MCF5407 Two-Wire Bus Arbitration Protocol State Diagram

Table 18-10 describes the two-wire bus arbitration protocol transition conditions.

Table 18-10. MCF5407 Two-Wire Bus Arbitration Protocol Transition Conditions

Present | Condition RSTI Software Watchdog BG Bus Transfer in | End of Next
State Label Reset Request Progress | Cycle! State
Al A2 — - - — — Reset
A2 N3 A - - — — Reset
Reset
A3 N N N - - - EM*#
A4 N N A — — — Implicit mas
B1 N N N - — — EM
Implicit B2 N N A — — — Explicit mas
Master B3 N N A — — | Implicit mas
B4 N N A A — — Explicit mas
C1 N N A — — — Explicit mas
C2 N N N — — — Explicit mas
Explicit c3 N N N - N - EM
Master
C4 N N N — A N Explicit mas
C5 N N N - A A EM
D1 N N N - - - EM mas
External D2 N N A — — — Explicit mas
Master D3 N N A N — — [implicitmas
D4 N N A A — — Explicit mas

18-28 MCF5407 User’s Manual @ MOTOROLA

General Operation of External Master Transfers

Both normal terminations and terminations due to bus errors generate an end of cycle. Bus cycles resulting from
a burst-inhibited transfer are considered part of that original transfer.

A means asserted.
N means negated.
EM means external master.

18.9.2 Multiple External Bus Device Arbitration Protocol
(Three-Wire Mode)

Three-wire mode lets the MCF5407 share the external bus with multiple external devices.
This mode requires an external arbiter to assign priorities to each potential master and to
determine which device accesses the external bus. The arbiter uses the MCF5407 bus
arbitration signals, BR, BD, and BG, to control use of the external bus by the MCF5407.

The MCF5407 requests the bus from the external bus arbiter by asserting BR when the core
requests an access. It continues to assert BR until after the transfer starts. It can negate BR
at any time regardless of the BG status. If the MCF5407 is granted the bus when an internal
bus request is generated, it asserts BD and the access begins immediately. The MCF5407
always drives BR and BD, which cannot be directly wire-ORed with other devices.

The external arbiter asserts BG to grant the bus to MCF5407, which can begin a bus cycle
after the next rising edge of CLKIN. If BG is negated during a bus cycle, the MCF5407
releases the bus when the cycle completes. To guarantee that the bus is released, BG must
be negated before the rising edge of the CLKIN in which the last TA is asserted. Note that
the MCF5407 treats any series of burst or a burst-inhibited transfers as a single bus cycle
and does not release the bus until the last transfer of the series completes.

When the MCF5407 is granted the bus after it asserts BR, one of two things can occur. If
the MCF5407 has an internal bus request pending, it asserts BD, indicating explicit bus
mastership, and begins the pending bus cycle by asserting TS. The MCF5407 continues to
assert BD until the external bus arbiter negates BG, after which BD is negated at the
completion of the bus cycle. As long as BG is asserted, BD remains asserted to indicate that
the MCF5407 is bus master, and the MCF5407 continuously drives the address bus,
attributes, and control signals.

If no internal request is pending, the MCF5407 takes implicit bus mastership. It does not
drive the bus and does not assert BD if the bus has an implicit master. If an internal bus
request is generated, the MCF5407 assumes explicit bus mastership and immediately
begins an access and asserts BD. Figure 18-30 shows implicit and explicit bus mastership
due to generation of an internal bus request.

(M) moToroLA Chapter 18. Bus Operation 18-29

eral Operation of External Master Transfers

C1 c2 C3 C4 C5 Cé c7 C8 C9

N

A[31:0], TT[1:0
SIZ[[1:0]], TM{Z:O% :>< ><

Implicit Explicit
Mastership Mastership

>

<
-

External Master o MCF5407
Figure 18-30. Three-Wire Implicit and Explicit Bus Mastership

In Figure 18-30, the external device is bus master during C1 and C2, releasing control in
(3, at which time the external arbiter asserts BG to the MCF5407. During C4 and CS5, the
MCF5407 is implicit master because no internal access is pending. In C5, an internal bus
request becomes pending, causing the MCF5407 to take explicit bus mastership in C6 by
asserting BR and BD. In C7, the external device removes the bus grant to the MCF5407.
The MCF5407 does not release the bus (the MCF5407 asserts BD) until the transfer ends.

NOTE:

The MCF5407 can start a transfer in the CLKIN cycle after BG
is asserted. The external arbiter should not assert BG to the
MCF5407 until the previous external master stops driving the
bus. Asserting BG during another external master’s transfer
may damage the part.

18-30 MCF5407 User’s Manual @ MOTOROLA

General Operation of External Master Transfers

C1 c2 C3 C4 C5 Cé c7 c8 C9

e e e

A[31:0], TT[1:0
SIZ[[1:O]], TM{Z:O% 3< ><

by
=

o
R

External MCF5407

Master

Figure 18-31. Three-Wire Bus Arbitration

In Figure 18-31, the external device is bus master during C1 and C2. During C2, the
MCF5407 requests the external bus because of a pending internal transfer. On C3, the
external releases mastership and the external arbiter grants the bus to the MCF5407 by
asserting BG. At this point, an internal is access pending so the MCF5407 asserts BD
during C4 and begins the access. Thus, the MCF5407 becomes the explicit bus master. Also
during C4, the external arbiter removes the grant from the MCF5407 by negating BG.
Because the MCF5407 is bus master, it continues to assert BD until the current transfer
completes. Because BG is negated, the MCF5407 negates BD during C9 and three-states
the external bus, thereby passing mastership to an external device.

The MCF5407 can assert BR to signal the external arbiter that it needs the bus. However,
there is no guarantee that when the bus is granted to the MCF5407 that a bus cycle will be
performed. At best, BR must be used as a status output that indicates when the MCF5407
needs the bus, but not as an indication that the MCF5407 is in a certain bus arbitration state.

Figure 18-32 is a high-level state diagram for MCF5407 bus arbitration protocol.
Table 18-6 describes the four states shown in Figure 18-32.

(M) moToroLA Chapter 18. Bus Operation 18-31

eral Operation of External Master Transfers

Implicit
Master

External

Master B3

Explicit
Master

Figure 18-32. Three-Wire Bus Arbitration Protocol State Diagram

Table 18-11 lists conditions that cause state transitions.

Table 18-11. Three-Wire Bus Arbitration Protocol Transition Conditions

- Software Transfer
Cgtr;te:t CoLna(:;tello n RSTI Watchdog BG ReBl:Isest in gngl‘ﬂ Next State
Reset q Progress 44
Reset Al Asserted — — — — — Reset
A2 Negated Asserted — — — — Reset
A3 Negated Negated Negated — — — EM
A4 Negated Negated Asserted — — — Implicit
master
Implicit B1 Negated Negated Negated — — — External
master device
master
B2 Negated Negated Asserted — — — Explicit
master
B3 Negated Negated Asserted Negated — — Implicit
master
B4 Negated Negated Asserted | Asserted — — Explicit
master

18-32 MCF5407 User’s Manual @ MOTOROLA

Reset Operation

Table 18-11. Three-Wire Bus Arbitration Protocol Transition Conditions (Continued)

- Software Transfer
Current | Condition RSTI Watchdog BG Bus in End °£ Next State
State Label Request Cycle
Reset Progress
Explicit C1 Negated Negated Asserted — — — Explicit
master master
c2 Negated Negated Negated — — — Explicit
master
C3 Negated Negated Negated — Negated — External
device
master
C4 Negated Negated Negated — Yes Negated Explicit
master
C5 Negated Negated Negated — Yes Yes External
device
master
External D1 Negated Negated Negated' — — — External
master device
master
D2 Negated Negated Asserted — — — Explicit
master
D3 Negated Negated Asserted Negated — — Implicit
master
D4 Negated Negated Asserted Asserted — — Explicit
master

T Both normal terminations and terminations due to bus errors generate an end of cycle. Bus cycles resulting from

a burst-inhibited transfer are considered part of that original transfer.

The bus arbitration state diagram can be used for the MCF5407 three-wire bus arbitration
protocol to approximate the high-level behavior of the MCF5407. It is assumed that all TS
or AS signals in a system are tied together and each bus device’s BD and BR signals are
connected individually to the external arbiter. The external arbiter must ensure that any
external masters will have released the bus after the next rising edge of CLKIN before
asserting BG to the MCF5407. The MCF5407 does not monitor external bus master
operation regarding bus arbitration.

NOTE:

The MCF5407 can start a transfer on the rising edge of CLKIN
the cycle after BG is asserted. The external arbiter should not
assert BG to the MCF5407 until the previous external master
stops driving the bus or the part may be damaged.

18.10 Reset Operation

The MCF5407 supports two types of reset. Asserting RSTI resets the entire MCF5407. A
software watchdog reset resets everything but the internal PLL. module.

(M) moToroLA Chapter 18. Bus Operation 18-33

at Operation

18.10.1 Master Reset

To perform a master reset, an external device asserts RSTI. When power is applied to the
system, external circuitry should assert RSTI for a minimum of 16 CLKIN cycles after
EVce and IVce are within tolerance. Figure 18-33 is a functional timing diagram of the
master reset operation, showing relationships among E/IVcc, RSTI, mode selects, and bus
signals. CLKIN must be stable by the time E/IVcc reach the minimum operating
specification. See Section 20.1.1, “Supply Voltage Sequencing and Separation Cautions.”
CLKIN should start oscillating as E/IVcc are ramped up to clear out contention internal to
the MCF5407 caused by the random states of internal flip-flops on power up. RSTI is
internally synchronized for two CLKIN cycles before being used and must meet the
specified setup and hold times in relationship to CLKIN to be recognized.

50K CLKIN cycles
PLL lock time |

EVCC, IVCC M
\

A

|
! \
! \
| \
| \
1 \
| \

\
msTi | | | T T
ASTO ? ? | | |
s s
Pl X‘X‘X‘X‘Mﬂ%“ﬂﬂﬂ“ XOUXORKXNN
Bus Signals \ \ \ {

i i i { \

BR ”{”””1”/”””””/W T
\
I

Figure 18-33. Master Reset Timing

=

\
\ \
\ \
[[
\ \
I I
I I

During the master reset period, all signals capable of being three-stated are driven to a
high-impedance; all others are negated. When RSTI negates, all bus signals remain in a
high-impedance state until the MCF5407 is granted the bus and the core begins the first bus
cycle for reset exception processing. A master reset causes any bus cycle (including DRAM
refresh cycle) to terminate and initializes registers appropriately for a reset exception.

Note that during reset D[7:0] are sampled on the negating edge of RSTI for initial
MCF5407 configurations listed in Table 18-12.

18-34 MCF5407 User’s Manual @ MOTOROLA

Reset Operation

Table 18-12. Data Pin Configuration

Pin Function

D7 Auto-Acknowledge Configuration (AA_CONFIG)
D[6:5] | Port Size Configuration (PS_CONFIG[1:0])

D4 | Address Configuration (ADDR_CONFIG/D4)

D3 Byte Enable Configuration (BE_CONFIG)
D[2:0] | Divide Control (DIVIDE[2:0])

See Section 17.5.5, “Data/Configuration Pins (D[7:0]).” Motorola recommends that the
data pins be driven rather than using a weak pull-up or pull-down resistor. Table 17-1 lists
the encoding of these pins sampled at reset.

After RSTI is negated, 32 bits of CPU configuration information are loaded into data
register DO and 32 bits of internal memory information are loaded in D1. Because DO and
D1 are uninitialized on previous ColdFire devices, this feature allows users to identify the
MCF5407 through software. Values D1 = 0x0630_0530 and DO = 0xCF4x_C012 identify
the MCF5407, where x identifies the core revision number (Ox1 for the initial device).

18.10.2 Software Watchdog Reset

A software watchdog reset is performed if the executing software does not provide the
correct write data sequence with the enable-control bit set. This reset helps prevent runaway
software or unterminated bus cycles. Figure 18-34 is a functional timing diagram of the
software watchdog reset operation, showing RSTO and bus signal relationships.

50K CLKIN
|<— >16 CLKS —>|<— Cycle Lock Time —>’<— >10 CLKS —>|

CLKIN||_||_/ |_|L//J|_|_||7//j
sco [L[|| | A I_L,,j

PSTCLK / [

ASTI |

*//L
/L
D[7:0] m g

RSTO

""‘Q""‘Q""‘Q"""'Q""‘Q""‘Q""‘Q""‘Q"‘
LR R RRERRRERRRRERRRRKS

~— D[7:0] latched on rising edge of CLKIN

Figure 18-34. Software Watchdog Reset Timing

(M) moToroLA Chapter 18. Bus Operation 18-35

at Operation

During the software watchdog reset period, all signals that can be are driven to a
high-impedance state; all those that cannot be are negated. When RSTO negates, bus
signals remain in a high-impedance state until the MCF5407 is granted the bus and the
ColdFire core begins the first bus cycle for reset exception processing.

18-36 MCF5407 User’s Manual (M) moToroLA

Chapter 19
IEEE 1149.1 Test Access Port (JTAG)

This chapter describes configuration and operation of the MCF5407 JTAG test
implementation. It describes the use of JTAG instructions and provides information on how
to disable JTAG functionality.

19.1 Overview

The MCF5407 dedicated user-accessible test logic is fully compliant with the publication
Standard Test Access Port and Boundary-Scan Architecture, IEEE Standard 1149.1. Use the
following description in conjunction with the supporting IEEE document listed above. This
section includes the description of those chip-specific items that the IEEE standard requires
as well as those items specific to the MCF5407 implementation.

The MCF5407 JTAG test architecture supports circuit board test strategies based on the
IEEE standard. This architecture provides access to all data and chip control pins from the
board-edge connector through the standard four-pin test access port (TAP) and the JTAG
reset pin, TRST. Test logic design is static and is independent of the system logic except
where the JTAG is subordinate to other complimentary test modes, as described in
Chapter 5, “Debug Support.” When in subordinate mode, JTAG test logic is placed in reset
and the TAP pins can be used for other purposes, as described in Table 19-1.

The MCF5407 JTAG implementation can do the following:
e Perform boundary-scan operations to test circuit board electrical continuity

* Bypass the MCF5407 by reducing the shift register path to a single cell

* Set MCF5407 output drive pins to fixed logic values while reducing the shift register
path to a single cell

e Sample MCF5407 system pins during operation and transparently shift out the result

e Protect MCF5407 system output and input pins from backdriving and random
toggling (such as during in-circuit testing) by placing all system pins in high-
impedance state

NOTE:

IEEE Standard 1149.1 may interfere with system designs that do
not incorporate JTAG capability. Section 19.6, “Disabling IEEE
Standard 1149.1 Operation,” describes precautions for ensuring

(M) moToroLA Chapter 19. IEEE 1149.1 Test Access Port (JTAG) 19-1

3 Signal Descriptions

that this logic does not affect system or debug operation.

Figure 19-1 is a block diagram of the MCF5407 implementation of the 1149.1 IEEE
standard. The test logic includes several test data registers, an instruction register,
instruction register control decode, and a 16-state dedicated TAP controller.

Test Data Registers

Vi > Boundary Scan Register >
E AR
DI > ID Code > U N
X
A
> Bypass >
3
> 3-Bit Instruction Decode
A A A > TDO
—> 3-Bit Instruction Register >
V
TMS J

TAP

Yy

TCK
V+

— |
TRST

Figure 19-1. JTAG Test Logic Block Diagram

19.2 JTAG Signal Descriptions

JTAG operation on the MCF5407 is enabled when MTMODO is high (logic 1), as described
in Table 19-1. Otherwise, JTAG TAP signals, TCK, TMS, TDI, TDO, and TRST, are
interpreted as the debug port pins. MTMODO should not be changed while RSTI is
asserted.

19-2 MCF5407 User’s Manual (M) moToroLa

TAP Controller

Table 19-1. JTAG Pin Descriptions

Pin Description

TCK | Test clock. The dedicated JTAG test logic clock is independent of the MCF5407 processor clock. Various
JTAG operations occur on the rising or falling edge of TCK. Internal JTAG controller logic is designed such
that holding TCK high or low indefinitely does cause the JTAG test logic to lose state information. If TCK is
not used, it should be tied to ground.

TMS/ | Test mode select (MTMODO high)/breakpoint (MTMODO low). TMS provides the JTAG controller with
BKPT | information to determine the test operation mode. The states of TMS and of the internal 16-state JTAG
controller state machine at the rising edge of TCK determine whether the JTAG controller holds its current
state or advances to the next state. This directly controls whether JTAG data or instruction operations
occur. TMS has an internal pull-up, so if it is not driven low, its value defaults to a logic level of 1. If TMS is
not used, it should be tied to VDD. BKPT signals a hardware breakpoint to the processor in debug mode.
See Chapter 5, “Debug Support.”

TDI/DSI | Test data input (MTMODO high)/development serial input (MTMODO low). TDI provides the serial data port
for loading the JTAG boundary-scan, bypass, and instruction registers. Shifting in of data depends on the
state of the JTAG controller state machine and the instruction in the instruction register. This shift occurs on
the rising edge of TCK. TDI has an internal pull-up so if it is not driven low its value defaults to a logical 1. If
TDl is not used, it should be tied to VDD.

DSI provides single-bit communication for debug module commands. See Chapter 5, “Debug Support.”

TDO/ | Test data output (MTMODO high)/development serial output (MTMODO low). TDO is the serial data port for
DSO | outputting data from JTAG logic. Shifting data out depends on the state of the JTAG controller state
machine and the instruction currently in the instruction register. This shift occurs on the falling edge of TCK.
When not outputting test data, TDO is three-stated. It can also be placed in three-state mode to allow
bussed or parallel connections to other devices having JTAG. DSO provides single-bit communication for
debug module commands. See Chapter 5, “Debug Support.”

TRST/ | Test reset (MTMODO high)/development serial clock (MTMODO low). As TRST, this pin asynchronously
DSCLK | resets the internal JTAG controller to the test logic reset state, causing the JTAG instruction register to
choose the IDCODE instruction. When this occurs, all JTAG logic is benign and does not interfere with
normal MCF5407 functionality. Although this signal is asynchronous, Motorola recommends that TRST
make only an asserted-to-negated transition while TMS is held at a logic 1 value. TRST has an internal
pull-up; if it is not driven low its value defaults to a logic level of 1. However, if TRST is not used, it can
either be tied to ground or, if TCK is clocked, to VDD. The former connection places the JTAG controller in
the test logic reset state immediately; the latter connection eventually puts the JTAG controller (if TMS is a
logic 1) into the test logic reset state after 5 TCK cycles.

DSCLK is the development serial clock for the serial interface to the debug module.The maximum DSCLK
frequency is 1/2 the CLKIN frequency. See Chapter 5, “Debug Support.”

19.3 TAP Controller

The state of TMS at the rising edge of TCK determines the current state of the TAP
controller. The TAP controller can follow two basic two paths, one for executing JTAG
instructions and the other for manipulating JTAG data based on JTAG instructions. The
various states of the TAP controller are shown in Figure 19-2. For more detail on each state,
see the IEEE Standard 1149.1 JTAG document. Note that regardless of the TAP controller
state, test-logic-reset can be entered if TMS is held high for at least five rising edges of
TCK. Figure 19-2 shows the JTAG TAP controller state machine.

(M) moToroLA Chapter 19. IEEE 1149.1 Test Access Port (JTAG) 19-3

V¥ ¢
i

3 Register Descriptions

Test-Logic-Reset -
TLR

Y 0 <-- Value of TMS at rising edge of TCK

Run-Test-Idle
RTI

Select-IR-Scan
SelR

Capture-IR
CalR

1 Capture-DR
CaDR
y°
B Shift-DR
ShDR

Exit1-DR

Shift-IR
ShiR

]

E1DR
0
Y
Pause-DR Pause-IR
PaDR PalR
1 1
Y Y
0/ Exite-DR Exit2-IR
E2DR E2IR
1
Y
Update-DR Update-IR
UpDR UpIR
1 0

Y
Figure 19-2. JTAG TAP Controller State Machine

19.4 JTAG Register Descriptions

The following sections describe the JTAG registers implemented on the MCF5407.

19-4 MCF5407 User’s Manual (M) moToroLa

JTAG Register Descriptions

19.4.1 JTAG Instruction Shift Register

The MCF5407 IEEE Standard 1149.1 implementation uses a 3-bit instruction-shift register
(IR) without parity. This register transfers its value to a parallel hold register and applies
one of six instructions on the falling edge of TCK when the TAP state machine is in
Update-IR state. To load instructions into the shift portion of the register, place the serial
data on TDI before each rising edge of TCK. The msb of the instruction shift register is the
bit closest to the TDI pin, and the Isb is the bit closest to TDO.

Table 19-2 describes customer-usable instructions.

Table 19-2. JTAG Instructions

Instruction | Class IR Description

EXTEST | Required | 000 | Selects the boundary-scan register. Forces all output pins and bidirectional pins

(EXT) configured as outputs to the preloaded fixed values (with the SAMPLE/PRELOAD
instruction) and held in the boundary-scan update registers. EXTEST can also
configure the direction of bidirectional pins and establish high-impedance states on
some pins. EXTEST becomes active on the falling edge of TCK in the Update-IR state
when the data held in the instruction-shift register is equivalent to octal 0.

IDCODE | Optional | 001 | Selects the IDCODE register for connection as a shift path between TDI and TDO.
(IDC) Interrogates the MCF5407 for version number and other part identification. The
IDCODE register is implemented in accordance with IEEE Standard 1149.1 so the Isb
of the shift register stage is set to logic 1 on the rising edge of TCK following entry into
the capture-DR state. Therefore, the first bit shifted out after selecting the IDCODE
register is always a logic 1. The remaining 31-bits are also set to fixed values. See
Section 19.4.2, “IDCODE Register.”
IDCODE is the default value in the IR when a JTAG reset occurs by either asserting
TRST or holding TMS high while clocking TCK through at least five rising edges and
the falling edge after the fifth rising edge. A JTAG reset causes the TAP state machine
to enter test-logic-reset state (normal operation of the TAP state machine into the
test-logic-reset state also places the default value of octal 1 into the instruction
register). The shift register portion of the instruction register is loaded with the default
value of octal 1 in Capture-IR state and a TCK rising edge occurs.

SAMPLE/ | Required | 100 | Provides two separate functions. It obtains a sample of the system data and control
PRELOAD signals at the MCF5407 input pins and before the boundary-scan cell at the output
(SMP) pins. This sampling occurs on the rising edge of TCK in the capture-DR state when an
instruction encoding of octal 4 is in the instruction register. Sampled data is observed
by shifting it through the boundary-scan register to TDO by using shift-DR state. The
data capture and shift are transparent to system operation. The users must provide
external synchronization to achieve meaningful results because there is no internal
synchronization between TCK and CLK.
SAMPLE/PRELOAD also initializes the boundary-scan register update cells before
selecting EXTEST or CLAMP. This is done by ignoring data shifted out of TDO while
shifting in initialization data. The Update-DR state in conjunction with the falling edge
of TCK can then transfer this data to the update cells. This data is applied to external
outputs when an instruction listed above is applied.

_

HIGHZ Optional | 101 | Anticipates the need to backdrive outputs and protects inputs from random toggling
(HIZ) during board testing. Selects the bypass register, forcing all output and bidirectional
pins into high-impedance.

HIGHZ goes active on the falling edge of TCK in the Update-IR state when instruction

shift register data held is equivalent to octal 5.

(M) moToroLA Chapter 19. IEEE 1149.1 Test Access Port (JTAG) 19-5

3 Register Descriptions

Table 19-2. JTAG Instructions (Continued)

Instruction | Class IR Description

CLAMP Optional | 110 | Selects the bypass register and asserts functional reset while forcing all output and
(CMP) bidirectional pins configured as outputs to fixed, preloaded values in the
boundary-scan update registers. Enhances test efficiency by reducing the overall shift
path to one bit (the bypass register) while conducting an EXTEST type of instruction
through the boundary-scan register. CLAMP becomes active on the falling edge of
TCK in the Update-IR state when instruction-shift register data is equivalent to octal 6.

BYPASS | Required | 111 | Selects the single-bit bypass register, creating a single-bit shift register path from TDI
(BYP) to the bypass register to TDO. Enhances test efficiency by reducing the overall shift
path when a device other than the MCF5407 is under test on a board design with
multiple chips on the overall 1149.1 defined boundary-scan chain. The bypass register
is implemented in accordance with 1149.1 so the shift register stage is set to logic 0
on the rising edge of TCK following entry into the capture-DR state. Therefore, the first
bit shifted out after selecting the bypass register is always a logic 0 (to differentiate a
part that supports an IDCODE register from a part that supports only the bypass
register).
BYPASS goes active on the falling edge of TCK in the Update-IR state when
instruction shift register data is equivalent to octal 7.

The IEEE Standard 1149.1 requires the EXTEST, SAMPLE/PRELOAD, and BYPASS
instructions. IDCODE, CLAMP, and HIGHZ are optional standard instructions that the
MCF5407 implementation supports and are described in the IEEE Standard 1149.1.

19.4.2 IDCODE Register

The MCF5407 includes an IEEE Standard 1149.1-compliant JTAG identification register,
IDCODE, which is read by the MCF5407 JTAG instruction encoded as octal 1.

31 30 29 28 2 2 2 2211111111119 87%6543210
2 0 8 76 543210
Version Number o|1(o0f0|1|1|(0|0O|0O|O|O|O|O|1|{1|1|O0O[|O|O|O|OfO|O|1|1|1]|O]1

(0000 for initial MCF5407 device)

Figure 19-3. IDCODE Register
Table 19-3 describes IDCODE bit assignments.
Table 19-3. IDCODE Bit Assignments

Bits Description

31-28 | Version number. Indicates the revision number of the MCF5407

27-22 | Design center. Indicates the ColdFire design center

21-12 | Device number. Indicates an MCF5407

11-1 Indicates the reduced JEDEC ID for Motorola. Joint Electron Device Engineering Council (JEDEC)
Publication 106-A and Chapter 11 of the IEEE Standard 1149.1 give more information on this field.

0 Identifies this as the JTAG IDCODE register (and not the bypass register) according to the IEEE Standard
1149.1

19-6 MCF5407 User’s Manual (M) moToroLa

19.4.3 JTAG Boundary-Scan Register

The MCF5407 model includes an IEEE Standard 1149.1-compliant boundary-scan register
connected between TDI and TDO when the EXTEST or SAMPLE/PRELOAD instructions
are selected. This register captures signal data on the input pins, forces fixed values on the
output pins, and selects the direction and drive characteristics (a logic value or high
impedance) of the bidirectional and three-state pins. Table 19-4 shows MCF5407
boundary-scan register bits.

JTAG Register Descriptions

Table 19-4. Boundary-Scan Bit Definitions

Bit Cell Type Pin Cell Pin Type Bit Cell Type Pin Cell Pin Type
0 o.ctl PPO enable — 120 O.Pin BEO o]
1 O.Pin PPO 110 121 O.Pin SCKE (0]
2 I.Pin PPO 110 122 O.Pin SCAS 0}
3 10.Ctl PP1 enable — 123 O.Pin SRAS o]
4 O.Pin PP1 110 124 O.Pin DRAMW (0]
5 I.Pin PP1 110 125 O.Pin CAS3 0}
6 10.Ctl PP2 enable — 126 O.Pin CAS2 o]
7 O.Pin PP2 110 127 O.Pin CAST (0]
8 I.Pin PP2 110 128 O.Pin CASO 0}
9 10.Ctl PP3 enable — 129 O.Pin RAST o]
10 O.Pin PP3 /0 130 O.Pin RASO (0}
11 I.Pin PP3 110 131 I.Pin TINA1 |
12 10.Ctl PP4 enable — 132 1.Pin TINO |
13 O.Pin PP4 110 133 O.Pin TOUTO (0}
14 I.Pin PP4 110 134 O.Pin TOUT1 0}
15 10.Ctl PP5 enable — 135 1.Pin BG |
16 O.Pin PP5 110 136 O.Pin BD (0]
17 I.Pin PP5 110 137 O.Pin BR 0}
18 10.Ctl PP6 enable — 138 1.Pin IRQT |
19 O.Pin PP6 110 139 I.Pin 1RQ3 |

20 I.Pin PP6 110 140 I.Pin TRQ5 |

21 10.Ctl PP7 enable — 141 1.Pin 1RQ7 |

22 O.Pin PP7 110 142 I.Pin RSTI |

23 I.Pin PP7 110 143 O.Pin TS 110

24 O.Pin PSTDDATA7 o 144 1.Pin TS /0

25 O.Pin PSTDDATA6 (0] 145 10.Ctl TA enable —

26 O.Pin PSTDDATA5 (0] 146 O.Pin TA 110

27 O.Pin PSTDDATA4 o 147 1.Pin TA /0

28 O.Pin PSTDDATA3 (0] 148 O.Pin RW /0

@ MOTOROLA Chapter 19. IEEE 1149.1Test Access Port (JTAG) 19-7

3 Register Descriptions

Table 19-4. Boundary-Scan Bit Definitions

Bit Cell Type Pin Cell Pin Type Bit Cell Type Pin Cell Pin Type
29 O.Pin PSTDDATA2 0] 149 I.Pin RW I/0
30 O.Pin PSTDDATA1 (0] 150 O.Pin AS /0
31 O.Pin PSTDDATAO (0] 151 1.Pin AS I/0
32 O.Pin PSTCLK (0] 152 O.Pin cs7 o
33 I.Pin CLKIN | 153 O.Pin CS6 (0}
34 10.Ctl RSTO enable — 154 O.Pin Cs5)
35 O.Pin RSTO 110 155 O.Pin Cs4 0
36 I.Pin RSTO 110 156 O.Pin Cs3 (0}
37 O.Pin BCLKO O 157 O.Pin Cs2 (0]
38 I.Pin EDGESEL | 158 O.Pin Cst1 0
39 O.Pin TXDO (0] 159 O.Pin Cso (0}
40 I.Pin RXDO | 160 O.Pin OE (0]
41 O.Pin RTSO 0] 161 O.Pin SI1z1 110
42 I.Pin CTSO | 162 I.Pin SIZ1 /0
43 O.Pin TXD1 0] 163 O.Pin SI1Z0 110
44 I.Pin RXD1 | 164 I.Pin SI1Z0 110
45 O.Pin RTS1 O 165 10.Ctl PP15 enable —
46 I.Pin CTS1 | 166 I.Pin PP15 I/0
47 I.Pin HIZ | 167 O.Pin PP15 110
48 10.Ctl Data enable — 168 10.Ctl PP14 enable —
49 O.Pin Do 1/10 169 1.Pin PP14 I/0
50 I.Pin Do 1/10 170 O.Pin PP14 110
51 O.Pin D1 110 171 10.Ctl PP13 enable —
52 I.Pin D1 1/10 172 I.Pin PP13 110
53 O.Pin D2 1/10 173 O.Pin PP13 110
54 I.Pin D2 110 174 10.Ctl PP12 enable —
55 O.Pin D3 1/10 175 I.Pin PP12 I/0
56 I.Pin D3 1/0 176 O.Pin PP12 110
57 O.Pin D4 110 177 10.Ctl PP11 enable —
58 I.Pin D4 1/10 178 I.Pin PP11 I/0
59 O.Pin D5 1/10 179 O.Pin PP11 110
60 I.Pin D5 110 180 10.Ctl PP10 enable —
61 O.Pin D6 1/10 181 I.Pin PP10 110
62 I.Pin D6 1/10 182 O.Pin PP10 110
63 O.Pin D7 1/0 183 10.Ctl PP9 enable —
64 I.Pin D7 1/10 184 I.Pin PP9 I/0
19-8 MCF5407 User’s Manual @ MOTOROLA

JTAG Register Descriptions

Table 19-4. Boundary-Scan Bit Definitions

Bit Cell Type Pin Cell Pin Type Bit Cell Type Pin Cell Pin Type
65 O.Pin D8 1/10 185 O.Pin PP9 110
66 I.Pin D8 1/0 186 10.Ctl PP8 enable —
67 O.Pin D9 1/0 187 I.Pin PP8 I/0
68 I.Pin D9 1/10 188 O.Pin PP8 110
69 O.Pin D10 110 189 10.Ctl TS/R/W/SIZ enable —
70 I.Pin D10 /0 190 10.Ctl Address enable —
71 O.Pin D11 1/10 191 O.Pin A23 110
72 I.Pin D11 110 192 I.Pin A23 /0
73 O.Pin D12 1/0 193 O.Pin A22 1/0
74 I.Pin D12 1/10 194 I.Pin A22 110
75 O.Pin D13 110 195 O.Pin A21 /0
76 I.Pin D13 1/0 196 I.Pin A21 I/0
77 O.Pin D14 1/10 197 O.Pin A20 1/0
78 I.Pin D14 110 198 I.Pin A20 /0
79 O.Pin D15 1/0 199 O.Pin A19 110
80 I.Pin D15 1/10 200 I.Pin A19 110
81 O.Pin D16 110 201 O.Pin A18 /0
82 I.Pin D16 1/0 202 I.Pin A18 1/0
83 O.Pin D17 1/0 203 O.Pin A17 110
84 I.Pin D17 110 204 I.Pin A17 /0
85 O.Pin D18 1/0 205 O.Pin A16 I/0
86 I.Pin D18 1/0 206 1.Pin A16 110
87 O.Pin D19 110 207 O.Pin A15 /0
88 I.Pin D19 1/0 208 I.Pin A15 1/0
89 O.Pin D20 1/10 209 O.Pin A14 110
90 I.Pin D20 110 210 I.Pin A14 /0
91 O.Pin D21 1/0 211 O.Pin A13 1/0
92 I.Pin D21 1/10 212 1.Pin A13 110
93 O.Pin D22 110 213 O.Pin A12 /0
94 I.Pin D22 1/0 214 I.Pin A12 I/0
95 O.Pin D23 1/10 215 O.Pin A1 1/0
96 I.Pin D23 110 216 I.Pin A1 /0
97 O.Pin D24 1/0 217 O.Pin A10 1/0
98 I.Pin D24 1/10 218 I.Pin A10 110
99 O.Pin D25 /0 219 O.Pin A9 /0
100 I.Pin D25 1/0 220 I.Pin A9 I/0

(M) moToroLA Chapter 19. IEEE 1149.1 Test Access Port (JTAG) 19-9

rictions

Table 19-4. Boundary-Scan Bit Definitions

Bit Cell Type Pin Cell Pin Type Bit Cell Type Pin Cell Pin Type
101 O.Pin D26 1/10 221 O.Pin A8 110
102 I.Pin D26 110 222 I.Pin A8 /0
103 O.Pin D27 1/0 223 O.Pin A7 1/0
104 I.Pin D27 1/10 224 I.Pin A7 110
105 O.Pin D28 110 225 O.Pin A6 /0
106 I.Pin D28 1/0 226 I.Pin A6 1/0
107 O.Pin D29 1/10 227 O.Pin A5 110
108 I.Pin D29 110 228 I.Pin A5 /0
109 O.Pin D30 1/0 229 O.Pin A4 I/0
110 I.Pin D30 1/10 230 1.Pin A4 I/0
111 O.Pin D31 110 231 O.Pin A3 /0
112 I.Pin D31 1/0 232 I.Pin A3 110
113 O.Pin SDA oD 233 O.Pin A2 110
114 I.Pin SDA | 234 I.Pin A2 /0
115 O.Pin SCL oD 235 O.Pin Al I/0
116 I.Pin SCL | 236 I.Pin A1 110
117 O.Pin BE3 (0] 237 O.Pin AO /0
118 O.Pin BE2 o 238 I.Pin A0 110
119 O.Pin BET 0]

19.4.4 JTAG Bypass Register

The IEEE Standard 1149.1-compliant bypass register creates a single-bit shift register path
from TDI to the bypass register to TDO when the BYPASS instruction is selected.

19.5 Restrictions

Test logic design is static, so TCK can be stopped in high or low state with no data loss.
However, system logic uses a different system clock not internally synchronized to TCK.
Operation mixing 1149.1 test logic with system functional logic that uses both clocks must
coordinate and synchronize these clocks externally to the MCF5407.

19.6 Disabling IEEE Standard 1149.1 Operation

There are two ways to use the MCF5407 without IEEE Standard 1149.1 test logic being
active:

19-10 MCF5407 User’s Manual @ MOTOROLA

Obtaining the IEEE Standard 1149.1

* Nonuse of JTAG test logic by either nontermination (disconnection) or intentionally
fixing TAP logic values. The following issues must be addressed if IEEE Standard
1149.1 logic is not to be used when the MCF5407 is assembled onto a board.

— IEEE Standard 1149.1 test logic must remain transparent and benign to the
system logic during functional operation. To ensure that the part enters the
test-logic-reset state requires either connecting TRST to logic 0 or connecting
TCK to a source that supplies five rising edges and a falling edge after the fifth
rising edge. The recommended solution is to connect TRST to logic 0.

— TCK has no internal pull-up as is required on TMS, TDI, and TRST; therefore,
it must be terminated to preclude mid-level input values. Figure 19-4 shows pin
values recommended for disabling JTAG with the MCF5407 in JTAG mode.

VDD
TMS/BKPT
TDI/DSI
TRST/DSCLK
TCK

Note: MTMODO high allows JTAG mode.
Figure 19-4. Disabling JTAG in JTAG Mode

* Disabling JTAG test logic by holding MTMODO low during reset (debug mode).
This allows the IEEE Standard 1149.1 test controller to enter test-logic-reset state
when TRST is internally asserted to the controller. TAP pins function as debug mode
pins. In JTAG mode, inputs TDI/DSI, TMS/BKPT, and TRST/DSCLK have internal
pull-ups enabled. Figure 19-5 shows pin values recommended for disabling JTAG in
debug mode.

—> TDI/DSI
Debug Interface —>» TMS/BKPT
—>» TRST/DSCLK

Note: MTMODO low prohibits JTAG.
Figure 19-5. Disabling JTAG in Debug Mode

19.7 Obtaining the IEEE Standard 1149.1
The IEEE Standard 1149.1 JTAG specification is a copyrighted document and must be

(M) moToroLA Chapter 19. IEEE 1149.1 Test Access Port (JTAG) 19-11

1ining the IEEE Standard 1149.1

obtained directly from the IEEE:

IEEE Standards Department
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331
USA

http://stdsbbs.ieee.org/
FAX: 908-981-9667

Information: 908-981-0060 or 1-800-678-4333

19-12

MCF5407 User’s Manual

@ MOTOROLA

Chapter 20
Electrical Specifications

This chapter describes the AC and DC electrical specifications and thermal characteristics
for the MCF5407. Note that this information was correct at the time this book was
published. As process technologies improve, there is a likelihood that this information may
change. To confirm that this is the latest information, see Motorola’s ColdFire webpage,
http://www.motorola.com/coldfire.

20.1 General Parameters

Table 20-1 lists maximum and minimum ratings for supply and operating voltages and
storage temperature. Operating outside of these ranges may cause erratic behavior or
damage to the processor.

Table 20-1. Absolute Maximum Ratings

Rating Symbol Value Units
External (I/O pads) supply voltage (3.3-V power pins) EV¢e -0.3t0 +4.0 \Y
Internal logic supply voltage Ve -05t0+2.0 12 \Y
PLL supply voltage PV -0.5t0+2.023 v
Internal logic supply voltage, input voltage level Vin -0.5t0+3.64 \
Storage temperature range Tstg -55 to +150 °C

IV must not exceed EV

IV and PV, must not differ by more than 0.5V
PV, must not exceed EV

Vi, must not exceed EV

AW N =

Table 20-2 lists junction and ambient operating temperatures.

Table 20-2. Operating Temperatures

Characteristic Symbol Value Units
Maximum operating junction temperature T TBD oc
Maximum operating ambient temperature Tamax 701 °c
Minimum operating ambient temperature Tamin 0 oc

T This published maximum operating ambient temperature should be used only as a system design guideline. All

device operating parameters are guaranteed only when the junction temperature lies within the specified range.

(M) moToroLa Chapter 20. Electrical Specifications 20-1

eral Parameters

Table 20-3 lists DC electrical operating temperatures. This table is based on an operating
voltage of EVce = 3.3 Vdc £ 0.3 Vdc and IVcc of 1.8 +0.15 Vdc.

Table 20-3. DC Electrical Specifications

Characteristic Symbol Min Max Units
External (I/O pads) operation voltage range EV¢c 3.0 3.6
Internal logic operation voltage range Ve 1.65 1.95 \%
PLL operation voltage range PVge 1.65 1.95 v
Input high voltage Viy 2.0 3.6 \Y
Input low voltage Vi -0.5 0.8 \
Input signal undershoot — . 0.8 \
Input signal overshoot — — 0.8 Vv
Input leakage current @ 0.5/2.4 V during normal operation lin — 20 HA
High impedance (three-state) leakage current @ 0.5/2.4 V during Its) — 20 HA
normal operation
Signal low input current, V; = 0.8V 2 I 0 1 mA
Signal high input current, Vi 2.0V 2 IH 0 1 mA
Output high voltage oy = 8 mA 3, 16 mA 4 Vou 24 — \Y
Output low voltage lg, =8 mA 3, 16 mA 4 VoL — 0.5 v
Load capacitance (all outputs) C — 50 pF
Capacitance °, Vi, =0V, f = 1 MHz Cin — TBD pF

T IV¢, and PV, should be at the same voltage.

2 BKPT/TMS, DSI/TDI, DSCLK/TRST

3 D[31:0], A[23:0], PP[15:0],TS, TA, SIZ[1:0], R/W, BR, BD, RSTO, AS, CS[7:0], BE[3:0], OE, PSTCLK,
PSTDDATA[7:0], DSO, TOUTI[1:0], SCL, SDA, RTS[1:0], TXD[1:0]

4 BCLKO, RAS[1:0], CAS[3:0], DRAMW, SCKE, SRAS, SCAS

5 Capacitance C)y is periodically sampled rather than 100% tested.

20-2 MCF5407 User’s Manual (M) moToroLa

General Parameters

20.1.1 Supply Voltage Sequencing and Separation Cautions

Figure 20-1 shows two situations to avoid in sequencing the IV . and EV supplies.

[0
g
= 1 EV,
o 3.3V T ce
=
Q.
5
(7] 2 Supplies Stable
9]
=
& A PRERY
7’ AY -
8 1.8V 1 + L7 S e _ - Wee, PVee
e
Y v
e
7
'
e
4
'
e
e
e
e
7
0 7 -
'
Time
Notes:

1 V¢, PV rising before EV
2 EV rising much faster than IV, PV,

Figure 20-1. Supply Voltage Sequencing and Separation Cautions

IV should not be allowed to rise early (1). This is usually avoided by running the regulator
for the IV, supply (1.8 V) from the voltage generated by the 3.3-V EV_. supply
(Figure 20-2). This keeps IV from rising faster than EV ...

IV, should not rise so late that a large voltage difference is allowed between the two
supplies (2). Typically this situation is avoided by using external discrete diodes in series
between supplies as shown in Figure 20-2. The series diodes forward bias when the
difference between EV . and IV . reaches approximately 2.1V, causing IV torise as EV
ramps up. When the IV . regulator begins proper operation, the difference between supplies
should not exceed 1.5V and conduction through the diode chain reduces to essentially
leakage current. During supply sequencing, the following general relationship should be
adhered to: EV . =1V . = (EV_.- 2.1 V). The PLL Vdd (PV_.) supply should comply with
these constraints just as IV does. In practice, PV is typically connected directly to IV
with some filtering.

(M) moToroLa Chapter 20. Electrical Specifications 20-3

k Timing Specifications

— 3.3V >
Supply Regulator EVee

1.8V
Regulator

Ve, PVee

Figure 20-2. Example Circuit to Control Supply Sequencing

20.2 Clock Timing Specifications

Table 20-4 shows the MCF5407 PLL encodings. Note that they differ from the MCF5307

DIVIDE[1:0] encodings.
Table 20-4. Divide Ratio Encodings

D[2:0)/DIVIDE[2:0] Input Clock (MHz) Multiplier Core Clock (MHz) PSTCLK (MHz)
00x-010 Reserved
011 40.0-54.0 3 120.0-162 60.0-81.0
100 25.0-40.5 4 100.0-162 50.0-81.0
101 25.0-32.4 5 125.0-162 67.5-81.0
110 25.0-27.0 6 150.0-162 75.0-81.0
111 Reserved

Figure 20-3 correlates CLKIN and core clock frequencies for the 3x—6x multipliers.

CLKIN Core Clock

|

\

\

\

g5 \ | 405 \ \ \ 100 | \ \ \ \ 142 \

- \ \ \ \ \ 5x \ \ \

b5 o4 | ‘ ‘ ‘ ‘ ‘ ‘ I 425 162 ‘

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \

. - f f f f f 6x f f f f > \
527 150 162

P27 | \ \ \ \ \ \ \ \ \ \ 150 1§ \

L 1 1 1 1 1 =\ L 1 1 1 1 1 1 =\
25 3 35 40 45 50 55 100 110 120 130 140 150 160

CLKIN (MHz) Core Clock (MHz)

Figure 20-3. CLKIN-to-Core Clock Frequency Ranges

-
~
o

Table 20-5 lists specifications for the clock timing parameters shown in Figure 20-4 and
Figure 20-5. Motorola recommends that CLKIN be used for the system clock. BCLKO is
provided only for compatibility with slower MCF5307 designs. Regardless of the CLKIN
frequency driven at power-up, CLKIN (and BCLKO) have the same ratio value to the

20-4 MCF5407 User’s Manual (M) moToroLA

Clock Timing Specifications

PCLK. Although either signal can be used as a clock reference, CLKIN leaves more room
to meet the bus specifications than BCLKO, which is generated as a phase-aligned signal
to CLKIN.

Table 20-5. Clock Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max
c1 CLKIN cycle time 18.5 Note ! nS
c2 CLKIN rise time (0.5V to 2.4 V) — 2 nS
C3 CLKIN fall time (2.4V to 0.5 V) — 2 nS
C4 CLKIN duty cycle (at 1.5V) 40 60 %
c5 PSTCLK cycle time 12.3 Note ' nS
C6 PSTCLK duty cycle (at 1.5 V) 40 60 %
(o7 BCLKO cycle time 18.5 Note ’ nS
o] BCLKO duty cycle (at 1.5 V) 45 55 %
c9 CLKIN to BCLKO 1.5 1.5 nS

" The PLL low-frequency limit depends on the clock divide ratio chosen. See Table 20-4.

Figure 20-4 shows timings for the parameters listed in Table 20-5.

CLKIN

BCLKO

Note: Input and output AC timing specifications are measured to CLKIN with a 50-pF load capacitance (not
including pin capacitance).

Figure 20-4. Clock Timing

Figure 20-5 shows PSTCLK timings for parameters listed in Table 20-5.

@ MOTOROLA Chapter 20. Electrical Specifications 20-5

h -

t/Output AC Timing Specifications

S

I
Figure 20-5. PSTCLK Timing

20.3 Input/Output AC Timing Specifications

Table 20-6 lists specifications for parameters shown in Figure 20-6 and Figure 20-7. Note
that inputs IRQ[7,5,3,1], BKPT, and AS are synchronized internally; that is, the logic level
is validated if the value does not change for two consecutive rising CLKIN edges. Setup
and hold times must be met only if recognition on a particular clock edge is required.

Table 20-6. Input AC Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max

B1' | Valid to CLKIN rising (setup) 7.5 — nS
B2' | CLKIN rising to invalid (hold) 1.0 — nS
B3?2 | Valid to CLKIN rising (setup) 0 — nsS
B42 | CLKIN rising to invalid (hold) 0.5(C1)+1.3| — nS
B53 | CLKIN to input high impedance — 2 Bus clock
B6 CLKIN to EDGESEL delay 0 5.0 nS

" Inputs: BG, TA, A[23:0], PP[15:0], SIZ[1:0], R/W, TS, EDGESEL, D[31:0],
IRQ[7,5,3,1], and BKPT

2 Inputs: AS

3 Inputs: D[31:0]

Table 20-7 lists specifications for timings in Figure 20-6, Figure 20-7, and Figure 20-13.
Although output signals that share a specification number have approximately the same
timing, due to loading differences, they do not necessarily change at the same time.
However, they have similar timings; that is, minimum and maximum times are not mixed.

Table 20-7. Output AC Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max
— 84 nS
B10 128 CLKIN rising to valid =
— 10 nS
B11 345 CLKIN rising to invalid (hold) 1.0° — nS
B1267 CLKIN to high impedance (three-state) — 10 nS

20-6 MCF5407 User’s Manual (M) moToroLa

Input/Output AC Timing Specifications

Table 20-7. Output AC Timing Specification (Continued)

54 MHz CLKIN
Num Characteristic Units
Min Max

— 0.5(C1) +8.0° nS
— 0.5(C1) +10.0'° | nS

B13 823 CLKIN rising to valid

B14 823 CLKIN rising to invalid (hold) 0.5(C1) + 1.0 — nS
B1523 EDGESEL to valid — 12 nS
B1623 EDGESEL to invalid (hold) 2 — nS
H1 HIZ to high impedance — 60 nS
H2 HIZ to low Impedance — 60 nS

(and PP[15:8] when configured as parallel port outputs).
2 Qutputs that can change on either CLKIN edge depending only on EDGESEL: D[31:0], A[23:0],
SCKE, SRAS, SCAS, and DRAMW and on PP[15:8] when individually configured as A[31:24]
outputs.
Outputs that can change on either CLKIN edge depending upon EDGESEL and the interface
operating mode (DRAM/SDRAM): RAS[1:0], CAS[3:0]
4 SRAS, SCAS, DRAMW, RAS[1:0], CAS|[3:0]

individually configured as A[31:24] outputs.

High impedance (three-state): D[31:0]

7 Outputs that transition to high impedance due to bus arbitration: A[23:0], R/W, SIZ[1:0], TS, AS,
and TA, and PP[15:8] when individually configured as A[31:24] outputs.

8 Qutputs that change only on falling edge of CLKIN: AS, CS[7:0], BE[3:0], OE

9 SRAS, SCAS, DRAMW, RAS[1:0], CAS[3:0], AS, TS[7:0], BE[3:0], OE

10 p[31:0], A[23:0], TM[2:0], TT[1:0], SIZ[1:0], RW, TIP, and TS and on PP[15:8] when individually
configured as A[31:24] outputs.

Note that these figures show two representative bus operations and do not attempt to show
all cases. For explanations of the states, SO-S5, see Section 18.4, “Data Transfer
Operation.” Note that Figure 20-7 does not show all signals that apply to each timing
specification. See the previous tables for a complete listing.

Figure 20-6 shows AC timings for normal read and write bus cycles.

@ MOTOROLA Chapter 20. Electrical Specifications 20-7

t/Output AC Timing Specifications

OIS

il
23
&9

06
@ /
A
§>&
e}
e
) 4§§%111

Figure 20-6. AC Timings—Normal Read and Write Bus Cycles

Figure 20-7 shows timings for a read cycle with EDGESEL tied to buffered CLKIN.

20-8 MCF5407 User’s Manual (M) moToroLa

Input/Output AC Timing Specifications

lo|1]2]3]|a|s5|6|7]|8]9]10]11]12]13]14]

|
CLKIN m
|
> -
RN ‘ ‘ ‘ ‘
EDGESEL N\N_/—_/W\

\
\
\
\ [
| % *
A[31:0] j}‘é | Row
\
\

Colulmn

SRAS M

SCAS | ; e 74:
|
DRAMW /-

\
l
\
\
\
\
|

\
\

D[31:0] ? (Y
\

ACTV NOP READ NOP NOP PALL NOP

T DACRI[CASL] =2
Figure 20-7. SDRAM Read Cycle with EDGESEL Tied to Buffered CLKIN

Figure 20-8 shows an SDRAM write cycle with EDGESEL tied to buffered CLKIN.

(M) moToroLa Chapter 20. Electrical Specifications 20-9

h -

t/Output AC Timing Specifications

lo|l1|2|3]a4]s]e]|7]|8]|9]|10]|1]12]

\
| —
A[31:0] :D‘é | R?W
\

\ \ |
\ \ ‘
\ \ \ \ |
\ ﬂ ‘f | | |
SRAS ! | ‘ \
| | - - |
L ! %
SCAS'

DRAMW

\
| ;* ‘ ‘ [
D[31:0] ? _s T
\ =1
\
| ‘ G- = |
\

ACTV NOP WRITE NOP PALL

T DACRI[CASL] =2
Figure 20-8. SDRAM Write Cycle with EDGESEL Tied to Buffered CLKIN

Figure 20-9 shows an SDRAM read cycle with EDGESEL tied high.

20-10 MCF5407 User’s Manual @ MOTOROLA

Input/Output AC Timing Specifications

\0\1\2\3‘4\5\6\7\8\9\10\11\12\13\14\15

- |
| f
worol K Row
\
\

Columh

smas %
|

\
1
T
|
\
\
\
|
\
\
SCAS'! |

1

DRAMW 7u

| T@

D[31:0] "
\

\
\
\
\
|
\
\
\
Il
T
\
\
\
\
\
\
\
\ \
O - -
\
[

9

Q)
2|
@)

2
S

ACTV NOP READ NOP NOP PALL
T DACR[CASL] =2

Figure 20-9. SDRAM Read Cycle with EDGESEL Tied High

Figure 20-10 shows an SDRAM write cycle with EDGESEL tied high.

(M) moToroLa Chapter 20. Electrical Specifications 20-11

h -

t/Output AC Timing Specifications

lo|1]2]3]a|5]|6]|7|8]|9]|10]11]12]

\

[|
SIS S
\

SR ST
\ (B10->

SCAS!

1

T

|

|
DRANW I

69

\
D[31:0] "
\

5 2
;
0

ACTV NOP WRITE NOP PALL
" DACR[CASL] =2

Figure 20-10. SDRAM Write Cycle with EDGESEL Tied High

Figure 20-11 shows an SDRAM read cycle with EDGESEL tied low.

20-12 MCF5407 User’s Manual @ MOTOROLA

Input/Output AC Timing Specifications

\0\1\2\3‘4\5\6\7\8\9\10\11}12\13\14\15
|

;L\ | | ‘

d?olumn
f

?

SRAS M
1 : |
SCAS ‘ l(74‘
|

\

|

\

\

}

\

\

\

f

\

\

\

- \

DRAMW 1

\

\
\ RS

D[31:0] : V‘ \‘ :
\ |

\ ‘ e >

\

|

1

®

ﬁ?? Ty

(@
>
ol

:
-

®
iR

ACTV NOP READ NOP NOP PALL
" DACRI[CASL] = 2

Figure 20-11. SDRAM Read Cycle with EDGESEL Tied Low

Figure 20-12 shows an SDRAM write cycle with EDGESEL tied low.

(M) moToroLa Chapter 20. Electrical Specifications 20-13

h -

t/Output AC Timing Specifications

lo|1]2]3]a|5]|6]|7|8]|9]|10]11]12]
|

CLKIN m
\

\ f
SIS
\

SR ST
\ (G139~

SCAS!

1

T

|

|
DRANW f

)

\
D[31:0] "
\

i
&

ACTV NOP WRITE NOP PALL

T DACRI[CASL] =2
Figure 20-12. SDRAM Write Cycle with EDGESEL Tied Low

Figure 20-13 shows AC timing showing high impedance.

\ \
. . L@

OUTPUTS

Figure 20-13. AC Output Timing—High Impedance

20-14 MCF5407 User’s Manual @ MOTOROLA

Reset Timing Specifications

20.4 Reset Timing Specifications

Table 20-8 lists specifications for the reset timing parameters shown in Figure 20-14.

Table 20-8. Reset Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max
R11 Valid to CLKIN (setup) 75 — nS
R2 CLKIN to invalid (hold) 1.0 — nS
R3 RSTI to invalid (hold) 1.0 — nS

1 RSTI and D[7:0] are synchronized internally. Setup and hold times
must be met only if recognition on a particular clock is required.

Figure 20-14 shows reset timing for the values in Table 20-8.

CLKIN

Note: Mode selects are registered on the rising CLKIN edge before the cycle in which RSTl is
recognized as being negated.

Figure 20-14. Reset Timing

(M) moToroLa Chapter 20. Electrical Specifications 20-15

h -

ug AC Timing Specifications

20.5 Debug AC Timing Specifications

Table 20-9 lists specifications for the debug AC timing parameters shown in Figure 20-16.
Table 20-9. Debug AC Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max
D1 PSTDDATA to PSTCLK setup 45 — nS
D2 PSTCLK to PSTDDATA hold 45 — nS
D3 DSI-to-DSCLK setup 1 — PSTCLKs
D41 DSCLK-to-DSO hold 4 — PSTCLKs
D5 DSCLK cycle time 5 — PSTCLKs

T DSCLK and DSl are synchronized internally. D4 is measured from the
synchronized DSCLK input relative to the rising edge of PSTCLK.

Figure 20-15 shows real-time trace timing for the values in Table 20-9.

|
PSTCLK m
\ T
PSTDDATA[7:0] >< ‘ ><:
|
{

Figure 20-15. Real-Time Trace AC Timing

Figure 20-16 shows BDM serial port AC timing for the values in Table 20-9.

PSTCLK |
. .
- |
DSCLK [£ \
|
\
@)
DSI ‘ 1 | Current >< Next
|| |
DSO >< Past % Current

Figure 20-16. BDM Serial Port AC Timing

20-16 MCF5407 User’s Manual @ MOTOROLA

Timer Module AC Timing Specifications

20.6 Timer Module AC Timing Specifications

Table 20-10 lists specifications for timer module AC timing parameters shown in
Figure 20-17.

Table 20-10. Timer Module AC Timing Specification

54 MHz CLKIN
Num Characteristic Units
Min Max
T TIN cycle time 3 — Bus clocks
T2 TIN valid to CLKIN (input setup) 7.5 — nS
T3 CLKIN to TIN invalid (input hold) 1.0 — nS
T4 CLKIN to TOUT valid (output valid) — 10 nS
T5 CLKIN to TOUT invalid (output hold) 1.0 — nS
T6 TIN pulse width 1 — Bus clocks
T7 TOUT pulse width 1 — Bus clocks

Figure 20-17 shows timings for Table 20-10.

| |

|
™o
|
‘4

TOUT

Figure 20-17. Timer Module AC Timing

(M) moToroLa Chapter 20. Electrical Specifications 20-17

nput/Output Timing Specifications

20.7 12C Input/Output Timing Specifications

Table 20-11 lists specifications for the 1’C input timing parameters shown in Figure 20-18.

Table 20-11. I2C Input Timing Specifications between SCL and SDA

54 MHz CLKIN
Num Characteristic Units
Min Max
I Start condition hold time 2 — Bus clocks
12 Clock low period 8 — Bus clocks
13 SCL/SDA rise time (V. =0.5VtoV|y=2.4V) — 1 mS
14 Data hold time 0 — nS
15 SCL/SDA fall time (Viy=2.4Vto V| =0.5V) — 1 mS
16 Clock high time 4 — Bus clocks
17 Data setup time 0 — nS
18 Start condition setup time (for repeated start condition only) 2 — Bus clocks
19 Stop condition setup time 2 — Bus clocks

Table 20-12 lists specifications for the 1’C output
Figure 20-18.

timing parameters shown in

Table 20-12. 12C Output Timing Specifications between SCL and SDA

54 MHz CLKIN
Num Characteristic Units
Min Max
11 Start condition hold time 6 - Bus clocks
12! Clock low period 10 — Bus clocks
132 SCL/SDA rise time (V). =0.5V to V|y=2.4V) Note 2 | Note 2
141 Data hold time 7 — Bus clocks
153 SCL/SDA fall time (Vi = 2.4 V to V= 0.5 V) — 3 nS
16 Clock high time 10 — Bus clocks
171 Data setup time 2 — Bus clocks
18 Start condition setup time (for repeated start condition only) 20 — Bus clocks
191 Stop condition setup time 10 — Bus clocks

Programming IFDR with the maximum frequency (IFDR = 0x20) results in the minimum output timings listed

here. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low
period. The actual position is affected by the prescale and division values programmed in IFDR.

Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time

SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

Specified at a nominal 50-pF load.

Figure 20-18 shows timing for the values in Table 20-11 and Table 20-12.

20-18 MCF5407 User’s Manual

@ MOTOROLA

‘ k UART Module AC Timing Specifications

Figure 20-18. I2C Input/Output Timings

20.8 UART Module AC Timing Specifications

Table 20-13 lists specifications for UART module AC timing parameters in Figure 20-19.
Table 20-13. UART Module AC Timing Specifications

54 MHz CLKIN
Num Characteristic Units
Min Max
U1 RXD valid to CLKIN (input setup) 7.5 — nS
U2 CLKIN to RXD invalid (input hold) 1.0 — nS
us CTS valid to CLKIN (input setup) 7.5 — nS
U4 CLKIN to CTS invalid (input hold) 1.0 — nS
us CLKIN to TXD valid (output valid) — 10 nS
Us CLKIN to TXD invalid (output hold) 1.0 — nS
uz CLKIN to RTS valid (output valid) — 10 nS
us CLKIN to RTS invalid (output hold) 1.0 — nS
U9 CTS high time 38 — nS
u1o0 CTS low time 38 — nS
Ui1 CTS rising to TxD valid — 20 nS
ui2 RxD setup to CTS falling 10 — nS
u13 RxD hold from CTS falling — 5 nS
ui4 TxD to RxD (remote loop back) — 15 nS
uis TIN1 setup to CTS falling 10 — nS
(VALS) TIN1 hold from CTS falling — 5 nS
u17 CTS rising to RTS asserted — 20 nS

Figure 20-19 shows UARTO and UART1 timing for the values in Table 20-13.

(M) moToroLa Chapter 20. Electrical Specifications 20-19

T Module AC Timing Specifications

CLKIN

|

@a

RXD

SR

)
®

CTS

e
|
LJ

i

TXD

%

:

@

|

RTS

-

"1
Figure 20-19. UARTO0 and UART1 Module AC Timing—UART Mode

Figure 20-19 shows timing for UART1 in 8- and 16-bit CODEC mode.

20-20 MCF5407 User’s Manual (M) moToroLa

UART Module AC Timing Specifications

cTS/ ‘
Serial bit clock

\

\

\

\

TxD |

\

\

\

RxD >< :
TIN1/ ‘

Frame sync

\

Figure 20-20. UART1 in 8- and 16-bit CODEC Mode

Figure 20-21 shows timing for UART1 in AC ‘97 mode.

CTS/
Bit clock

|
RTS/ \
Frame sync |

Figure 20-21. UART1 in AC ‘97 Mode

(M) moToroLa Chapter 20. Electrical Specifications 20-21

llel Port (General-Purpose I/0) Timing Specifications

20.9 Parallel Port (General-Purpose 1/0) Timing
Specifications

Table 20-14 lists specifications for general-purpose I/O timing parameters in Figure 20-22.

Figure 20-22 shows general-purpose I/O timing.

20-22

Table 20-14. General-Purpose I/O Port AC Timing Specifications

54 MHz CLKIN
Num Characteristic Units
Min Max
P1 PP valid to CLKIN (input setup) 7.5 — nS
P2 CLKIN to PP invalid (input hold) 1.0 — nS
P3 CLKIN to PP valid (output valid) — 10 nS
P4 CLKIN to PP invalid (output hold) 1.0 — nS

CLKIN

I

A

|
\

PP OUT

Figure 20-22. General-Purpose I/0 Timing

\

[

[

|

i
-~

i

‘ [

[

[

S

-

MCF5407 User’s Manual

@ MOTOROLA

DMA Timing Specifications

20.10 DMA Timing Specifications

Table 20-14 lists specifications for DMA timing parameters shown in Figure 20-22.
Table 20-15. DMA AC Timing Specifications

54 MHz CLKIN
Num Characteristic Units
Min Max
M1 DREQ valid to CLKIN (input setup) 7.5 — nS
M2 CLKIN to DREQ invalid (input hold) 1.0 — nS
M3 CLKIN to DACK valid (output valid) — 10 nS
M4 CLKIN to DACK invalid (output hold) 1.0 — nS

Figure 20-23 shows DMA AC timing.

CLKIN W
\ \

~ l

N W |
DREQ i @ L—J :
Ol iy

DACK / ;

Figure 20-23. DMA Timing

(M) moToroLa Chapter 20. Electrical Specifications 20-23

11149.1 (JTAG) AC Timing Specifications

20.11 IEEE 1149.1 (JTAG) AC Timing Specifications

Table 20-16 lists specifications for JTAG AC timing parameters shown in Figure 20-24.
Table 20-16. IEEE 1149.1 (JTAG) AC Timing Specifications

All
Num Characteristic Frequencies Units
Min | Max
— TCK frequency of operation 0 10 MHz
J1 TCK cycle time 100 — nS
J2a | TCK clock pulse high width (measured at 1.5 V) 40 — nS
J2b | TCK clock pulse low width (measured at 1.5 V) 40 — nS
J3a | TCK fall time (V|4 =2.4V toV, =0.5V) — 5 nS
J3b | TCKrise time (V| =0.5v to V| =2.4V) — 5 nS
J4 TDI, TMS to TCK rising (input setup) 10 — nS
J5 TCK rising to TDI, TMS invalid (hold) 15 - nS
Jé Boundary scan data valid to TCK (setup) 10 — nS
J7 TCK to boundary-scan data invalid (hold) 15 — nS
J8 TRST pulse width (asynchronous to clock edges) 15 — —
J9 TCK falling to TDO valid (signal from driven or — 30 nS
three-state)
J10 | TCK falling to TDO high impedance — 30 nS
J11 | TCK falling to boundary scan data valid (signal from — 30 nS
driven or three-state)
J12 | TCK falling to boundary scan data high impedance — 30 nS

Figure 20-24 shows JTAG timing.

20-24

MCF5407 User’s Manual

@ MOTOROLA

IEEE 1149.1 (JTAG) AC Timing Specifications

\ \
\ ‘ \
I | AA.W A ‘
\
TDI, TMS | % | % !
i |
™
(®)) =
BOUNDARY |1 :
SCAN DATA ! | % |
l
INPUT ; : \ i<::>
| |
\

.
|
BOUNDARY \

OUTPUT | ‘ \ @
|

Figure 20-24. IEEE 1149.1 (JTAG) AC Timing

(M) moToroLa Chapter 20. Electrical Specifications 20-25

11149.1 (JTAG) AC Timing Specifications

20-26 MCF5407 User’s Manual (M) moToroLA

Appendix A
Migrating from the ColdFire MCF5307 to
the MCF5407

This appendix highlights the differences between the MCF5307B and MCF5407. Users of
the MCF5307 and MCF5307A should use this document in conjunction with the MCF5307
User's Manual Mask Set Addendum. For additional information, see the MCF5407
Integrated ColdFire Microprocessor Product Brief.

A.1 Overview

Customers using the integrated peripherals of the MCF5307 can access the same features
on the MCF5407 with the added advantage of increased cache and RAM memories as well
as an enhanced instruction set architecture (ISA), DMA, synchronous UART, and debug
functionality. Decreased voltage requirements allow designers to take advantage of other
low-voltage components on the board for an integrated, low-power system.

To migrate designs from the MCF5307 to the MCF5407, note the minor differences
between these code-compatible processors in the initialization code, power supplies, and
clock inputs. This document describes the differences between the processors and outlines
the steps to upgrade the design. Table A-1 is a quick reference chart of these differences.

Table A-1. Differences between MCF5307 and MCF5407

Feature MCF5307 MCF5407 Reference

Version core | ColdFire Version 3 (V3) ColdFire Version 4 —

MIPS 70 MIPS at 90-MHz core 233 MIPS at 162-MHz core clock —
clock

Instruction set | Baseline ColdFire ISA Rev A | ColdFire ISA Rev B which includes certain Section A.2,
is used in Version 2 and instruction enhancements and some instruction | “Instruction Set
Version 3 core. additions; V2/V3 ISA Rev A is Additions”

upward-compatible with ISA Rev B.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-1

‘uction Set Additions

Table A-1. Differences between MCF5307 and MCF5407

Feature MCF5307 MCF5407 Reference
Caches 8-Kbyte unified cache 16-Kbyte instruction cache Section A.3,
8-Kbyte data cache “Enhanced
Two cache access control ACRO/ACR1 configure data space; Memories
registers (ACRO/ACR1) ACR2/ACR3 configure instruction space
4-Kbyte SRAM Two independently configurable 2-Kbyte
SRAMs
No cache locking Ability to lock all or half of the caches to prevent
instructions or data from being cast out. This is
useful for deterministic code.
DMA DMA acknowledge assertion | DACK[1:0] multiplexed on TM[1:0] can be Section A.4,
modifications | is encoded on TM[2:0]. programmed as separate DMA acknowledge “On-Chip DMA

signals.
DMA TMI[2:0] encodings are different from
MCF5307 DMA TM[2:0] encodings.

DMA byte count register
(BCR) can be programmed
to be 16 or 24 bits.

BCR is 24 bits only.

Modifications”

UART Both UARTSs have identical UARTO is identical to the MCF5307 UARTS; Section A.5, “UART
functionality. No support for | UART1 has been enhanced to provide Enhancements”
synchronous mode. synchronous operation and a CODEC interface

for soft modem support.
Timing All signal timing with respect | All signal timings with respect to CLKIN Section A.6.1,

relationships

to BCLKO; CLKIN rise time =
5nS.

(BCLKO support provides compatibility with
MCF5307 designs.)

Tighter negative edge bus specifications due to
duty cycle; CLKIN rise time = 2 nS.

“Phase-Locked
Loop (PLL),” and
Section A.6, “Timing
Differences”

Reset Need to drive D[7:0)/ Need to drive D[7:0)/AA, PS[1:0], Section A.7, “Reset

initialization AA, PS[1:0], ADDR_CONFIG, BE_CONFIG, DIVIDE[2:0] Initialization
ADDR_CONFIG, Modifications”
FREQ[1:0], DIVIDE[1:0]

Debug Debug Revision B. Separate | Debug Revision C—Adds breakpoint registers, | Section A.8,

module PST[3:0] and DDATA[3:0] normal interrupt request service during debug, | “Revision C Debug”

and combines debug signals into
PSTDDATA[7:0]

Voltage input | Drives minimum 2.4 V; Drives minimum 2.4 V; accepts 3.3-V input Section A.9,
changes accepts 5-V input “Voltage Input
- - - - Changes”

Requires 3.3-V operating Requires 1.8-V and 3.3-V operating voltages

voltage
Pin Standard MCF5307 pinout Compatible with MCF5307 pinout except for Section A.11,
assignment power-pad input assignment “Pin-Assignment

Compatibility”

A.2 Instruction Set Additions

The MCF5407 implements Revision B (Rev B) of the ColdFire instruction set, which adds
instructions and enhances existing ISA Revision A (Rev A) opcodes to support byte- and

A-2

MCF5407 User’s Manual

@ MOTOROLA

Enhanced Memories

word-sized operands and position-independent code. Existing MCF5307 code is
completely upward compatible with the MCF5407. However, designers may incorporate
the instruction set additions and enhancements, especially when upgrading 68K code that
references 8- and 16-bit short operands.

The following list summarizes new and enhanced instructions of Rev B ISA:
* New instructions:

— INTOUCH loads instructions one cache block at a time for use with cache
locking.

— MOV3Q.L moves 3-bit immediate data to the destination location.

— MVS.{B,W} moves the sign-extended source operand to the destination register.

— MVZ.{B,W} zero-fills the source operand and moves it to the destination
register.

— SATS.L updates bit 31 of the destination register depending on the CCR
overflow bit.

— TAS.B tests and sets byte operand being addressed.

* Enhancements to existing Revision A instructions:
— Longword support for branch instructions (Bcc, BRA, BSR)
— Byte and word support for compare instructions (CMP, CMPI)

— Byte and longword support for MOVE where the source is of type #<data> and
the destination is of type d16(Ax); that is, move.b #<data>, d16(Ax)

Refer to Section 2.9, “ColdFire Instruction Set Architecture Enhancements” for details of
these additions and enhancements.

A.3 Enhanced Memories

With the introduction of a Harvard memory architecture in the Version 4 core design, the
MCF5407 has separate instruction and data caches. The 16-Kbyte instruction cache and
8-Kbyte data cache greatly improve performance on existing systems. On-chip RAMs are
also provided to work with the caches. For more details see, Chapter 4, “Local Memory”.

The MCF5307 configuration contains an 8-Kbyte unified cache with a 4-Kbyte SRAM.
Configuration registers for these memories include one cache control register (CACR), two
access control registers (ACRO and ACRI1), and one RAM base address register
(RAMBAR). With the enhanced memory sizes of the MCF5407, more configuration
registers have been provided. The new MOVEC register map for the MCF5407 memory
configuration registers is given in Table A-2.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-3

>hip DMA Modifications

Table A-2. MOVEC CPU Space Register Map

Rc[1:0] Register Definition

0x002 Cache control register (CACR)

0x004 Cache access control register 0 (ACRO; data cache)
0x005 Cache access control register 1 (ACR1; data cache)
0x006 Cache access control register 2 (ACR2; instruction cache)
0x007 Cache access control register 3 (ACRS; instruction cache)
0xC04 RAM base address register 0 (RAMBARO) '

0xC05 RAM base address register 1 (RAMBAR1)

1" Either or both of the RAMBAR registers can be configured for instructions or data through
an additional bit, RAMBARN[D/I].

Note that the existing functionality has not changed; new registers and new bits in existing
registers have been added to support the enhanced memories and control for the new branch
cache. One of the two 2-Kbyte SRAMs can be dedicated to support the instruction cache,
and the other can support the data cache. Many designs use one SRAM block as a system
stack and the other to hold important interrupt service routines.

The SRAM can also function as a ROM by programming it as a data block while loading
configuration information to it and then reprogramming it as a read-only instruction block.
The two MCF5407 SRAM blocks can be programmed to provide a contiguous 4-Kbyte
memory map similar to the MCF5307’s single contiguous 4-Kbyte SRAM.

A.4 On-Chip DMA Modifications

The MCF5407 integrates the four-channel DMA used in the MCF5307 with changes to pin
multiplexing, DMA byte transfer count, and the encoding of transfer acknowledgement.
The MCF5307 provides DMA acknowledgement encodings for channels O and 1 through
the transfer modifier pins, TM[2:1], which are multiplexed with PP[4:3]. For clarification
on MCF5307 signal multiplexing, see the pinout tables in the mechanical specifications
chapter of the MCF5307 User’s Manual. The MCF5307 also indicates a DMA single
address access through transfer modifier pin TMO, multiplexed with PP2. For more details
see, Chapter 12, “DMA Controller Module”.

When the pin assignment register (PAR) is programmed to enable the TM signals, the
encodings listed in Table A-3 and Table A-4 are driven during transfers by the internal
DMA channels of the MCF5307. The condition TT[1:0] = 01 indicates an access by either
an internal DMA or an external device.

Table A-3. TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT = 01)

TM[2:1] Transfer Modifier Encoding

00 DMA acknowledges negated

01 DMA acknowledge, channel 0

A-4 MCF5407 User’s Manual (M) moToroLa

UART Enhancements

Table A-3. TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT = 01) (Con-

TM[2:1] Transfer Modifier Encoding

10 DMA acknowledge, channel 1

11 Reserved

Table A-4. TMO Encoding for MCF5307 Internal DMA as Master (TT = 01)

TMO Transfer Modifier Encoding
0 Dual address access
1 Single address access

Although the MCF5407 provides similar encodings on TM[2:0], dedicated DMA
acknowledgement pins (DACK[1:0]) have been added. Thus, DACK[1:0] are now
combined with PP[3:2]/TM[1:0], resulting in a three-to-one multiplexed signal,
PP[3:2]/TM[1:0/DACK[1:0]. TM2 is still multiplexed only with PP4. For further
clarification on the multiplexing, see the pinout tables in Section A.11, “Pin-Assignment
Compatibility.” When properly connected, TM[2:0] can be used in MCF5407 designs as on
MCF5307 designs or DACK[1:0] can be used for DMA transfers, as shown in Figure A-1.

MCF5307 Function Pin Pin MCF5407 Function
Single/dual cycle access TMO TMO | DMA 0 acknowledge
DMA 0 acknowledge configuration T™M1 & TM1 | DMA 1 acknowledge
DMA 1 acknowledge configuration T™M2 TM2 | Single/dual cycle access

Figure A-1. MCF5307 to MCF5407 TM[2:0] Pin Remapping

For further details see Section 12.2, “DMA Signal Description”.

Although TM[2:0] can still drive DMA access encoding, the bit positions of these
encodings are different from the MCF5307. The MCF5407 encodes single-address
accesses on TM2 when the PAR is set to enable the transfer modifier signal and an external
master or DMA transfer is occurring. This encoding is driven by TMO on the MCF5307.
Again, more details can be found in Section 12.2, “DMA Signal Description”.

Designers who use MCF5307 DMA channels should also note that the MCF5407 DMA
byte count registers (BCRs) for channels 0-3 exclusively support a 24-bit byte count. A
16-bit byte count register is no longer supported; therefore, MPARK[BCR24BIT] has been
removed.

A.5 UART Enhancements

The MCF5407 contains two UARTSs that act independently. One of the UARTSs on the
MCF5407 has been enhanced to provide synchronous operation and a CODEC interface for
soft modem support. Each UART can be clocked by the system bus clock, eliminating the
need for an external crystal. For more details see, Chapter 14, “UART Modules”.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-5

V¥ ¢

‘ k ng Differences

The UART module interfaces directly to the CPU as shown in Figure A-2. The UART
module consists of the following major functional areas:

* Serial communication channel
* 16-bit timer for baud-rate generation
e Internal channel control logic

* Interrupt control logic

UART

l«—— CTS

Internal Channel Serial ATS
i F——»

Control Logic Communications

Channel l«—— RxD

—— TxD

System Integration

Module (SIM) Interrupt Control 16|-35;iltJ g_igm:tre for g)rLKIN
Int t Logic ° <
Cr(;r?tl;l;gjlfjer 9 Generation External clock (TIN)

Figure A-2. Simplified Block Diagram

In addition, UART1 has been enhanced to provide a CODEC interface for soft modem
support. UART1 can be programmed to provide any one of the following functions:

* The original UART (identical to UARTO)

e Three modem modes, (see Section 14.5.2.2, “Transmitter in Modem Mode
(UART1) for more details)”:

— An 8-bit CODEC interface
— A 16-bit CODEC interface
— An audio CODEC 97 (AC97) digital interface controller

A.6 Timing Differences

This section explains timing relationships within phase-locked loop registers.

A.6.1 Phase-Locked Loop (PLL)

The PLL for the MCF5407 is enhanced to support faster processor clock (PCLK)
frequencies. The MCF5307 supports PCLK frequencies of 66.7 and 90 MHz with a clock
input (CLKIN) of 1/2 PCLK. The MCF5407 offers a larger range of clock input ratios and
a higher performance processor clock. For more details see Section 7.1.1, “PLL:PCLK
Ratios” and Chapter 20, “Electrical Specifications”.

The MCF5407 PLL module is shown in Figure A-3.

A-6 MCF5407 User’s Manual (M) moToroLa

Timing Differences

CLKIN (to on-chip peripherals)
DIVIDE[2:0] — PLL Debug;lglodule

RSTI — —— RSTO

[
PSTCLK
(= PCLK/2)

Figure A-3. PLL Module

Similar to the MCF5307 functionality, the MCF5407 samples clock ratio encodings on the
lower data bits of the bus at reset to determine the CLKIN-to-PCLK ratio at which the
device runs. These bits are DIVIDE[1:0] on the MCF5307 and are multiplexed with data
bits D[1:0]. Because the MCF5407 offers more divide ratio combinations than the
MCF5307, three input bits, D[2:0]/DIVIDE[2:0], have been provided to offer more
programming options at reset. Also, note that only specific CLKIN ranges are allowed for
each divide ratio on the MCF5407.

Table A-5 shows the new encodings. Note that they differ from the MCF5307 DIVIDE[1:0]
encodings.

Table A-5. Divide Ratio Encodings

D[2:0)/DIVIDE[2:0] Multiplier
00x-010 Reserved

011 3

100 4

101 5

110 6
111 Reserved

A.6.2 Timing Relationships

For both the MCF5307 and MCF5407, the user provides the clock input signal (CLKIN),
which is also used for on-chip peripherals, as shown in Figure A-3. This signal is also the
reference from which other clock frequencies are derived, including the bus clock output
signal (BCLKO), which on the MCF5407 is provided for compatibility with MCF5307
designs. BCLKO is generated by the PLL and MCF5307 designs should use BCLKO as the
bus timing reference for external devices; MCF5407 designs should use CLKIN. On the
MCF5407, the CLKIN frequency can be 1/3, 1/4, 1/5, or 1/6 of the PCLK. Furthermore,
depending on the MCF5307 configuration, the BCLKO-to-PCLK ratio may not be the same
as the CLKIN-to-PCLK ratio. For more details see Section 20.2, “Clock Timing
Specifications”.

On the MCF5407, the user-provided CLKIN should be used as the bus clock for the system.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-7

at Initialization Modifications

BCLKO runs at the same frequency as CLKIN and is offered as an optional timing
reference for backwards compatibility for lower-speed MCF5307 designs.

Regardless of the CLKIN frequency driven at power-up, CLKIN and BCLKO have the
same ratio value to PCLK. Although designers can use either BCLKO or CLKIN as a clock
reference, Motorola recommends using CLKIN because it leaves more room to meet bus
specifications than BCLKO, which is generated as a phase-aligned signal to CLKIN. An
MCF5307 user should consider switching to a CLKIN reference clock when upgrading to
the MCF5407 if board frequencies exceed 50 MHz.

Although the CLKIN duty cycle remains the same for the MCF5307 and MCF5407, use
caution when interfacing signals on the falling edge of CLKIN with only a 4-nS window at
high frequencies. Also, note that the MCF5407 input rise time is reduced to 2 nS (5 nS in
the MCF5307). For designers who choose to reference signals from CLKIN only, BCLKO
can be disabled to save power. For details see Section 7.2.3, “Reduced-Power Mode”.

A.7 Reset Initialization Modifications

Like the MCF5307, the MCF5407 samples a group of eight input signals, D[7:0], on the
rising edge of CLKIN before the rising edge of RSTI to determine the reset configuration
of the global chip select, the address bus, and PLL. However, unlike the MCF5307, the
frequency range encodings are not sampled on D[3:2], which are replaced by two other
reset configuration inputs. First, the CLKIN-to-PCLK ratio allows more combinations.
This extra bit is now sampled on D2 so that the clock ratio programming bits encompass
D[2:0]/DIVIDE[2:0].

Second, a new reset configuration bit, BE_CONFIG, is now multiplexed with D3 in the
MCF5407. This bit enables the four byte enables for the global chip select, CSO0, for reads
and writes or writes only, depending on the bit value sampled at reset, as shown in
Table A-10.

Table A-6 shows the multiplexing of D[7:0] for the MCF5307 and the MCF5407.

Table A-6. D[7:0] Multiplexing

Data Pins MCF5307 MCF5407
D7 AA
D[6:5] PS[1:0]
D4 ADDR_CONFIG
D3 FREQ1 BE_CONFIG, BE[3:0]
D2 FREQO DIVIDE2
D1 DIVIDET
DO DIVIDEO

Table A-7 through Table A-10 list the various reset encodings for the configuration signals

A-8 MCF5407 User’s Manual (M) moToroLa

Reset Initialization Modifications

multiplexed with D[7:3]. See for D[2:0]/DIVIDE[2:0] encodings sampled at reset. Note
that Table A-7 and Table A-8 configure the global, or boot, CSO that is used to access boot
ROM out of reset. CSO is the only chip select active out of reset until other chip selects
become valid. Both the wait states and port size of boot memory accessed by boot CSO are
programmed through these bits.

Table A-7. D7/AA, Automatic Acknowledge of Boot CS0

D7/AA Boot CS0 AA Configuration at Reset
0 Disabled
1 Enabled with 15 wait states

Table A-8 shows configurations for D[6:5]/PS[1:0].
Table A-8. D[6:5]/PS[1:0], Port Size of Boot CS0

D[6:5)/PS[1:0] Boot CSO0 Port Size at Reset
00 32-bit port
01 8-bit port
1x 16-bit port

Table A-9 initializes the pin assignment register of the parallel I/O port to be either parallel
I/O or to be the upper address bus bits along with various attribute and control signals at
reset to give the user the option to access a broader addressing range of memory, if desired.

Table A-9. D4/ADDR_CONFIG, Address Pin Assignment

D4/ADDR_CONFIG Configuration Pin Assignment Register at Reset

0 PP[15:0], defaulted to inputs upon reset
1 ADDR([31:24)/TIP/DREQ[1:0)/TM[2:1]

Table A-10 shows configurations for D3/BE_CONFIG. Because some boot memories
require byte enables to be active only during writes, the functionality of byte enables,
BE[3:0], can be programmed at reset.

Table A-10. D3/BE_CONFIG, BE[3:0] Boot Configuration

D3/BE_CONFIG Configuration of Byte Enables for Boot CS0
0 BE[3:0] are enabled as byte write enables only
1 BE[3:0] are enabled as byte enables for reads and writes

D[2:0]/DIVIDEJ2:0] configurations are shown in Table A-5.

After RSTI is negated, 32 bits of CPU configuration information are loaded into data
register DO and 32 bits of internal memory information are loaded in D1. Because these
registers are completely uninitialized on previous ColdFire devices, this feature allows
users to identify the MCF5407 through software. Values D1 = 0x0630_0530 and DO =

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-9

sion C Debug

0xCF4x_CO012 identify the MCF5407, where x identifies the core revision number (0x1 for
the initial device).

A.8 Revision C Debug

A number of enhancements to the original ColdFire debug functions were requested by
customers and third-party tool developers. As a result, an expanded set of debug functions
was implemented in the Version 4 ColdFire and named Revision C, or simply Debug C.
Most of the enhancements are included in the MCF5407 debug module and are primarily
related to improvements in the real-time debug capabilities.

A.8.1 Debug Interrupts and Interrupt Requests
in Emulator Mode

In the Debug B ColdFire implementation of the MCF5307, the response to a user-defined
breakpoint trigger can be configured as one of three possibilities:

* The breakpoint trigger can be displayed on the PSTDDATA bus with no internal
reaction to the trigger. The trigger state information is displayed on PSTDDATA in
all situations.

* The breakpoint trigger can force the processor to halt and allow BDM activities.

* The breakpoint trigger can generate a special debug interrupt to allow real-time
systems to quickly process the interrupt and return to normal system executing as
rapidly as possible.

The occurrence of a debug interrupt exception is treated as a special type of interrupt. It is
considered to be higher in priority than all normal interrupt requests and has special
processor status values to indicate externally that this interrupt occurred.

Additionally, the execution of the debug interrupt service routine is forced to be
interrupt-inhibited by the processor hardware. Optionally, it is capable of mapping all
instruction and data references while in this service routine into a separate address space,
so that an emulator can define the routine dynamically.

Current processor implementations include a state bit, invisible to software, that defines this
emulator mode of operation. Note that the interrupt mask level is not modified during the
processing of a debug interrupt.

In response to customers with real-time embedded systems asking for the ability to service
normal interrupt requests while processing the debug interrupt service routine, this feature
has been incorporated in the Revision C debug. To provide this function and service any
number of normal interrupt requests, including the possibility of nested interrupts, the
processor state signaling emulator mode is now included as part of the exception stack

A-10 MCF5407 User’s Manual (M) moToroLa

Revision C Debug

frame, shown in Figure A-4.

A7—
+ 0x04

31 28 27 26 25 18 17 16 15 0

Format ‘ FS[3-2] ‘ Vector{7-0] ‘ FS[1-0] ‘ Status Register

Program counter[31:0]

Figure A-4. Exception Stack Frame Form

As part of the Debug C enhancement, the operation of the debug interrupt is modified as
follows:

The occurrence of the breakpoint trigger, configured to generate a debug interrupt,
is treated exactly as before. The debug interrupt is treated as a higher priority
exception relative to the normal interrupt requests encoded on the interrupt priority
input signals.

At the appropriate sample point, the processor initiates debug interrupt exception
processing. This event is signaled externally by the generation of a unique PST value
(PST = 0xD) asserted for multiple cycles. The processor sets the emulator mode
state bit as part of this processing.

All normal interrupt requests are evaluated and sampled once per instruction during
the debug interrupt service routine. If an exception is detected, the processor takes
the following steps:

. In response to the new exception, the processor saves a copy of the current value of

the emulator mode state bit and then exits emulator mode by clearing the actual
state.

The new exception stack frame sets bit 1 of the fault status field, using the saved
emulator mode bit, indicating that execution while the processor is in emulator mode
was interrupted. This corresponds to bit [17] of the longword at the top of the system
stack.

Control is passed to the appropriate exception handler.

4. When the exception handler is complete, a Return From Exception (RTE)

instruction is executed. During the processing of the RTE, the FS1 bit is reloaded
from the system stack. If FS1 = 1, the processor sets the emulator mode state and
resumes execution of the original debug interrupt service routine. This is signaled
externally by the generation of the PST value that originally identified the
occurrence of a debug interrupt exception, that is, PST = 0xD.

Implementation of this revised debug interrupt handling fully supports the servicing of any
number of normal interrupt requests while in a debug interrupt service routine. The
emulator mode state bit is essentially changed to a program-visible value, stored into
memory when the exception stack frame is created, and loaded from memory by the RTE
instruction.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-11

sion C Debug

A.8.2 On-Chip Breakpoint Registers

The Debug B core debug module included three basic types of on-chip breakpoint registers:
* A 32-bit PC breakpoint register and a 32-bit PC breakpoint mask

* Two 32-bit address registers, which can be used to specify a single address or a range
of addresses

* A 32-bit data breakpoint register and a 32-bit data breakpoint mask
The mask registers can be used to “don’t care” the equivalent bits in the breakpoint
registers.
Additions to the breakpoint implementation are as follows:

e Three more 32-bit PC breakpoint registers

* Two more 32-bit address registers (ABLR1, ABHR1) plus an attribute register
(AATR1) and mask register, which can be used to specify a single address or a range
of addresses

* One more 32-bit data breakpoint register and a 32-bit data breakpoint mask

The addition of these new breakpoint registers also requires the appropriate control and
configuration functions be added to the debug programming model. The affected BDM
command and new register formats are described below. The revised BDM command is
write debug module register (WDMREG).

A.8.2.1 Write Debug Module Register (WDMREG)

The operand (longword) data is written to the specified debug module register. All 32 bits
of the register are altered by the write operation. The debug module’s programming model
can be accessed either from the serial BDM communication channel or from the processor’s
execution of the supervisor-mode WDEBUG instruction. DSCLK must be inactive while
WDEBUG executes.

Figure A-5 defines the operand data format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x2 0xC 0ox4 ‘ DRc
D[31:16]
D[15:0]

Figure A-5. Write Debug Module Register Command (WDMREG)

A-12 MCF5407 User’s Manual (M) moToroLa

Revision C Debug

Table A-11 describes the DRc encoding for the debug registers.
Table A-11. Definition of DRc Encoding—Write

DRc (hex) Debug Register Definition Abbreviation Initial State (hex)
0x00 Configuration/Status CSR 0x0000
0x01-0x04 | Reserved — —
0x05 BDM address attributes BAAR 0x0005
0x06 Bus attributes and mask AATR 0x0005
0x07 Trigger definition TDR 0x0000
0x08 PC breakpoint PBR —
0x09 PC breakpoint mask PBMR —
0xOA-0x0B | Reserved — —
0x0C Operand address high breakpoint ABHR —
0x0D Operand address low breakpoint ABLR —
O0xOE Data breakpoint DBR —
O0xOF Data breakpoint mask DBMR —
0x10-0x15 | Reserved — —
0x16 Bus attributes and mask 1 AATR1 0x0005
0x17 Extended trigger definition XTDR 0x0000
0x18 PC breakpoint 1 PBR1 0x0000
0x19 Reserved — —
Ox1A PC breakpoint 2 PBR2 0x0000
0x1B PC breakpoint 3 PBR3 0x0000
0x1C Operand address high breakpoint 1 ABHR1 —
0x1D Operand address low breakpoint 1 ABLR1 —
Ox1E Data breakpoint 1 DBR1 —
Ox1F Data breakpoint mask 1 DBMR1 —

Command Sequence:

WDMREG MS DATA LS DATA NEXT CMD
“NOT READY. “NOT READY. "CMD COMPLETE"

v XXX\ / NEXT CMD
\(UILLEGAL' / \\NOT READYY/

Figure A-6. WDMREG Command Sequence

Operand Data:

Longword data is written into the specified debug register. Data is supplied most
significant word first.

Result Data:

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-13

3
4

'
A

sion C Debug

Command complete status (0XOFFFF) is returned when register write is complete.

A.8.3 Debug Programming Model

In addition to existing BDM commands that provide access to the processor’s registers and
the memory subsystem, the debug module contains a number of registers to support the
required functionality. These registers are treated as 32-bit quantities, regardless of the
number of bits in the implementation. The debug control registers (DRc) are addressed
using a 5-bit value as part of two new BDM commands (WDREG and RDREG). These values
are shown in Table A-11.

These registers are also accessible from the processor’s supervisor programming model
through the execution of the WDEBUG instruction. Thus, the breakpoint hardware within
the debug module can be accessed by the external development system using the serial
interface or by the operating system running on the processor core. It is the software’s
responsibility to guarantee that all accesses to these resources are serialized and are
logically consistent. The hardware provides a locking mechanism in the CSR to allow the
external development system to disable any attempted writes by the processor to the
breakpoint registers (setting IPW).

The following sections describe the newly added breakpoint registers in Debug C.

A.8.3.1 Address Breakpoint 1 Registers (ABLR1, ABHR1)

The 32-bit address breakpoint 1 registers define an upper (ABHR1) and a lower (ABLR1)
boundary for a region in the operand logical address space of the processor that can be used
as part of the trigger. The ABLR1 and ABHR1 values are compared with the ColdFire CPU
core address signals, as defined by the setting of the trigger definition register (TDR) and
the extended trigger definition register (XTDR).

A.8.3.2 Address Attribute Breakpoint Register 1 (AATR1)

The address attribute breakpoint register 1 (AATR1) defines the address attributes and a
mask associated with ABLR1 and ABHR1 to be matched in the trigger. The AATR1 value
is compared with the ColdFire CPU core address attribute signals, as defined by the setting
of the TDR and XTDR. The format of the AATR1 is the same as the AATR register. For
more details about these registers see Section 5.4.1, “Address Attribute Trigger Registers
(AATR, AATR1)”.

A.8.3.3 Program Counter Breakpoint Registers 1-3 (PBR1-PBR3)

Each of the program counter (PC) breakpoint registers (PBR, PBR1-PBR3) defines an
instruction address that can be used as part of the trigger. PBRn registers are compared with
the processor’s program counter register when the appropriate valid bit is asserted and TDR

is configured appropriately. For more details about these registers see Section 5.4.6,
“Program Counter Breakpoint/Mask Registers (PBR, PBR1, PBR2, PBR3, PBMR)”.

A-14 MCF5407 User’s Manual (M) moToroLa

Revision C Debug

The results of all PC breakpoint registers, PBR/PBMR, PBR1, PBR2, and PBR3, are
logically summed to form a single PC breakpoint trigger signal.

* PBR#n[31:1] = program counter breakpoint address
* PBR=n[0] = valid bit

A.8.3.4 Data Breakpoint Register 1 (DBR1, DBMR1)

The data breakpoint register 1 (DBR1) defines a specific data pattern that can be used as
part of a trigger. The DBR1 value is masked by DBMR1, allowing only those bits in DBR1
that have a corresponding zero in DBMR1 to be compared with the ColdFire CPU core data
signals, as defined in the TDR and the XTDR.

The data breakpoint registers support both aligned and misaligned operand references. The
relationship between the processor core address, the access size, and the corresponding
location within the 32-bit core data bus is defined in the DBR and DBMR description.

A.8.3.5 Extended Trigger Definition Register (XTDR)

The XTDR enables the operation as defined by the new breakpoint registers, ABHRI,
ABLR1, AATRI1, DBRI1, and DBMRI1, within the debug module and operates in
conjunction with the trigger definition register (TDR). The added breakpoint logic can be
included as a one- or two-level trigger; XTDR[29-18] define second-level triggers and
XTDR[13-2] define first-level triggers. The definition of the XTDR register is exactly the
same as the TDR for the control of the ABHR1, ABLR1, DBR1 and DBMRI1 breakpoint
registers. The XTDR is cleared on reset. For more details about this register see
Section 5.4.8, “Extended Trigger Definition Register (XTDR)”.

A.8.4 Debug Interrupt Exception Vectors

In the Debug B revision, if the occurrence of a hardware breakpoint is configured to
generate a debug interrupt, this exception is mapped to vector number 12 (0x030). The
actual debug interrupts can be broadly classified into two groups—PC breakpoints and all
other types. A PC breakpoint is treated in a precise manner—exception recognition and
processing are initiated before the instruction at the given address is executed. Conversely,
all other breakpoint events are recognized on the given internal bus transaction, but are
made pending to the processor and sampled like other interrupt conditions. As a result,
these types of interrupts are imprecise by nature.

In response to a customer request that PC breakpoints be distinguishable from other type
of trigger events, the debug interrupt exception vector is expanded in Debug C of the
MCF5407 to two unique entries, shown in Table A-12, where the occurrence of a PC
breakpoint generates the 0x034 vector. In the case of a two-level trigger, the last breakpoint
event determines the exception vector.

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-15

sion C Debug

Table A-12. Debug C Exception Vector Assignments

Vector Vector Offset Stacked Program Counter Assignment
12 0x030 Next Non-PC-breakpoint debug interrupt
13 0x034 Next PC-breakpoint debug Interrupt

A.8.5 Processor Status and Debug Data Output Signals

The Debug B architecture defines processor status, PST[3:0] and debug data DDATA[3:0]
signals, which provide information to support real-time trace. In the Debug B design, these
signals are output at the processor frequency.

For the Debug C definition, however, the PST and DDATA are combined and redefined to
operate at half the processor’s operating frequency (provided by PSTCLK). Therefore,
PSTDDATA([7:0] are used to output both processor status and captured debug data values.

For more details, including single-cycle instruction timing examples, see Section 5.2.1,
“Processor Status/Debug Data (PSTDDATA[7:0]).”

A PST marker and its data display are transmitted contiguously. Except for this
transmission, the IDLE status (0x0) may appear any time. Again, given the real-time trace
information appears as a sequence of 4-bit values, there are no alignment restrictions. That
is, PST values and operands may appear on either nibble of PSTDDATA.

In Debug B, the DDATA outputs display the status of the internal breakpoint registers when
they are not displaying captured data values. For the Debug C design, any change to this
breakpoint state is identified by a PST marker and then the new state value. Specifically, the
marker for this breakpoint state change is a single assertion of the value 0xD. Usually, the
0xD status is asserted for multiple cycles, indicating entry into emulator mode in response
to a debug interrupt exception. For Debug C, the posting of the 0xD status can signal
multiple events, based on the next value.

if the PSTDDATA stream includes {0xD, 0x2}
then Breakpoint state changed to Waiting for Level 1 Trigger

if the PSTDDATA stream includes {0xD, 0x4}
then Breakpoint state changed to Level 1 Breakpoint Triggered

if the PSTDDATA stream includes {0xD, OxA}
then Breakpoint state changed to Waiting for Level 2 Trigger

if the PSTDDATA stream includes {0xD, 0xC}
then Breakpoint state changed to Level 2 Breakpoint Triggered

if the PSTDDATA stream includes {0xD, 0xD}

then Entry into Emulator Mode
Table A-13 shows the revised definition of the processor status encodings, where the values
of {0xC-0xF} are usually asserted for multiple cycles. The behavior of the 0xD value was
described previously. The PSTDDATA values of 0x2 and 0x6 are formerly reserved values
now needed to support the Version 4 operand execution pipeline.

A-16 MCF5407 User’s Manual (M) moToroLa

Voltage Input Changes

Table A-13. Version 4 Debug C Processor Status Encodings

PSTDDATA Value Definition
0x0 Continue execution
Ox1 Begin execution of one instruction
0x2 Begin execution of two instructions
0x3 Entry into user-mode
0x4 Begin execution of PULSE or WDDATA instruction
0x5 Begin execution of taken branch
0x6 Begin execution of an instruction plus a taken branch
0x7 Begin execution of RTE instruction
0x8 Begin 1-byte data transfer on PSTDDATA
0x9 Begin 2-byte data transfer on PSTDDATA
O0xA Begin 3-byte data transfer on PSTDDATA
0xB Begin 4-byte data transfer on PSTDDATA
0xC Exception processing
0xD Breakpoint state change, or entry into emulator mode
OxE Processor is stopped, waiting for interrupt
OxF Processor is halted

A.8.6 Debug C Summary

The preceding section describes additional functionality requested by ColdFire customers
and third-party developers. The Debug C enhancements are designed to retain backward
compatibility with the previous definition.

A.9 Voltage Input Changes

Although the MCF5407 logic operates at 1.8 V, the device pads are standard
TTL-compatible and therefore can drive a 2.4-V minimum output and accepts a 3.3-V
input. Thus, the MCF5407 requires both 1.8- and 3.3-V power supplies. This specification
differs from the MCF5307, which operates at 3.3 V with 5-V-tolerant I/O pads. Although
the power and ground pin assignment are the same for both the MCF5307 and MCF5407,
the power pin allocation of the MCF5407 is divided between 1.8- and 3.3-V supply levels.
Thus, two power rails are necessary to supply power to the MCF5407.

Note that the MCF5407 meets the EIA/JEDEC standard for 1.8-V power supply voltage
and interface requirements. See the JEDEC standard (EIA/JESDS-7, February 1997).

A.10 PLL Power Supply Filter Circuit

To ensure PLL stability, the power supply to the PLL power pin should be filtered using a

@ MOTOROLA Appendix A. Migrating from the ColdFire MCF5307 to the MCF5407 A-17

Assignment Compatibility

circuit similar to the one shown in Figure A-7. The circuit should be as close as possible to
the PLL power pin to ensure maximum noise filtering. This filter design can be used for
both the MCF5307 and MCF5407.

10Q
vdd o o PLL power pin

L1OMF L
™ T

0.1uF

Figure A-7. PLL Power Supply Filter Circuit

A.11 Pin-Assignment Compatibility

The MCF5407 pinout is identical to the MCF5307 except for the power pin allocation and
PSTDDATA[7:0], which make available the contents of processor status, PST[3:0], and
debug data, DDATA[3:0]. Therefore, when designing-in the MCF5407, note which power
pins require 1.8 V and which require 3.3 V. The MCF5407 footprint is the same as the
MCF5307, which is a 208-pin plastic quad flat pack (QFP).

A-18 MCF5407 User’s Manual (M) moToroLa

Appendix B
List of Memory Maps

Table B-1. SIM Registers

MBAR
Offset [31:24] [23:16] [15:8] [7:0]
0x000 Reset status register System protection Software watchdog Software watchdog
(RSR) [p. 6-5] control register interrupt vector register | service register (SWSR)

(SYPCR) [p. 6-8] (SWIVR) [p. 6-9] [p. 6-9]

0x004 Pin assignment register (PAR) [p. 6-10] Interrupt port Reserved
assignment register
(IRQPAR) [p. 9-7]
0x008 PLL control (PLLCR) Reserved
[p. 7-3]
0x00C Default bus master park Reserved
register (MPARK)
[p. 6-11]
0x010— Reserved
0x03C
Table B-2. Interrupt Controller Registers
MBAR
Offset [31:24] [23:16] [15:8] [7:0]
Interrupt Registers [p. 9-3]
0x040 Interrupt pending register (IPR) [p. 9-6]
0x044 Interrupt mask register (IMR) [p. 9-6]
0x048 Reserved Autovector register
(AVR) [p. 9-5]
Interrupt Control Registers (ICRs) [p. 9-3]
0x04C Software watchdog Timer0 (ICR1) [p. 9-2] Timer1 (ICR2) [p. 9-3] [2C (ICR3) [p. 9-3]
timer (ICRO) [p. 6-6]

0x050 UARTO (ICR4) [p. 9-3] | UART1 (ICR5) [p. 9-3] DMAO (ICR®) [p. 9-3] DMAT1 (ICR7) [p. 9-3]
0x054 DMA2 (ICR8) [p. 9-3] DMA3 (ICR9) [p. 9-3] Reserved

@ MOTOROLA

Appendix B. List of Memory Maps

B-1

Table B-3. Chip-Select Registers

MBAR
Offset [31:24] [23:16] [15:8] [7:0]
0x080 Chip-select address register—bank 0 (CSARO0) Reserved’
[p. 10-6]
0x084 Chip-select mask register—bank 0 (CSMRO) [p. 10-7]
0x088 Reserved’ Chip-select control register—bank 0 (CSCRO0)
[p. 10-8]
0x08C Chip-select address register—bank 1 (CSAR1) Reserved’
[p. 10-6]
0x090 Chip-select mask register—bank 1 (CSMR1) [p. 10-7]
0x094 Reserved' Chip-select control register—bank 1 (CSCR1)
[p. 10-8]
0x098 Chip-select address register—bank 2 (CSAR2) Reserved’
[p. 10-6]
0x09C Chip-select mask register—bank 2 (CSMR2) [p. 10-7]
0x0A0 Reserved’ Chip-select control register—bank 2 (CSCR2)
[p. 10-8
0x0A4 Chip-select address register—bank 3 (CSAR3) Reserved’
[p. 10-6]
0x0A8 Chip-select mask register—bank 3 (CSMR3) [p. 10-7]
0x0AC Reserved’ Chip-select control register—bank 3 (CSCR3)
[p. 10-8]
0x0B0 Chip-select address register—bank 4 (CSAR4) Reserved’
[p. 10-6]
0x0B4 Chip-select mask register—bank 4 (CSMR4) [p. 10-7]
0x0B8 Reserved' Chip-select control register—bank 4 (CSCR4)
[p. 10-8]
0x0BC Chip-select address register—bank 5 (CSAR5) Reserved’
[p. 10-6]
0x0CO0 Chip-select mask register—bank 5 (CSMR5) [p. 10-7]
0x0C4 Reserved Chip-select control register—bank 5 (CSCR5)
[p. 10-8]
0x0C8 Chip-select address register—bank 6 (CSAR6) Reserved’
[p. 10-6]
0x0CC Chip-select mask register—bank 6 (CSMR6) [p. 10-7]
0x0DO Reserved’ Chip-select control register—bank 6 (CSCR6)
[p. 10-8]
0x0D4 Chip-select address register—bank 7 (CSAR7) Reserved’
[p. 10-6]
0x0D8 Chip-select mask register—bank 7 (CSMR?7) [p. 10-7]
0x0DC Reserved' Chip-select control register—bank 7 (CSCR7)
[p. 10-8
B-2 MCF5407 User’s Manual (M) moToroLa

Table B-3. Chip-Select Registers (Continued)

MBAR
Offset [31:24] [23:16] [15:8] [7:0]
MBAR . i . .
Offset [31:24] [23:16] [15:8] [7:0]
0x080 Chip-select address register—bank 0 (CSARO0) Reserved’
[p. 10-6]
0x084 Chip-select mask register—bank 0 (CSMRO) [p. 10-7]
0x088 Reserved’ Chip-select control register—bank 0 (CSCRO0)
[p. 10-8]
0x08C Chip-select address register—bank 1 (CSAR1) Reserved’
[p. 10-6]
0x090 Chip-select mask register—bank 1 (CSMR1) [p. 10-7]
0x094 Reserved' Chip-select control register—bank 1 (CSCR1)
[p. 10-8]
0x098 Chip-select address register—bank 2 (CSAR2) Reserved’
[p. 10-6]
0x09C Chip-select mask register—bank 2 (CSMR2) [p. 10-7]
0x0A0 Reserved’ Chip-select control register—bank 2 (CSCR2)
[p. 10-8]
0x0A4 Chip-select address register—bank 3 (CSAR3) Reserved’
[p. 10-6]
0x0A8 Chip-select mask register—bank 3 (CSMR3) [p. 10-7]
0x0AC Reserved’ Chip-select control register—bank 3 (CSCR3)
[p. 10-8]
0x0B0 Chip-select address register—bank 4 (CSAR4) Reserved’
[p. 10-6]
0x0B4 Chip-select mask register—bank 4 (CSMR4) [p. 10-7]
0x0B8 Reserved' Chip-select control register—bank 4 (CSCR4)

[p. 10-8]

Addresses not assigned to a register and undefined register bits are reserved for expansion. Write accesses to

these reserved address spaces and reserved register bits have no effect.

Table B-4. DRAM Controller Registers

g:::: [31:24] [23:16] [15:8] [7:0]
0x100 DRAM control register (DCR) [p. 11-3] Reserved

0x104 Reserved

0x108 DRAM address and control register 0 (DACRO) [p. 11-3]

0x10C DRAM mask register block 0 (DMRO) [p. 11-3]

0x110 DRAM address and control register 1 (DACR1) [p. 11-3]

0x114 DRAM mask register block 1 (DMR1) [p. 11-3]

@ MOTOROLA

Appendix B. List of Memory Maps B-3

Table B-5. General-Purpose Timer Registers

MBAR i . . .
Offset [31:24] [23:16] [15:8] [7:0]
0x140 Timer 0 mode register (TMRO) [p. 13-3] Reserved
0x144 Timer 0 reference register (TRRO) [p. 13-4] Reserved
0x148 Timer 0 capture register (TCRO) [p. 13-4] Reserved
0x14C Timer 0 counter (TCNO) [p. 13-5] Reserved
0x150 Reserved Timer 0 event register Reserved
(TERO) [p. 13-5]
0x180 Timer 1 mode register (TMR1) [p. 13-3] Reserved
0x184 Timer 1 reference register (TRR1) [p. 13-4] Reserved
0x188 Timer 1 capture register (TCR1) [p. 13-4] Reserved
0x18C Timer 1 counter (TCN1) [p. 13-5] Reserved
0x190 Reserved Timer 1 event register Reserved
(TER1) [p. 13-5]
Table B-6. UARTO Control Registers
MBAR i . . .
Offset [31:24] [23:16] [15:8] [7:0]
UARTO Control Registers
0x1CO | UART mode —
registers'—(UMR1n)
[p. 14-5], (UMR2n)
[p. 14-7]
0x1C4 | (Read) UART status —
registers—(USRn)
[p. 14-10]
(Write) UART —
clock-select
register' —(UCSRn)
[p. 14-12]
0x1C8 |(Read) Do not access® |—
(Write) UART command | —
registers—(UCRn)
[p. 14-13]
0x1CC |(Read) UART receiver |—
buffers—(URBnN)
[p. 14-15]
(Write) UART transmitter | —
buffers—(UTBn)
[p. 14-16]
B-4 MCF5407 User’s Manual (M) moToroLa

Table B-6. UARTO Control Registers (Continued)

MBAR

Offset [31:24] [23:16] [15:8] [7:0]

0x1DO | (Read) UART input port |—
change
registers—(UIPCRn)
[p. 14-17]

(Write) UART auxiliary |—
control
registers'—(UACRn)
[p. 14-17]

0x1D4 | (Read) UART interrupt |—
status
registers—(UISRn)
[p. 14-18]

(Write) UART interrupt | —
mask
registers—(UIMRn)
[p. 14-18]

0x1D8 | UART divider upper —
registers—(UDUn)
[p. 14-19]

0x1DC | UART divider lower —
registers—(UDLn)
[p. 14-19]

0x1EO— | Do not access?® —

Ox1EC

0x1FO | UART interrupt vector —
register—(UIVRn)
[p. 14-20]

0x1F4 | (Read) UART input port |—
registers—(UIPn)
[p. 14-20]

2
(Write) Do not access

2
0x1F8 | (Read) Do not access

(Write) UART output —
port bit set command
registers—(UOP1 n3)
[p. 14-21]

2
OX1FC | (Read) Do notaccess | —

(Write) UART output —
port bit reset command
registers—(UOPON®)
[p. 14-21]

T UMR1n, UMR2n, UCSRn, and UACRN[BRG] should be changed only after the receiver/transmitter is issued a
software reset command. That is, if channel operation is not disabled, undesirable results may occur.

This address is for factory testing. Reading this location results in undesired effects and possible incorrect
transmission or reception of characters. Register contents may also be changed.

@ MOTOROLA Appendix B. List of Memory Maps

w

Address-triggered commands

Table B-7. UART1 Control Registers

MBAR
Offset

[31:24]

[23:16]

[15:8]

[7:0]

UART1 Control Registers

0x200

UART mode
registers'—(UMR1n)[p.
14-5], (UMR2n) [p. 14-7

Rx FIFO threshold
register—(RXLVL)
[p. 14-8]

Modem control
register—(MODCTL)
[p. 14-9]

Tx FIFO threshold
register—(TXLVL)
[p. 14-10]

0x204

(Read) UART status
registers—(USRn)
[p. 14-10]

(Write) UART
clock-select
register' —(UCSRn)
[p. 14-12]

(Read) Rx samples
available
register—(RSMP)
[p. 14-12]

(Read) Tx space
available
register—(TSPC)
[p. 14-13]

0x208

(Read) Do not access?®

(Write) UART command
registers—(UCRn)
[p. 14-13]

0x20C

(Read) UART receiver buffers—(URBn) [p. 14-15]

(Write) UART transmitter buffers—(UTBn) [p. 14-16]

0x210

(Read) UART input port
change
registers—(UIPCRn)

[p. 14-17]

(Write) UART auxiliary
control
registers'—(UACRn)
[p. 14-17]

0x214

(Read) UART interrupt
status
registers—(UISRn)

[p. 14-18]

(Write) UART interrupt
mask
registers—(UIMRn)

[p. 14-18]

0x218

UART divider upper
registers—(UDUn)
[p. 14-19]

0x21C

UART divider lower
registers—(UDLn)
[p. 14-19]

0x220—
0x22C

Do not access?

B-6

MCF5407 User’s Manual

@ MOTOROLA

Table B-7.

UART1 Control Registers (Continued)

MBAR
Offset

[31:24]

[23:16]

[15:8]

[7:0]

0x230

UART interrupt vector
register—(UIVRn)
[p. 14-20]

0x234

(Read) UART input port
registers—(UIPn)
[p. 14-20]

(Write) Do not access

0x238

(Read) Do not access

(Write) UART output

port bit set command
registers—(UOP1 n3)
[p. 14-21]

0x23C

2
(Read) Do not access

(Write) UART output
port bit reset command
registers—(UOPON®)
[p. 14-21]

0x200

UART mode
registers*—(UMR1n)
[p. 14-5], (UMR2n)
[p. 14-7]

Rx FIFO threshold
register—(RXLVL)
[p. 14-10] (UART1 only)

Modem control
register—(MODCTL)
[p. 14-9] (UART1 only)

Tx FIFO threshold
register—(TXLVL)
[p. 14-10] (UART1 only)

0x204

(Read) UART status
registers—(USRn)
[p. 14-10]

(Write) UART
clock-select
register' —(UCSRn)
[p. 14-12]

(Read) Rx samples
available
register—(RSMP)

[p. 14-12] (UART1 only)

(Read) Tx space
available
register—(TSPC)

[p. 14-13] (UART1 only)

UMR1n, UMR2n, UCSRn, and UACRN[BRG] should be changed only after the receiver/transmitter is issued a

software reset command. That is, if channel operation is not disabled, undesirable results may occur.

transmission or reception of characters. Register contents may also be changed.

Address-triggered commands
UMR1n, UMR2n, UCSRn, and UACRN[BRG] should be changed only after the receiver/transmitter is issued a

This address is for factory testing. Reading this location results in undesired effects and possible incorrect

software reset command. That is, if channel operation is not disabled, undesirable results may occur.

Table B-8. Parallel Port Memory Map

MBAR . X . .
Offset [31:24] [23:16] [15:8] [7:0]
0x244 | Parallel port data direction register (PADDR) Reserved

[p. 15-2]
0x248 | Parallel port data register (PADAT) [p. 15-2] Reserved

@ MOTOROLA

Appendix B. List of Memory Maps

B-7

Table B-9. 12C Interface Memory Map

MBAR . X . .
Offset [31:24] [23:16] [15:8] [7:0]
0x280 | IC address register Reserved
(IADR) [p. 8-6]
0x284 | I2C frequency divider Reserved
register (IFDR) [p. 8-6]
0x288 | IC control register Reserved
(12CR) [p. 8-7]
0x28C | I2C status register Reserved
(I2SR) [p. 8-8]
0x290 | I2C data /O register Reserved
(I2DR) [p. 8-9]
Table B-10. DMA Controller Registers
MBAR
Offset [31:24] [23:16] [15:8] [7:0]
0x300 Source address register 0 (SARO) [p. 12-7]
0x304 Destination address register 0 (DARO) [p. 12-7]
0x308 DMA control register 0 (DCRO) [p. 12-8]
0x30C Reserved Byte count register 0 (BCRO) [p. 12-7]
0x310 DMA status register 0 Reserved
(DSRO) [p. 12-10]
0x314 DMA interrupt vector Reserved
register 0 (DIVRO)
[p. 12-11]
0x340 Source address register 1 (SAR1) [p. 12-7]
0x344 Destination address register 1 (DAR1) [p. 12-7]
0x348 DMA control register 1 (DCR1) [p. 12-8]
0x34C Reserved Byte count register 1 (BCR1) [p. 12-7]
0x350 DMA status register 1 Reserved
(DSR1) [p. 12-10]
0x354 DMA interrupt vector Reserved
register 1 (DIVR1)
[p. 12-11]
0x380 Source address register 2 (SAR2) [p. 12-7]
0x384 Destination address register 2 (DAR2) [p. 12-7]
0x388 DMA control register 2 (DCR2) [p. 12-8]
0x38C Reserved Byte count register 2 (BCR2) [p. 12-7]
0x390 DMA status register 2 Reserved
(DSR2) [p. 12-10]
B-8 MCF5407 User’s Manual (M) moToroLa

Table B-10. DMA Controller Registers (Continued)

MBAR
Offset [31:24] [23:16] [15:8] [7:0]
0x394 DMA interrupt vector Reserved

register 2 (DIVR2)

[p. 12-11]

0x3C0 Source address register 3 (SAR3) [p. 12-7]
0x3C4 Destination address register 3 (DAR3) [p. 12-7]
0x3C8 DMA control register 3 (DCR3) [p. 12-8]
0x3CC Reserved Byte count register 3 (BCR3) [p. 12-7]
0x3D0 DMA status register 3 Reserved

(DSR3) [p. 12-10]
0x3D4 DMA interrupt vector Reserved

register 3 (DIVR3)
[p. 12-11]

@ MOTOROLA

Appendix B. List of Memory Maps

B-9

g |

MCF5407 User’s Manual

@ MOTOROLA

Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Autovector. A method of determining the starting address of the service
routine by fetching the value from a lookup table internal to the
processor instead of requesting the value from the system.

B Branch folding. The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch prediction.The process of guessing whether a branch will be taken.
Such predictions can be correct or incorrect; the term ‘predicted’ as
it is used here does not imply that the prediction is correct
(successful). Branch resolution.The determination of whether a
branch is taken or not taken. A branch is said to be resolved when the
processor can determine which instruction path to take. If the branch
is resolved as predicted, the instructions following the predicted
branch that may have been speculatively executed can complete (see
completion). If the branch is not resolved as predicted, instructions
on the mispredicted path, and any results of speculative execution,
are purged from the pipeline and fetching continues from the
nonpredicted path.

Burst. A multiple-beat data transfer.

C Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory

@ MOTOROLA Glossary of Terms and Abbreviations Glossary-1

Glossary-2

system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory.

Cache line. The smallest unit of consecutive data or instructions that is stored
in a cache. For ColdFire processors a line consists of 16 bytes.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast outs. Cache lines that must be written to memory when a cache miss
causes a cache line to be replaced.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Copyback. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache line is cast out
to make room for newer data.

Effective address (EA). The 32-bit address specified for an instruction.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector defined by the ColdFire architecture.

Fetch. The act of retrieving instructions from either the cache or main
memory and making them available to the instruction unit.

Flush. An operation that causes a modified cache line to be invalidated and
the data to be written to memory.

Harvard architecture. An architectural model featuring separate caches for
instruction and data.

MCF5407 User’s Manual (M) moToroLa

I Illegal instructions. A class of instructions that are not implemented for a
particular processor. These include instructions not defined by the
ColdFire architecture.

Implementation. A particular processor that conforms to the ColdFire
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The ColdFire architecture has
many different implementations.

Imprecise mode. A memory access mode that allows write accesses to a
specified memory region to occur out of order.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make the results of that instruction available.

Interrupt. An asynchronous exception. On ColdFire processors, interrupts
are a special case of exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of a cache line from memory.

Least-significant bit (Isb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

Longword. A 32-bit data element

M Master. A device able to initiate data transfers on a bus. Bus mastering refers
to a feature supported by some bus architectures that allow a
controller connected to the bus to communicate directly with other
devices on the bus without going through the CPU.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Modified state. Cache state in which only one caching device has the valid
data for that address.

@ MOTOROLA Glossary of Terms and Abbreviations Glossary-3

Glossary-4

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

Nop. No-operation. A single-cycle operation that does not affect registers or
generate bus activity.

Overflow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 16-bit numbers are multiplied, the result may not be
representable in 16 bits.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one completes.

Precise mode. A memory access mode that ensures that all write accesses to
a specified memory region occur in order.

Set (v) To write a nonzero value to a bit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the
same location, cached data is typically placed in the set whose cache
line corresponding to that address was used least recently. See Set-
associativity.

Set-associativity. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Slave. The device addressed by a master device. The slave is identified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branch is likely to take.

MCF5407 User’s Manual (M) moToroLa

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

System memory. The physical memory available to a processor.

Tenure. A tenure consists of three phases: arbitration, transfer, termination.
There can be separate address bus tenures and data bus tenures.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Transfer termination. The successful or unsuccessful conclusion of a data
transfer.

Underflow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed.

Word. A 16-bit data element.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

@ MOTOROLA Glossary of Terms and Abbreviations Glossary-5

g |

Glossary-6

MCF5407 User’s Manual

@ MOTOROLA

A

Addressing mode summary, 2-15
Arbitration
between masters, 6-14
bus control, 6-11
for internal transfers, 6-12
Architecture
Harvard memory, 2-6
instruction set
additions, 2-18
enhancements, 2-36

Branch acceleration, 2-4
Branch instruction execution
timing, 2-30
Bus arbitration control, 6-11
Bus master park register, 6-11
Bus operation
bus errors, 18-17
characteristics, 18-2
control signals, 18-1
data transfer
back-to-back cycles, 18-10
burst cycles
line read bus, 18-12
line transfers, 18-12
line write bus, 18-14
mixed port sizes, 18-15
overview, 18-11
cycle execution, 18-4
cycle states, 18-5
fast-termination cycles, 18-9
operation, 18-2
read cycle, 18-7
write cycle, 18-8
external master transfers
general, 18-21

two-device arbitration protocol, 18-25

two-wire mode, 18-25
features, 18-1
interrupt exceptions, 18-17
misaligned operands, 18-16
reset operation

master, 18-34

overview, 18-33

software watchdog, 18-35

@ MOTOROLA

INDEX

Index

Cc

Cache
configuration register, 2-12
registers, access control, 2-12
Chip-select module
8-, 16-, and 32-bit port sizing, 10-4
enable signals, 17-15
operation, 10-2
general, 10-3
global, 10-4
overview, 10-1
registers, 10-5, 10-6, B-2
code example, 10-9
control, 10-8

mask, 10-7
signals, 10-1
Clock

PLL control, 6-10
ColdFire core
exception stack frame definition, A-11
features and enhancements, 2-1
Condition code register, 2-9
CPU STOP instruction, 6-10

D

Data registers, A-13
Debug
module enhancements, 2-6
system interface, 1-12
DMA controller module
byte count registers, 12-7
programming model, 12-5
signal description, 12-2
source address registers, 12-7
transfer overview, 12-4
DRAM controller
asynchronous mode signals, 11-4
asynchronous operation
burst page mode, 11-12
continuous page mode, 11-13
extended data out, 11-15
general, 11-4
register set, 11-4
general guidelines, 11-8
non-page mode, 11-11
refresh operation, 11-16
registers, 11-3

Index-1

address and control, 11-5
mask, 11-7

signals, 17-16

synchronous operation, 11-16
address and control registers, 11-20
address multiplexing, 11-23
auto-refresh, 11-31
burst page mode, 11-27
continuous page mode, 11-29
controller signals, synchronous mode, 11-17
edge select, 11-18
general guidelines, 11-23
initialization, 11-32
interfacing, 11-27
mask registers, 11-22
mode register settings, 11-33
register set, 11-19
self-refresh, 11-32

E

Electrical specifications

cautions, 20-3

clock timing, 20-4

debug AC timing, 20-16

DMA timing, 20-23

general parameters, 20-1

I’C input/output timing, 20-18

input/output AC timing specifications, 20-6

JTAG AC timing, 20-24

parallel port timing, 20-22

reset timing, 20-15

timer module AC timing, 20-17

UART module AC timing, 20-19
Exception processing

overview, 2-31

processor exceptions, 2-34

stack frame definition, 2-32
Execution timings

miscellaneous, 2-29

one operand, 2-26

two operands, 2-27

F

Features
process, 1-7
summary, 1-4

H

Harvard memory architecture, 2-6

|
1’C

Index-2

INDEX

address register, 8-6
arbitration procedure, 8-4
clock stretching, 8-5

clock synchronization, 8-5
control register, 8-7

data I/O register, 8-9
features, 8-1

frequency divider register, 8-6
handshaking, 8-5

interface memory map, B-8
lost arbitration, 8-13
overview, 8-1

programming examples, 8-10
programming model, 8-6
protocol, 8-3

repeated START generation, 8-12

slave mode, 8-13

software response, 8-11
START generation, 8-10
status register, 8-8

STOP generation, 8-12
system configuration, 8-3
timing specifications, 20-18

IEEE Standard 1149.1 Test Access Port, see JTAG

Instruction execution times, 2-29
Instruction set
architecture additions, 2-18
architecture enhancements, 2-36
branch acceleration, 2-4
fetch pipeline, 2-4
MAC summary, 3-4
MAC unit execution times, 3-5
summary, 2-15, 2-19
Integer data formats, 2-13

Integer data formats in memory, 2-14
Integer data formats in registers, 2-13

Interrupt controller
autovector register, 9-5
overview, 9-1
pending and mask registers, 9-6
port assignment register, 9-7

J

JTAG
AC timing, 20-24

obtaining IEEE Standard 1149.1,

overview, 19-1
registers
boundary scan, 19-7
bypass, 19-10
descriptions, 19-4
IDCODE, 19-6
instruction shift, 19-5
restrictions, 19-10

MCF5407 User’s Manual

19-11

@ MOTOROLA

signal descriptions, 19-2
TAP controller, 19-3
test logic disabling, 19-10

MAC
data representation, 3-4
hardware support, 2-5
instruction execution timings, 3-5
instruction set summary, 3-4
operation, 3-3
programming model, 2-10, 3-2
Mask registers
DRAM, 11-7, 11-22
MBAR, 6-4
Mechanical data, 16-1
case drawing, 16-9
diagram, 16-8
pinout, 16-1
Memory
integer data formats, 2-14
SIM register, 6-3
Modules, 1-7
base address register, 2-12
core description, 1-7
debug, 2-6
DMA controller, 1-9
DRAM controller, 1-9
1C, 1-11
PLL, 1-13
system interface, 1-11
16-bit parallel port, 1-12
chip selects, 1-11
debug, 1-12
external bus, 1-11
interrupt controller, 1-12
JTAG, 1-12
Timer, 1-11
UARTsS, 1-10
MOVE instructions timing, 2-25

(o)

Opcodes
illegal handling, 2-5

P

Parallel port
code example, 15-4
data direction register, 15-2
data register, 15-2
operation, 15-1
Pin assignment register, 6-10, 15-1

@ MOTOROLA

INDEX

Index

Pipelines, 2-2
instruction fetch, 2-4
operand execution, 2-4
PLL, 7-2
clock control for STOP, 6-10
clock frequency relationships, 7-4
clock-multiplied, 2-2
control register, 7-3
modes
normal, 7-2
reduced power, 7-3
operation, 7-2
overview, 7-1
port list, 7-4
power supply filter circuit, 7-6
reset/initialization, 7-2
timing relationships, 7-4
Power supply
filter circuit, 7-6
Program counter, 2-9
Programming models
MAC, 2-10
overview, 2-7
registers, 1-15
SIM, 6-3
summary, B-1
supervisor, 2-10
user, 2-8

R

RAM base address registers, 2-12
Registers
A0-A6, 2-9
A7,2-9
AATR, 5-10
access control, 2-12
address, 2-9
AVR, 9-5
BAAR, 5-12
bus master park, 6-11
cache configuration, 2-12
CACR, 2-12
CCR, 2-9
chip-select
control, 10-8
mask, 10-7
module, 10-5
condition code, 2-9
CSR, 5-13
D0-D7, 2-8
data, 2-8, A-13
DMA byte count, 12-7
DMA source address, 12-7
DRAM

Index-3

asynchronous
address and control, 11-5
DACR, 11-5
DCR, 11-4
DMR, 11-7
mode signals, 11-4
general operation, 11-3
synchronous
DACR, 11-20
DCR, 11-19
DMR, 11-22
mode settings, 11-33
1’C
address, 8-6
control, 8-7
data 1/0, 8-9
frequency divider, 8-6
status, 8-8
12CR, 8-7
12DR, 8-9
12SR, 8-8
IADR, 8-6
IFDR, 8-6
integer data formats in, 2-13
interrupt controller
autovector, 9-5
pending and mask, 9-6
port assignment, 9-7
IPR and IMR, 9-6
IRQPAR, 9-7
JTAG
boundary scan, 19-7
bypass, 19-10
descriptions, 19-4
IDCODE, 19-6
instruction shift, 19-5
MBAR, 2-12, 6-4
MODCTL, 14-9
module base address, 2-12
MPARK, 6-11
PADAT, 15-2
PADDR, 15-2
PAR, 6-10, 15-1
parallel port
data, 15-2
pin assignment, 15-1
PBR, 5-16
pin assignment, 6-10
PLL control, 7-3
PLLCR, 7-3
programming model, 1-15
RAM base address, 2-12
RAMBAR, 2-12
RAREG/RDREG, 5-30

Index-4

INDEX

RCREG, 5-42
RDMREG, 5-44
reset status, 6-5
RSMP, 14-12
RSR, 6-5
RXLVL, 14-8
SDRAM mode initialization, 11-38
SIM
base address, 6-4
memory map, 6-3
software watchdog interrupt, 6-9
SR, 2-11
status, 2-11
supervisor, 1-16, 1-16
SWIVR, 6-9
SWSR, 6-9
SYPCR, 6-8
system protection control, 6-8
TCR, 13-4
TDR, 5-18
TER, 13-5
timer module
capture, 13-4
event, 13-5
mode, 13-3
reference, 13-4
TMR, 13-3
TSPC, 14-13
TXLVL, 14-10
UACR, 14-17
UART modules, 14-3-14-21
UCR, 14-13
UCSR, 14-12
UDU/UDL, 14-19
UIP, 14-20
UIPCR, 14-17
UISR, 14-18
UIVR, 14-20
user, 1-15
VB, 2-12
vector base, 2-12
WAREG/WDREG, 5-31
WCREG, 5-43
WDMREG, 5-45
XTDR, 5-19

RSTI timing, 7-5

SDRAM

block diagram and major components, 11-2
controller registers, B-3

DACR initialization, 11-35

DCR initialization, 11-35

definitions, 11-2

MCF5407 User’s Manual (M) moToroLA

INDEX

DMR initialization, 11-37
example, 11-34
initialization code, 11-39
interface configuration, 11-34
mode register initialization, 11-38
overview, 11-1
Signal descriptions, 17-1
address bus, 17-7
address configuration, 17-15
address strobe, 17-9
bus
arbitration, 17-12
clock output, 17-13
data, 17-8
driven, 17-13
grant, 17-12
request, 17-12
chip-select module, 17-15
clock and reset, 17-13
clock input, 17-13
data bus, 17-8
data/configuration pins, 17-14
debug
high impedance, 17-20
JTAG, 17-21
processor clock output, 17-20
processor status debug data, 17-21
test
clock, 17-22
mode, 17-20
overview, 17-20
debug module/JITAG
test data input/development serial input, 17-22
test data output/development serial output, 17-22
test mode select/breakpoint, 17-21
test reset/development serial clock, 17-21
divide control, 17-15
DMA controller module
general, 17-17
transfer modifier/acknowledge, 17-18
DRAM controller
address strobes, 17-16
overview, 17-16
synchronous
clock enable, 17-17
column address strobe, 17-17
edge select, 17-17
row address strobe, 17-17
synchronous edge select, 17-17
write, 17-16
12C module
general, 17-20
serial clock, 17-20
serial data, 17-20
interrupt control signals, 17-12

@ MOTOROLA

Index

interrupt request, 17-12
JTAG, 19-2
parallel I/O port, 17-19
read/write, 17-8
reset in, out, 17-13
serial module
clear to Send, 17-19
general, 17-18
receiver serial data input, 17-19
request to send, 17-19
transmitter serial data output, 17-18
size, 17-8
timer module, 17-19
transfer
acknowledge, 17-9
in progress, 17-10
modifier, 17-10
start, 17-9
Signals
overview, 17-1
SIM
features, 6-1
programming model, 6-3
register memory map, 6-3
Software watchdog
interrupt vector register, 6-9
service register, 6-9
timer, 6-6
Stack pointer, 2-9, 2-9
Status register, 2-11
Supervisor
programming model, 2-10
registers, 1-16
System protection control register, 6-8

T

Timer module
calculating time-out values, 13-7
capture registers, 13-4
code example, 13-6
counters, 13-5
event registers, 13-5
general-purpose programming model, 13-2
general-purpose units, 13-2
mode registers, 13-3
reference registers, 13-4

Timing
branch instruction execution, 2-30
MAC unit instructions, 3-5
MOVE instructions, 2-25
one operand, 2-26
PLL, 7-4
RSTI, 7-5
two operands, 2-27

Index-5

INDEX

Transfers
internally generated, 6-12

U

UART Modules
register description and programming
register description
UART module programming model (table
14-1),B-4
UART modules
bus operation, 14-37
interrupt acknowledge cycles, 14-37
read cycles, 14-37
write cycles, 14-37
clock source
baud rates, 14-24
controm registers, B-6
external clock, 14-25
FIFO stack in UARTO, 14-32
initialization sequence, 14-38
looping modes, 14-34
automatic echo, 14-34
local loop-back, 14-34
remote loop-back mode, 14-35
mode registers, 14-5
multidrop mode, 14-35
programming, 14-37
receiver, 14-29
receiver in modem mode, 14-31
register descriptions, 14-3
serial overview, 14-2
signal definitions, 14-21
simplified block diagram, A-6
transmitter and receiver modes, 14-25
transmitter in modem mode, 14-27
transmitter/receiver clock source, 14-23
transmitting in UART mode, 14-26
UARTI in UART mode, 14-31
User registers, 1-15

\

Vector base register, 2-12

Index-6 MCF5407 User’s Manual

@ MOTOROLA

Overview

Part I: MCF5407 Processor Core

ColdFire Core

Hardware Multiply/Accumulate (MAC) Unit
Local Memory

Debug Support

Part II: System Integration Module (SIM)
SIM Overview

Phase-Locked Loop (PLL)

12C Module

Interrupt Controller

Chip-Select Module
Synchronous/Asynchronous DRAM Controller Module
Part Ill: Peripheral Module

DMA Controller Module

Timer Module

UART Modules

Parallel Port (General-Purpose 1/0)
Part IV: Hardware Interface
Mechanical Data

Signal Descriptions

Bus Operation

IEEE 1149.1 Test Access Port (JTAG)
Electrical Specifications

Appendix A: Migration

Appendix B: Memory Map

Glossary of Terms and Abbreviations
Index

I

Part |

Part Il

—_ =
— O

Part Ill

—
[\

— -
e K

—_
o1

Part IV

—
(e}

—_ =
(ool BN

N
o

I"

Part |

Part Il

—_
—_

—_

Part Ill

-
\V)

—
N

—_
w

—
()]

Part IV

N
o

)

—_ —_ —_ —_

L

o

IND

Overview

Part I: MCF5407 Processor Core

ColdFire Core

Hardware Multiply/Accumulate (MAC) Unit
Local Memory

Debug Support

Part II: System Integration Module (SIM)
SIM Overview

Phase-Locked Loop (PLL)

I2C Module
Interrupt Controller
Chip-Select Module

Synchronous/Asynchronous DRAM Controller Module

Part Ill: Peripheral Module

DMA Controller Module

Timer Module

UART Modules

Parallel Port (General-Purpose 1/0O)
Part IV: Hardware Interface
Mechanical Data

Signal Descriptions

Bus Operation

IEEE 1149.1 Test Access Port (JTAG)
Electrical Specifications

Appendix A: Migration

Appendix B: Memory Map

Glossary of Terms and Abbreviations
Index

	MCF5407 ColdFire® Integrated Microprocessor User’s Manual
	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	ColdFire Documentation

	Conventions
	Acronyms and Abbreviations
	Table�i . Acronyms and Abbreviated Terms�

	Terminology and Notational Conventions
	Table�ii Notational Conventions�

	Chapter�1 Overview
	1.1 Features
	Figure�1-1. MCF5407 Block Diagram

	1.2 MCF5407 Features
	1.2.1 Process

	1.3 ColdFire Module Description
	1.3.1 ColdFire Core
	1.3.1.1 Instruction Fetch Pipeline (IFP)
	1.3.1.2 Operand Execution Pipeline (OEP)
	1.3.1.3 MAC Module
	1.3.1.4 Integer Divide Module

	1.3.2 Harvard Architecture
	1.3.2.1 16-Kbyte Instruction Cache/8-Kbyte Data Cache
	1.3.2.2 Internal 2-Kbyte SRAMs

	1.3.3 DRAM Controller
	1.3.4 DMA Controller
	1.3.5 UART Modules
	Figure�1-2. UART Module Block Diagram

	1.3.6 Timer Module
	1.3.7 I2C Module
	1.3.8 System Interface
	1.3.8.1 External Bus Interface
	1.3.8.2 Chip Selects
	1.3.8.3 16-Bit Parallel Port Interface
	1.3.8.4 Interrupt Controller
	1.3.8.5 JTAG

	1.3.9 System Debug Interface
	1.3.10 PLL Module
	Figure�1-3. PLL Module

	1.4 Programming Model, Addressing Modes, and Instruction Set
	1.4.1 Programming Model
	Figure�1-4. ColdFire MCF5407 Programming Model

	1.4.2 User Registers
	Table�1-1. User-Level Registers�

	1.4.3 Supervisor Registers
	Table�1-2. Supervisor-Level Registers

	1.4.4 Instruction Set

	Part�I MCF5407 Processor Core
	Chapter�2 ColdFire Core
	2.1 Features and Enhancements
	2.1.1 Clock-Multiplied Microprocessor Core
	2.1.2 Enhanced Pipelines
	Figure�2-1. ColdFire Enhanced Pipeline
	2.1.2.1 Instruction Fetch Pipeline (IFP)
	2.1.2.1.1 Branch Acceleration

	2.1.2.2 Operand Execution Pipeline (OEP)
	2.1.2.2.1 Illegal Opcode Handling
	2.1.2.2.2 Hardware Multiply/Accumulate (MAC) Unit
	Figure�2-2. ColdFire Multiply-Accumulate Functionality Diagram

	2.1.2.2.3 Hardware Divide Unit

	2.1.2.3 Harvard Memory Architecture

	2.1.3 Debug Module Enhancements

	2.2 Programming Model
	Figure�2-3. ColdFire Programming Model
	2.2.1 User Programming Model
	2.2.1.1 Data Registers (D0–D7)
	2.2.1.2 Address Registers (A0–A6)
	2.2.1.3 Stack Pointer (A7, SP)
	2.2.1.4 Program Counter (PC)
	2.2.1.5 Condition Code Register (CCR)
	Figure�2-4. Condition Code Register (CCR)
	Table�2-1. CCR Field Descriptions�

	2.2.1.6 MAC Programming Model

	2.2.2 Supervisor Programming Model
	Table�2-2. MOVEC Register Map�
	2.2.2.1 Status Register (SR)
	Figure�2-5. Status Register (SR)
	Table�2-3. Status Field Descriptions�

	2.2.2.2 Vector Base Register (VBR)
	Figure�2-6. Vector Base Register (VBR)

	2.2.2.3 Cache Control Register (CACR)
	2.2.2.4 Access Control Registers (ACR0–ACR3)
	2.2.2.5 RAM Base Address Registers (RAMBAR0 and RAMBAR1)
	2.2.2.6 Module Base Address Register (MBAR)

	2.3 Integer Data Formats
	Table�2-4. Integer Data Formats

	2.4 Organization of Data in Registers
	2.4.1 Organization of Integer Data Formats in Registers
	Figure�2-7. Organization of Integer Data Formats in Data Registers
	Figure�2-8. Organization of Integer Data Formats in Address Registers

	2.4.2 Organization of Integer Data Formats in Memory
	Figure�2-9. Memory Operand Addressing

	2.5 Addressing Mode Summary
	Table�2-5. ColdFire Effective Addressing Modes�

	2.6 Instruction Set Summary
	Table�2-6. Notational Conventions�
	2.6.1 Additions to the Instruction Set Architecture
	Table�2-7. ColdFire ISA_B Extension Summary�

	2.6.2 Instruction Set Summary
	Table�2-8. User-Level Instruction Set Summary�
	Table�2-9. Supervisor-Level Instruction Set Summary�

	2.7 Execution Timings
	Table�2-10. Misaligned Operand References
	2.7.1 MOVE Instruction Execution Timing
	Table�2-11. Move Byte and Word Execution Times�
	Table�2-12. Move Long Execution Times�
	Table�2-13. Miscellaneous Move Execution Times�

	2.7.2 Execution Timings—One-Operand Instructions
	Table�2-14. One-Operand Instruction Execution Times�

	2.7.3 Execution Timings—Two-Operand Instructions
	Table�2-15. Two-Operand Instruction Execution Times�

	2.7.4 Miscellaneous Instruction Execution Times
	Table�2-16. Miscellaneous Instruction Execution Times�

	2.7.5 Branch Instruction Execution Times
	Table�2-17. Branch Instruction Execution Times�
	Table�2-18. Bcc Instruction Execution Times

	2.8 Exception Processing Overview
	Table�2-19. Exception Vector Assignments�
	2.8.1 Exception Stack Frame Definition
	Figure�2-1. Exception Stack Frame Form
	Table�2-20. Format Field Encoding�
	Table�2-21. Fault Status Encodings�

	2.8.2 Processor Exceptions
	Table�2-22. MCF5407 Exceptions�

	2.9 ColdFire Instruction Set Architecture Enhancements

	Chapter�3 Hardware Multiply/Accumulate (MAC) Unit
	3.1 Overview
	Figure�3-1. ColdFire MAC Multiplication and Accumulation
	3.1.0.1 MAC Programming Model
	Figure�3-2. MAC Programming Model

	3.1.0.2 General Operation
	3.1.0.3 MAC Instruction Set Summary
	Table�3-1. MAC Instruction Summary

	3.1.0.4 Data Representation

	3.2 MAC Instruction Execution Timings
	Table�3-2. Two-Operand MAC Instruction Execution Times �
	Table�3-3. MAC Move Instruction Execution Times �

	Chapter�4 Local Memory
	4.1 Interactions between Local Memory Modules
	4.2 SRAM Overview
	4.3 SRAM Operation
	4.4 SRAM Programming Model
	4.4.1 SRAM Base Address Registers (RAMBAR0/RAMBAR1)
	Figure�4-1. SRAM Base Address Registers (RAMBARn)
	Table�4-1. RAMBARn Field Description�

	4.5 SRAM Initialization
	4.5.1 SRAM Initialization Code

	4.6 Power Management
	Table�4-2. Examples of Typical RAMBAR Settings

	4.7 Cache Overview
	Figure�4-2. Data Cache Organization

	4.8 Cache Organization
	Figure�4-3. Data Cache Organization and Line Format
	4.8.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified
	Table�4-3. Valid and Modified Bit Settings

	4.8.2 The Cache at Start-Up
	Figure�4-4. Data Cache—A: at Reset, B: after Invalidation, C and D: Loading Pattern

	4.9 Cache Operation
	Figure�4-5. Data Caching Operation
	4.9.1 Caching Modes
	4.9.1.1 Cacheable Accesses
	4.9.1.2 Write-Through Mode (Data Cache Only)
	4.9.1.3 Copyback Mode (Data Cache Only)

	4.9.2 Cache-Inhibited Accesses
	4.9.3 Cache Protocol
	4.9.3.1 Read Miss
	4.9.3.2 Write Miss (Data Cache Only)
	Figure�4-6. Write-Miss in Copyback Mode

	4.9.3.3 Read Hit
	4.9.3.4 Write Hit (Data Cache Only)

	4.9.4 Cache Coherency (Data Cache Only)
	4.9.5 Memory Accesses for Cache Maintenance
	4.9.5.1 Cache Filling
	4.9.5.2 Cache Pushes
	4.9.5.2.1 Push and Store Buffers
	4.9.5.2.2 Push and Store Buffer Bus Operation

	4.9.6 Cache Locking
	Figure�4-7. Data Cache Locking

	4.10 Cache Registers
	4.10.1 Cache Control Register (CACR)
	Figure�4-8. Cache Control Register (CACR)
	Table�4-4. CACR Field Descriptions�

	4.10.2 Access Control Registers (ACR0–ACR3)
	Figure�4-9. Access Control Register Format (ACRn)
	Table�4-5. ACRn Field Descriptions �

	4.11 Cache Management
	Figure�4-10. An Format (Data Cache)
	Figure�4-11. An Format (Instruction Cache)

	4.12 Cache Operation Summary
	4.12.1 Instruction Cache State Transitions
	Figure�4-12. Instruction Cache Line State Diagram
	Table�4-6. Instruction Cache Line State Transitions�

	4.12.2 Data Cache State Transitions
	Figure�4-13. Data Cache Line State Diagram—Copyback Mode
	Figure�4-14. Data Cache Line State Diagram—Write-Through Mode
	Table�4-7. Data Cache Line State Transitions�
	Table�4-8. Data Cache Line State Transitions (Current State Invalid)�
	Table�4-9. Data Cache Line State Transitions (Current State Valid)�
	Table�4-10. Data Cache Line State Transitions (Current State Modified)�

	4.13 Cache Initialization Code

	Chapter�5 Debug Support
	5.1 Overview
	Figure�5-1. Processor/Debug Module Interface

	5.2 Signal Descriptions
	Table�5-1. Debug Module Signals�
	Figure�5-2. PSTCLK Timing
	5.2.1 Processor Status/Debug Data (PSTDDATA[7:0])
	Table�5-2. PSTDDATA: Sequential Execution of Single-Cycle Instructions��
	Figure�5-3. PSTDDATA: Single-Cycle Instruction Timing
	Table�5-3. PSTDDATA: Data Operand Captured�

	5.3 Real-Time Trace Support
	Table�5-4. Processor Status Encoding
	5.3.1 Begin Execution of Taken Branch (PST = 0x5)
	Figure�5-4. Example JMP Instruction Output on PSTDDATA

	5.3.2 Processor Stopped or Breakpoint State Change (PST�=�0xE)
	Table�5-5. 0xE Status Posting�

	5.3.3 Processor Halted (PST�=�0xF)

	5.4 Programming Model
	Figure�5-5. Debug Programming Model
	Table�5-6. BDM/Breakpoint Registers�
	5.4.1 Address Attribute Trigger Registers (AATR, AATR1)
	Figure�5-6. Address Attribute Trigger Registers (AATR, AATR1)
	Table�5-7. AATR and AATR1 Field Descriptions �

	5.4.2 Address Breakpoint Registers (ABLR/ABLR1, ��ABHR/ABHR1)
	Figure�5-7. Address Breakpoint Registers (ABLR, ABHR, ABLR1, ABHR1)
	Table�5-8. ABLR and ABLR1 Field Description
	Table�5-9. ABHR and ABHR1 Field Description

	5.4.3 BDM Address Attribute Register (BAAR)
	Figure�5-8. BDM Address Attribute Register (BAAR)
	Table�5-10. BAAR Field Descriptions

	5.4.4 Configuration/Status Register (CSR)
	Figure�5-9. Configuration/Status Register (CSR)
	Table�5-11. CSR Field Descriptions�

	5.4.5 Data Breakpoint/Mask Registers (DBR/DBR1, ��DBMR/DBMR1)
	Figure�5-10. Data Breakpoint/Mask Registers (DBR/DBR1 and DBMR/DBMR1)
	Table�5-12. DBRn Field Descriptions
	Table�5-13. DBMRn Field Descriptions
	Table�5-14. Access Size and Operand Data Location

	5.4.6 Program Counter Breakpoint/Mask Registers (PBR, PBR1, PBR2, PBR3, PBMR)
	Figure�5-11. Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)
	Table�5-15. PBR, PBR1, PBR2, PBR3 Field Descriptions
	Figure�5-12. Program Counter Breakpoint Mask Register (PBMR)
	Table�5-16. PBMR Field Descriptions

	5.4.7 Trigger Definition Register (TDR)
	Figure�5-13. Trigger Definition Register (TDR)
	Table�5-17. TDR Field Descriptions

	5.4.8 Extended Trigger Definition Register (XTDR)
	Figure�5-14. Extended Trigger Definition Register (XTDR)
	Table�5-18. XTDR Field Descriptions�

	5.4.9 Resulting Set of Possible Trigger Combinations

	5.5 Background Debug Mode (BDM)
	5.5.1 CPU Halt
	5.5.2 BDM Serial Interface
	Figure�5-15. BDM Serial Interface Timing
	5.5.2.1 Receive Packet Format
	Figure�5-16. Receive BDM Packet
	Table�5-19. Receive BDM Packet Field Description

	5.5.2.2 Transmit Packet Format
	Figure�5-17. Transmit BDM Packet
	Table�5-20. Transmit BDM Packet Field Description

	5.5.3 BDM Command Set
	Table�5-21. BDM Command Summary�
	5.5.3.1 ColdFire BDM Command Format
	Figure�5-18. BDM Command Format
	Table�5-22. BDM Field Descriptions�
	5.5.3.1.1 Extension Words as Required

	5.5.3.2 Command Sequence Diagrams
	Figure�5-19. Command Sequence Diagram

	5.5.3.3 Command Set Descriptions
	5.5.3.3.1 Read A/D Register (rareg/rdreg)
	Figure�5-20. rareg/rdreg Command Format
	Figure�5-21. rareg/rdreg Command Sequence

	5.5.3.3.2 Write A/D Register (wareg/wdreg)
	Figure�5-22. wareg/wdreg Command Format
	Figure�5-23. wareg/wdreg Command Sequence

	5.5.3.3.3 Read Memory Location (read)
	Figure�5-24. read Command/Result Formats
	Figure�5-25. read Command Sequence

	5.5.3.3.4 Write Memory Location (write)
	Figure�5-26. write Command Format
	Figure�5-27. write Command Sequence

	5.5.3.3.5 Dump Memory Block (dump)
	Figure�5-28. dump Command/Result Formats
	Figure�5-29. dump Command Sequence

	5.5.3.3.6 Fill Memory Block (fill)
	Figure�5-30. fill Command Format
	Figure�5-31. fill Command Sequence

	5.5.3.3.7 Resume Execution (go)
	Figure�5-32. go Command Format
	Figure�5-33. go Command Sequence

	5.5.3.3.8 No Operation (nop)
	Figure�5-34. nop Command Format
	Figure�5-35. nop Command Sequence

	5.5.3.3.9 Synchronize PC to the PSTDDATA Lines (sync_pc)
	Figure�5-36. sync_pc Command Format
	Figure�5-37. sync_pc Command Sequence

	5.5.3.3.10 Read Control Register (rcreg)
	Figure�5-38. rcreg Command/Result Formats
	Table�5-23. Control Register Map
	Figure�5-39. rcreg Command Sequence

	5.5.3.3.11 Write Control Register (wcreg)
	Figure�5-40. wcreg Command/Result Formats
	Figure�5-41. wcreg Command Sequence

	5.5.3.3.12 Read Debug Module Register (rdmreg)
	Figure�5-42. rdmreg bdm Command/Result Formats
	Table�5-24. Definition of DRc Encoding—Read
	Figure�5-43. rdmreg Command Sequence

	5.5.3.3.13 Write Debug Module Register (wdmreg)
	Figure�5-44. wdmreg BDM Command Format
	Figure�5-45. wdmreg Command Sequence

	5.6 Real-Time Debug Support
	5.6.1 Theory of Operation
	Table�5-25. PSTDDATA Nibble/CSR[BSTAT] Breakpoint Response
	Table�5-26. Exception Vector Assignments
	5.6.1.1 Emulator Mode

	5.6.2 Concurrent BDM and Processor Operation

	5.7 Motorola-Recommended BDM Pinout
	Figure�5-46. Recommended BDM Connector

	5.8 Debug C Definition of PSTDDATA Outputs
	5.8.1 User Instruction Set
	Table�5-27. PSTDDATA Specification for User-Mode Instructions�

	5.8.2 Supervisor Instruction Set
	Table�5-28. PSTDDATA Specification for Supervisor-Mode Instructions

	Part�II System Integration Module (SIM)
	Chapter�6 SIM Overview
	6.1 Features
	Figure�6-1. SIM Block Diagram

	6.2 Programming Model
	6.2.1 SIM Register Memory Map
	Table�6-1. SIM Registers�

	6.2.2 Module Base Address Register (MBAR)
	Figure�6-2. Module Base Address Register (MBAR)
	Table�6-2. MBAR Field Descriptions�

	6.2.3 Reset Status Register (RSR)
	Figure�6-3. Reset Status Register (RSR)
	Table�6-3. RSR Field Descriptions

	6.2.4 Software Watchdog Timer
	Figure�6-4. MCF5407 Embedded System Recovery from Unterminated Access

	6.2.5 System Protection Control Register (SYPCR)
	Figure�6-5. System Protection Control Register (SYPCR)
	Table�6-4. SYPCR Field Descriptions �

	6.2.6 Software Watchdog Interrupt Vector Register (SWIVR)
	Figure�6-6. Software Watchdog Interrupt Vector Register (SWIVR)

	6.2.7 Software Watchdog Service Register (SWSR)
	Figure�6-7. Software Watchdog Service Register (SWSR)

	6.2.8 PLL Clock Control for CPU STOP Instruction
	Table�6-5. PLLIPL Settings�

	6.2.9 Pin Assignment Register (PAR)
	Figure�6-8. Pin Assignment Register (PAR)

	6.2.10 Bus Arbitration Control
	6.2.10.1 Default Bus Master Park Register (MPARK)
	Figure�6-9. Default Bus Master Register (MPARK)
	Table�6-6. MPARK Field Descriptions �
	6.2.10.1.1 Arbitration for Internally Generated Transfers (MPARK[PARK])
	Figure�6-10. Round Robin Arbitration (PARK = 00)
	Figure�6-11. Park on Master Core Priority (PARK = 01)
	Figure�6-12. Park on DMA Module Priority (PARK = 10)
	Figure�6-13. Park on Current Master Priority (PARK = 01)

	6.2.10.1.2 Arbitration between Internal and External Masters for Accessing Internal Resources

	Chapter�7 Phase-Locked Loop (PLL)
	7.1 Overview
	Figure�7-1. PLL Module Block Diagram
	7.1.1 PLL:PCLK Ratios
	Table�7-1. Divide Ratio Encodings

	7.2 PLL Operation
	7.2.1 Reset/Initialization
	7.2.2 Normal Mode
	7.2.3 Reduced-Power Mode
	7.2.4 PLL Control Register (PLLCR)
	Figure�7-2. PLL Control Register (PLLCR)
	Table�7-2. PLLCR Field Descriptions

	7.3 PLL Port List
	Table�7-3. PLL Module Input SIgnals
	Table�7-4. PLL Module Output Signals�

	7.4 Timing Relationships
	7.4.1 PCLK, PSTCLK, and BCLKO
	Figure�7-3. CLKIN, PCLK, PSTCLK, and BCLKO Timing

	7.4.2 RSTI Timing
	Figure�7-4. Reset and Initialization Timing

	7.5 PLL Power Supply Filter Circuit
	Figure�7-5. PLL Power Supply Filter Circuit

	Chapter�8 I2C Module
	8.1 Overview
	8.2 Interface Features
	Figure�8-1. I2C Module Block Diagram

	8.3 I2C System Configuration
	8.4 I2C Protocol
	Figure�8-2. I2C Standard Communication Protocol
	Figure�8-3. Repeated START
	8.4.1 Arbitration Procedure
	8.4.2 Clock Synchronization
	Figure�8-4. Synchronized Clock SCL

	8.4.3 Handshaking
	8.4.4 Clock Stretching

	8.5 Programming Model
	Table�8-1. I2C Interface Memory Map
	8.5.1 I2C Address Register (IADR)
	Figure�8-5. I2C Address Register (IADR)
	Table�8-2. I2C Address Register Field Descriptions

	8.5.2 I2C Frequency Divider Register (IFDR)
	Figure�8-6. I2C Frequency Divider Register (IFDR)
	Table�8-3. IFDR Field Descriptions �

	8.5.3 I2C Control Register (I2CR)
	Figure�8-7. I2C Control Register (I2CR)
	Table�8-4. I2CR Field Descriptions �

	8.5.4 I2C Status Register (I2SR)
	Figure�8-8. I2CR Status Register (I2SR)
	Table�8-5. I2SR Field Descriptions �

	8.5.5 I2C Data I/O Register (I2DR)
	Figure�8-9. I2C Data I/O Register (I2DR)

	8.6 I2C Programming Examples
	8.6.1 Initialization Sequence
	8.6.2 Generation of START
	8.6.3 Post-Transfer Software Response
	8.6.4 Generation of STOP
	8.6.5 Generation of Repeated START
	8.6.6 Slave Mode
	8.6.7 Arbitration Lost
	Figure�8-10. Flow-Chart of Typical I2C Interrupt Routine

	Chapter�9 Interrupt Controller
	9.1 Overview
	Figure�9-1. Interrupt Controller Block Diagram

	9.2 Interrupt Controller Registers
	Table�9-1. Interrupt Controller Registers
	Table�9-2. Interrupt Control Registers�
	9.2.1 Interrupt Control Registers (ICR0–ICR9)
	Figure�9-2. Interrupt Control Registers (ICR0–ICR9)
	Table�9-3. ICRn Field Descriptions
	Table�9-4. Interrupt Priority Scheme�

	9.2.2 Autovector Register (AVR)
	Figure�9-3. Autovector Register (AVR)
	Table�9-5. AVR Field Descriptions
	Table�9-6. Autovector Register Bit Assignments�

	9.2.3 Interrupt Pending and Mask Registers (IPR and IMR)
	Figure�9-4. Interrupt Pending Register (IPR) and Interrupt Mask Register (IMR)
	Table�9-7. IPR and IMR Field Descriptions

	9.2.4 Interrupt Port Assignment Register (IRQPAR)
	Figure�9-5. Interrupt Port Assignment Register (IRQPAR)
	Table�9-8. IRQPAR Field Descriptions

	Chapter�10 Chip-Select Module
	10.1 Overview
	10.2 Chip-Select Module Signals
	Table�10-1. Chip-Select Module Signals�
	Table�10-2. Byte Enables/Byte Write Enable Signal Settings�

	10.3 Chip-Select Operation
	10.3.1 General Chip-Select Operation
	Table�10-3. Accesses by Matches in CSCRs and DACRs �
	10.3.1.1 8-, 16-, and 32-Bit Port Sizing
	Figure�10-1. Connections for External Memory Port Sizes

	10.3.1.2 Global Chip-Select Operation
	Table�10-4. D7/AA, Automatic Acknowledge of Boot CS0
	Table�10-5. D[6:5]/PS[1:0], Port Size of Boot CS0
	Table�10-6. D3/BE_CONFIG0, BE[3:0] Boot Configuration

	10.4 Chip-Select Registers
	Table�10-7. Chip-Select Registers�
	10.4.1 Chip-Select Module Registers
	10.4.1.1 Chip-Select Address Registers (CSAR0–CSAR7)
	Figure�10-2. Chip Select Address Registers (CSAR0–CSAR7)
	Table�10-8. CSARn Field Description

	10.4.1.2 Chip-Select Mask Registers (CSMR0–CSMR7)
	Figure�10-3. Chip Select Mask Registers (CSMRn)
	Table�10-9. CSMRn Field Descriptions �

	10.4.1.3 Chip-Select Control Registers (CSCR0–CSCR7)
	Figure�10-4. Chip-Select Control Registers (CSCR0–CSCR7)
	Table�10-10. CSCRn Field Descriptions

	10.4.1.4 Code Example

	Chapter�11 Synchronous/Asynchronous DRAM Controller Module
	11.1 Overview
	11.1.1 Definitions
	11.1.2 Block Diagram and Major Components
	Figure�11-1. Asynchronous/Synchronous DRAM Controller Block Diagram

	11.2 DRAM Controller Operation
	11.2.1 DRAM Controller Registers
	Table�11-1. DRAM Controller Registers�

	11.3 Asynchronous Operation
	11.3.1 DRAM Controller Signals in Asynchronous Mode
	Table�11-2. SDRAM Signal Summary�

	11.3.2 Asynchronous Register Set
	11.3.2.1 DRAM Control Register (DCR) in Asynchronous Mode
	Figure�11-2. DRAM Control Register (DCR) (Asynchronous Mode)
	Table�11-3. DCR Field Descriptions (Asynchronous Mode)�

	11.3.2.2 DRAM Address and Control Registers (DACR0/DACR1)
	Figure�11-3. DRAM Address and Control Registers (DACR0/DACR1)
	Table�11-4. DACR0/DACR1 Field Description�

	11.3.2.3 DRAM Controller Mask Registers (DMR0/DMR1)
	Figure�11-4. DRAM Controller Mask Registers (DMR0 and DMR1)
	Table�11-5. DMR0/DMR1 Field Descriptions�

	11.3.3 General Asynchronous Operation Guidelines
	Table�11-6. Generic Address Multiplexing Scheme�
	Table�11-7. DRAM Addressing for Byte-Wide Memories�
	Table�11-8. DRAM Addressing for 16-Bit Wide Memories
	Table�11-9. DRAM Addressing for 32-Bit Wide Memories
	11.3.3.1 Non-Page-Mode Operation
	Figure�11-5. Basic Non-Page-Mode Operation RCD = 0, RNCN = 1 (4-4-4-4)
	Figure�11-6. Basic Non-Page-Mode Operation RCD = 1, RNCN = 0 (5-5-5-5)

	11.3.3.2 Burst Page-Mode Operation
	Figure�11-7. Burst Page-Mode Read Operation (4-3-3-3)
	Figure�11-8. Burst Page-Mode Write Operation (4-3-3-3)

	11.3.3.3 Continuous Page Mode
	Figure�11-9. Continuous Page-Mode Operation
	Figure�11-10. Write Hit in Continuous Page Mode

	11.3.3.4 Extended Data Out (EDO) Operation
	Figure�11-11. EDO Read Operation (3-2-2-2)

	11.3.3.5 Refresh Operation
	Figure�11-12. DRAM Access Delayed by Refresh

	11.4 Synchronous Operation
	Table�11-10. SDRAM Commands�
	11.4.1 DRAM Controller Signals in Synchronous Mode
	Table�11-11. Synchronous DRAM Signal Connections�
	Figure�11-13. MCF5407 SDRAM Interface

	11.4.2 Using Edge Select (EDGESEL)
	Figure�11-14. Using EDGESEL to Change Signal Timing

	11.4.3 Synchronous Register Set
	11.4.3.1 DRAM Control Register (DCR) in Synchronous Mode
	Figure�11-15. DRAM Control Register (DCR) (Synchronous Mode)
	Table�11-12. DCR Field Descriptions (Synchronous Mode)�

	11.4.3.2 DRAM Address and Control Registers (DACR0/DACR1) in Synchronous Mode
	Figure�11-16. DACR0 and DACR1 Registers (Synchronous Mode)
	Table�11-13. DACR0/DACR1 Field Descriptions (Synchronous Mode)�

	11.4.3.3 DRAM Controller Mask Registers (DMR0/DMR1)
	Figure�11-17. DRAM Controller Mask Registers (DMR0 and DMR1)
	Table�11-14. DMR0/DMR1 Field Descriptions�

	11.4.4 General Synchronous Operation Guidelines
	11.4.4.1 Address Multiplexing
	Table�11-15. MCF5407 to SDRAM Interface (8-Bit Port, 9-Column Address Lines)
	Table�11-16. MCF5407 to SDRAM Interface (8-Bit Port,10-Column Address Lines)
	Table�11-17. MCF5407 to SDRAM Interface (8-Bit Port,11-Column Address Lines)
	Table�11-18. MCF5407 to SDRAM Interface (8-Bit Port,12-Column Address Lines)
	Table�11-19. MCF5407 to SDRAM Interface (8-Bit Port,13-Column Address Lines)
	Table�11-20. MCF5407 to SDRAM Interface (16-Bit Port, 8-Column Address Lines)
	Table�11-21. MCF5407 to SDRAM Interface (16-Bit Port, 9-Column Address Lines)
	Table�11-22. MCF5407 to SDRAM Interface (16-Bit Port, 10-Column Address Lines)
	Table�11-23. MCF5407 to SDRAM Interface (16-Bit Port, 11-Column Address Lines)
	Table�11-24. MCF5407 to SDRAM Interface (16-Bit Port, 12-Column Address Lines)
	Table�11-25. MCF5407 to SDRAM Interface (16-Bit Port, 13-Column-Address Lines)
	Table�11-26. MCF5407 to SDRAM Interface (32-Bit Port, 8-Column Address Lines)
	Table�11-27. MCF5407 to SDRAM Interface (32-Bit Port, 9-Column Address Lines)
	Table�11-28. MCF5407 to SDRAM Interface (32-Bit Port, 10-Column Address Lines)
	Table�11-29. MCF5407 to SDRAM Interface (32-Bit Port, 11-Column Address Lines)
	Table�11-30. MCF5407 to SDRAM Interface (32-Bit Port, 12-Column Address Lines)

	11.4.4.2 Interfacing Example
	Table�11-31. SDRAM Hardware Connections �

	11.4.4.3 Burst Page Mode
	Figure�11-18. Burst Read SDRAM Access
	Figure�11-19. Burst Write SDRAM Access

	11.4.4.4 Continuous Page Mode
	Figure�11-20. Synchronous, Continuous Page-Mode Access—Consecutive Reads
	Figure�11-21. Synchronous, Continuous Page-Mode Access—Read after Write

	11.4.4.5 Auto-Refresh Operation
	Figure�11-22. Auto-Refresh Operation

	11.4.4.6 Self-Refresh Operation
	Figure�11-23. Self-Refresh Operation

	11.4.5 Initialization Sequence
	11.4.5.1 Mode Register Settings
	Figure�11-24. Mode Register Set (mrs) Command

	11.5 SDRAM Example
	Table�11-32. SDRAM Example Specifications�
	11.5.1 SDRAM Interface Configuration
	Table�11-33. SDRAM Hardware Connections

	11.5.2 DCR Initialization
	Figure�11-25. Initialization Values for DCR
	Table�11-34. DCR Initialization Values

	11.5.3 DACR Initialization
	Figure�11-26. SDRAM Configuration
	Figure�11-27. DACR Register Configuration
	Table�11-35. DACR Initialization Values

	11.5.4 DMR Initialization
	Figure�11-28. DMR0 Register
	Table�11-36. DMR0 Initialization Values

	11.5.5 Mode Register Initialization
	Table�11-37. Mode Register Initialization �
	Figure�11-29. Mode Register Mapping to MCF5407 A[31:0]

	11.5.6 Initialization Code

	Part�III Peripheral Module
	Chapter�12 DMA Controller Module
	12.1 Overview
	Figure�12-1. DMA Signal Diagram
	12.1.1 DMA Module Features

	12.2 DMA Signal Description
	Table�12-1. DMA Signals�
	Table�12-2. MCF5407 Signal Configurations for PP[4:2]/TM[2:0]/DACK[1:0]
	Figure�12-2. MCF5307/MCF5407 TM[2:0] Pin Remapping

	12.3 DMA Transfer Overview
	Figure�12-3. Dual-Address Transfer
	Figure�12-4. Single-Address Transfers

	12.4 DMA Controller Module Programming Model
	Table�12-3. Memory Map for DMA Controller Module Registers�
	12.4.1 Source Address Registers (SAR0–SAR3)
	Figure�12-5. Source Address Registers (SARn)

	12.4.2 Destination Address Registers (DAR0–DAR3)
	Figure�12-6. Destination Address Registers (DARn)

	12.4.3 Byte Count Registers (BCR0–BCR3)
	Figure�12-7. Byte Count Registers (BCRn)

	12.4.4 DMA Control Registers (DCR0–DCR3)
	Figure�12-8. DMA Control Registers (DCRn)
	Table�12-4. DCRn Field Descriptions�

	12.4.5 DMA Status Registers (DSR0–DSR3)
	Figure�12-9. DMA Status Registers (DSRn)
	Table�12-5. DSRn Field Descriptions�

	12.4.6 DMA Interrupt Vector Registers (DIVR0–DIVR3)
	Figure�12-10. DMA Interrupt Vector Registers (DIVRn)

	12.5 DMA Controller Module Functional Description
	12.5.1 Transfer Requests (Cycle-Steal and Continuous Modes)
	12.5.2 Data Transfer Modes
	12.5.2.1 Dual-Address Transfers
	12.5.2.2 Single-Address Transfers

	12.5.3 Channel Initialization and Startup
	12.5.3.1 Channel Prioritization
	12.5.3.2 Programming the DMA Controller Module

	12.5.4 Data Transfer
	12.5.4.1 External Request and Acknowledge Operation
	Figure�12-11. DREQ Timing Constraints, Dual-Address DMA Transfer
	Figure�12-12. Dual-Address, Peripheral-to-SDRAM, Lower-Priority DMA Transfer
	Figure�12-13. Single-Address DMA Transfer

	12.5.4.2 Auto-Alignment
	12.5.4.3 Bandwidth Control

	12.5.5 Termination

	Chapter�13 Timer Module
	13.1 Overview
	Figure�13-1. Timer Block Diagram
	13.1.1 Key Features

	13.2 General-Purpose Timer Units
	13.3 General-Purpose Timer Programming Model
	Table�13-1. General-Purpose Timer Module Memory Map
	13.3.1 Timer Mode Registers (TMR0/TMR1)
	Figure�13-2. Timer Mode Registers (TMR0/TMR1)
	Table�13-2. TMRn Field Descriptions �

	13.3.2 Timer Reference Registers (TRR0/TRR1)
	Figure�13-3. Timer Reference Registers (TRR0/TRR1)

	13.3.3 Timer Capture Registers (TCR0/TCR1)
	Figure�13-4. Timer Capture Register (TCR0/TCR1)

	13.3.4 Timer Counters (TCN0/TCN1)
	Figure�13-5. Timer Counters (TCN0/TCN1)

	13.3.5 Timer Event Registers (TER0/TER1)
	Figure�13-6. Timer Event Registers (TER0/TER1)
	Table�13-3. TERn Field Descriptions

	13.4 Code Example
	13.5 Calculating Time-Out Values
	Table�13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF (162-MHz Processor Clock)�

	Chapter�14 UART Modules
	14.1 Overview
	Figure�14-1. Simplified Block Diagram

	14.2 Serial Module Overview
	14.3 Register Descriptions
	Table�14-1. UART Module Programming Model�
	14.3.1 UART Mode Registers 1 (UMR1n)
	Figure�14-2. UART Mode Registers 1 (UMR1n)
	Table�14-2. UMR1n Field Descriptions �

	14.3.2 UART Mode Register 2 (UMR2n)
	Figure�14-3. UART Mode Register 2 (UMR2n)
	Table�14-3. UMR2n Field Descriptions �

	14.3.3 Rx FIFO Threshold Register (RXLVL)
	Figure�14-4. Rx FIFO Threshold Register (RXLVL)
	Table�14-4. RXLVL Field Descriptions

	14.3.4 Modem Control Register (MODCTL)
	Figure�14-5. Modem Control Register (MODCTL)
	Table�14-5. Modem Control Register (MODCTL) Field Descriptions �

	14.3.5 Tx FIFO Threshold Register (TXLVL)
	Figure�14-6. Tx FIFO Threshold Register (TXLVL)
	Table�14-6. TXLVL Field Descriptions

	14.3.6 UART Status Registers (USRn)
	Figure�14-7. UART Status Register (USRn)
	Table�14-7. USRn Field Descriptions�

	14.3.7 UART Clock-Select Registers (UCSRn)
	Figure�14-8. UART Clock-Select Register (UCSRn)
	Table�14-8. UCSRn Field Descriptions

	14.3.8 Receive Samples Available Register (RSMP)
	Figure�14-9. Receive Samples Available Register (RSMP)
	Table�14-9. RSMP Field Descriptions

	14.3.9 Transmit Space Available Register (TSPC)
	Figure�14-10. Tx Space Available Register (TSPC)
	Table�14-10. TSPC Field Descriptions

	14.3.10 UART Command Registers (UCRn)
	Figure�14-11. UART Command Register (UCRn)
	Table�14-11. UCRn Field Descriptions�

	14.3.11 UART Receiver Buffers (URBn)
	Figure�14-12. UART Receiver Buffer for UART0 (URB0)
	Figure�14-13. UART Receiver Buffer for UART1 (URB1)

	14.3.12 UART Transmitter Buffers (UTBn)
	Figure�14-14. UART Transmitter Buffer for UART0 (UTB0)
	Figure�14-15. UART Transmitter Buffer for UART1 (UTB1)

	14.3.13 UART Input Port Change Registers (UIPCRn)
	Figure�14-16. UART Input Port Change Register (UIPCRn)
	Table�14-12. UIPCRn Field Descriptions

	14.3.14 UART Auxiliary Control Register (UACRn)
	Figure�14-17. UART Auxiliary Control Register (UACRn)
	Table�14-13. UACRn Field Descriptions

	14.3.15 UART Interrupt Status/Mask Registers (UISRn/UIMRn)
	Figure�14-18. UART Interrupt Status/Mask Registers (UISRn/UIMRn)
	Table�14-14. UISRn/UIMRn Field Descriptions

	14.3.16 UART Divider Upper/Lower Registers (UDUn/UDLn)
	Figure�14-19. UART Divider Upper Register (UDUn)
	Figure�14-20. UART Divider Lower Register (UDLn)

	14.3.17 UART Interrupt Vector Register (UIVRn)
	Figure�14-21. UART Interrupt Vector Register (UIVRn)
	Table�14-15. UIVRn Field Descriptions

	14.3.18 UART Input Port Register (UIPn)
	Figure�14-22. UART Input Port Register (UIPn)
	Table�14-16. UIPn Field Descriptions

	14.3.19 UART Output Port Data Registers (UOP1n/UOP0n)
	Figure�14-23. UART Output Port Data 1 Register (UOP1/UOP0)
	Table�14-17. UOP1/UOP0 Field Descriptions

	14.4 UART Module Signal Definitions
	Figure�14-24. UART Block Diagram Showing External and Internal Interface Signals
	Table�14-18. UART Module Signals�
	Figure�14-25. UART/RS-232 Interface
	Figure�14-26. UART1/CODEC Interface
	Figure�14-27. UART1/AC ’97 Interface

	14.5 Operation
	14.5.1 Transmitter/Receiver Clock Source
	14.5.1.1 Programmable Divider
	Figure�14-28. Clocking Source Diagram

	14.5.1.2 Calculating Baud Rates
	14.5.1.2.1 CLKIN Baud Rates
	14.5.1.2.2 External Clock

	14.5.2 Transmitter and Receiver Operating Modes
	Figure�14-29. Transmitter and Receiver Functional Diagram
	14.5.2.1 Transmitting in UART Mode
	Figure�14-30. �Transmitter Timing Diagram

	14.5.2.2 Transmitter in Modem Mode (UART1)
	Figure�14-31. 16-Bit CODEC Interface Timing (lsb First)
	Figure�14-32. 8-Bit CODEC Interface Timing (msb First)
	Figure�14-33. AC�‘97 Interface Timing
	14.5.2.2.1 AC�‘97 Low-Power Mode

	14.5.2.3 Receiver
	Figure�14-34. Receiver Timing

	14.5.2.4 UART1 in UART Mode
	14.5.2.4.1 Receiver in Modem Mode (UART1)

	14.5.2.5 FIFO Stack in UART0
	14.5.2.6 FIFOs in UART1

	14.5.3 Looping Modes
	14.5.3.1 Automatic Echo Mode
	Figure�14-35. Automatic Echo

	14.5.3.2 Local Loop-Back Mode
	Figure�14-36. Local Loop-Back

	14.5.3.3 Remote Loop-Back Mode
	Figure�14-37. Remote Loop-Back

	14.5.4 Multidrop Mode
	Figure�14-38. Multidrop Mode Timing Diagram

	14.5.5 Bus Operation
	14.5.5.1 Read Cycles
	14.5.5.2 Write Cycles
	14.5.5.3 Interrupt Acknowledge Cycles

	14.5.6 Programming
	14.5.6.1 UART Module Initialization Sequence
	Table�14-19. UART Module Initialization Sequence
	Figure�14-39. UART Mode Programming Flowchart (Sheet 1 of 5)

	Chapter�15 Parallel Port (General-Purpose I/O)
	15.1 Parallel Port Operation
	15.1.1 Pin Assignment Register (PAR)
	Figure�15-1. Parallel Port Pin Assignment Register (PAR)
	Table�15-1. Parallel Port Pin Descriptions

	15.1.2 Port A Data Direction Register (PADDR)
	Figure�15-2. Port A Data Direction Register (PADDR)
	Table�15-2. PADDR Field Description

	15.1.3 Port A Data Register (PADAT)
	Figure�15-3. Port A Data Register (PADAT)
	Table�15-3. Relationship between PADAT Register and Parallel Port Pin (PP)

	15.1.4 Code Example

	Part�IV Hardware Interface
	Chapter�16 Mechanical Data
	16.1 Package
	16.2 Pinout
	Table�16-1. Pins 1–52 (Left, Top-to-Bottom) �
	Table�16-2. Pins 53–104 (Bottom, Left-to-Right)�
	Table�16-3. Pins 105–156 (Right, Bottom-to-Top)�
	Table�16-4. Pins 157–208 (Top, Right-to-Left)�

	16.3 Mechanical Diagram
	Figure�16-1. Mechanical Diagram

	16.4 Case Drawing
	Figure�16-2. MCF5407 Case Drawing (General View)
	Figure�16-3. Case Drawing (Details)
	Table�16-5. Dimensions�

	Chapter�17 Signal Descriptions
	17.1 Overview
	Figure�17-1. MCF5407 Block Diagram with Signal Interfaces
	Table�17-1. MCF5407 Signal Index�
	Table�17-2. MCF5407 Alphabetical Signal Index�

	17.2 MCF5407 Bus Signals
	17.2.1 Address Bus
	17.2.1.1 Address Bus (A[23:0])
	17.2.1.2 Address Bus (A[31:24]/PP[15:8])

	17.2.2 Data Bus (D[31:0])
	Table�17-3. Data Pin Configuration

	17.2.3 Read/Write (R/W)
	17.2.4 Size (SIZ[1:0])
	Table�17-4. Bus Cycle Size Encoding

	17.2.5 Transfer Start (TS)
	17.2.6 Address Strobe (AS)
	17.2.7 Transfer Acknowledge (TA)
	17.2.8 Transfer In Progress (TIP/PP7)
	17.2.9 Transfer Type (TT[1:0]/PP[1:0])
	Table�17-5. Bus Cycle Transfer Type Encoding

	17.2.10 Transfer Modifier (TM[2:0]/PP[4:2]/DACK[1:0])
	Table�17-6. TM[2:0] Encodings for TT = 00 (Normal Access) �
	Table�17-7. TM2 Encoding for DMA as Master (TT = 01)
	Table�17-8. TM[1:0] Encoding for DMA as Master (TT = 01)
	Table�17-9. TM[2:0] Encodings for TT = 10 (Emulator Access)
	Table�17-10. TM[2:0] Encodings for TT = 11 (Interrupt Level)�

	17.3 Interrupt Control Signals
	17.3.1 Interrupt Request (IRQ1/IRQ2, IRQ3/IRQ6, IRQ5/IRQ4, and IRQ7)

	17.4 Bus Arbitration Signals
	17.4.1 Bus Request (BR)
	17.4.2 Bus Grant (BG)
	17.4.3 Bus Driven (BD)

	17.5 Clock and Reset Signals
	17.5.1 Reset In (RSTI)
	17.5.2 Clock Input (CLKIN)
	17.5.3 Bus Clock Output (BCLKO)
	17.5.4 Reset Out (RSTO)
	17.5.5 Data/Configuration Pins (D[7:0])
	Table�17-11. Data Pin Configuration�
	17.5.5.1 D[7:5,3]—Boot Chip-Select (CS0) Configuration
	17.5.5.2 D7—Auto Acknowledge Configuration (AA_CONFIG)
	Table�17-12. D7 Selection of CS0 Automatic Acknowledge

	17.5.5.3 D[6:5]—Port Size Configuration (PS_CONFIG[1:0])
	Table�17-13. D6 and D5 Selection of CS0 Port Size

	17.5.5.4 D3—Byte-Enable Configuration (BE_CONFIG)
	Table�17-14. D3/BE_CONFIG, BE[3:0] Boot Configuration

	17.5.6 D4—Address Configuration (ADDR_CONFIG)
	Table�17-15. D4/ADDR_CONFIG, Address Pin Assignment
	17.5.6.1 D[2:0]—Divide Control (DIVIDE[2:0])

	17.6 Chip-Select Module Signals
	17.6.1 Chip-Select (CS[7:0])
	17.6.2 Byte Enables/Byte Write Enables (BE[3:0]/BWE[3:0])
	17.6.3 Output Enable (OE)

	17.7 DRAM Controller Signals
	17.7.1 Row Address Strobes (RAS[1:0])
	17.7.2 Column Address Strobes (CAS[3:0])
	17.7.3 DRAM Write (DRAMW)
	17.7.4 Synchronous DRAM Column Address Strobe (SCAS)
	17.7.5 Synchronous DRAM Row Address Strobe (SRAS)
	17.7.6 Synchronous DRAM Clock Enable (SCKE)
	17.7.7 Synchronous Edge Select (EDGESEL)

	17.8 DMA Controller Module Signals
	17.8.1 DMA Request (DREQ[1:0]/PP[6:5])
	17.8.2 Transfer Modifier/DMA Acknowledge (TM[2:0]/DACK[1:0])
	Figure�17-2. MCF5307 to MCF5407 TM[2:0] Pin Remapping

	17.9 Serial Module Signals
	17.9.1 Transmitter Serial Data Output (TxD)
	17.9.2 Receiver Serial Data Input (RxD)
	17.9.3 Clear to Send (CTS)
	17.9.4 Request to Send (RTS)

	17.10 Timer Module Signals
	17.10.1 Timer Inputs (TIN[1:0])
	17.10.2 Timer Outputs (TOUT1, TOUT0)

	17.11 Parallel I/O Port (PP[15:0])
	17.12 I2C Module Signals
	17.12.1 I2C Serial Clock (SCL)
	17.12.2 I2C Serial Data (SDA)

	17.13 Debug and Test Signals
	17.13.1 Test Mode (MTMOD[3:0])
	17.13.2 High Impedance (HIZ)
	17.13.3 Processor Clock Output (PSTCLK)
	17.13.4 Processor Status Debug Data (PSTDDATA[7:0])

	17.14 Debug Module/JTAG Signals
	17.14.1 Test Reset/Development Serial Clock (TRST/DSCLK)
	17.14.2 Test Mode Select/Breakpoint (TMS/BKPT)
	17.14.3 Test Data Input/Development Serial Input (TDI/DSI)
	17.14.4 Test Data Output/Development Serial Output (TDO/DSO)
	17.14.5 Test Clock (TCK)

	Chapter�18 Bus Operation
	18.1 Features
	18.2 Bus and Control Signals
	Table�18-1. ColdFire Bus Signal Summary �

	18.3 Bus Characteristics
	Figure�18-1. Signal Relationship to CLKIN for Non-DRAM Access

	18.4 Data Transfer Operation
	Table�18-2. Bus Cycle Size Encoding
	Figure�18-2. Connections for External Memory Port Sizes
	Figure�18-3. Chip-Select Module Output Timing Diagram
	18.4.1 Bus Cycle Execution
	Table�18-3. Accesses by Matches in CSCRs and DACRs �

	18.4.2 Data Transfer Cycle States
	Figure�18-4. Data Transfer State Transition Diagram
	Table�18-4. Bus Cycle States�

	18.4.3 Read Cycle
	Figure�18-5. Read Cycle Flowchart
	Figure�18-6. Basic Read Bus Cycle

	18.4.4 Write Cycle
	Figure�18-7. Write Cycle Flowchart
	Figure�18-8. Basic Write Bus Cycle

	18.4.5 Fast-Termination Cycles
	Figure�18-9. Read Cycle with Fast Termination
	Figure�18-10. Write Cycle with Fast Termination

	18.4.6 Back-to-Back Bus Cycles
	Figure�18-11. Back-to-Back Bus Cycles

	18.4.7 Burst Cycles
	18.4.7.1 Line Transfers
	Table�18-5. Allowable Line Access Patterns

	18.4.7.2 Line Read Bus Cycles
	Figure�18-12. Line Read Burst (2-1-1-1), External Termination
	Figure�18-13. Line Read Burst (2-1-1-1), Internal Termination
	Figure�18-14. Line Read Burst (3-2-2-2), External Termination
	Figure�18-15. Line Read Burst-Inhibited, Fast, External Termination

	18.4.7.3 Line Write Bus Cycles
	Figure�18-16. Line Write Burst (2-1-1-1), Internal/External Termination
	Figure�18-17. Line Write Burst (3-2-2-2) with One Wait State, Internal Termination
	Figure�18-18. Line Write Burst-Inhibited, Internal Termination

	18.4.7.4 Transfers Using Mixed Port Sizes
	Figure�18-19. Longword Read from an 8-Bit Port, External Termination
	Figure�18-20. Longword Read from an 8-Bit Port, Internal Termination

	18.5 Misaligned Operands
	Figure�18-21. Example of a Misaligned Longword Transfer (32-Bit Port)
	Figure�18-22. Example of a Misaligned Word Transfer (32-Bit Port)

	18.6 Bus Errors
	18.7 Interrupt Exceptions
	18.7.1 Level�7 Interrupts
	18.7.2 Interrupt-Acknowledge Cycle
	Figure�18-23. Interrupt-Acknowledge Cycle Flowchart

	18.8 Bus Arbitration
	Table�18-6. MCF5407 Arbitration Protocol States�
	18.8.1 Bus Arbitration Signals
	Table�18-7. ColdFire Bus Arbitration Signal Summary

	18.9 General Operation of External Master Transfers
	Figure�18-24. Basic No-Wait-State External Master Access
	Table�18-8. Cycles for Basic No-Wait-State External Master Access
	Figure�18-25. External Master Burst Line Access to 32-Bit Port
	Table�18-9. Cycles for External Master Burst Line Access to 32-Bit Port�
	18.9.1 Two-Device Bus Arbitration Protocol (Two-Wire Mode)
	Figure�18-26. MCF5407 Two-Wire Mode Bus Arbitration Interface
	Figure�18-27. Two-Wire Bus Arbitration with Bus Request Asserted
	Figure�18-28. Two-Wire Implicit and Explicit Bus Mastership
	Figure�18-29. MCF5407 Two-Wire Bus Arbitration Protocol State Diagram
	Table�18-10. MCF5407 Two-Wire Bus Arbitration Protocol Transition Conditions�

	18.9.2 Multiple External Bus Device Arbitration Protocol (Three-Wire Mode)
	Figure�18-30. Three-Wire Implicit and Explicit Bus Mastership
	Figure�18-31. Three-Wire Bus Arbitration
	Figure�18-32. Three-Wire Bus Arbitration Protocol State Diagram
	Table�18-11. Three-Wire Bus Arbitration Protocol Transition Conditions�

	18.10 Reset Operation
	18.10.1 Master Reset
	Figure�18-33. Master Reset Timing
	Table�18-12. Data Pin Configuration�

	18.10.2 Software Watchdog Reset
	Figure�18-34. Software Watchdog Reset Timing

	Chapter�19 IEEE 1149.1 Test Access Port (JTAG)
	19.1 Overview
	Figure�19-1. JTAG Test Logic Block Diagram

	19.2 JTAG Signal Descriptions
	Table�19-1. JTAG Pin Descriptions

	19.3 TAP Controller
	Figure�19-2. JTAG TAP Controller State Machine

	19.4 JTAG Register Descriptions
	19.4.1 JTAG Instruction Shift Register
	Table�19-2. JTAG Instructions�

	19.4.2 IDCODE Register
	Figure�19-3. IDCODE Register
	Table�19-3. IDCODE Bit Assignments

	19.4.3 JTAG Boundary-Scan Register
	Table�19-4. Boundary-Scan Bit Definitions

	19.4.4 JTAG Bypass Register

	19.5 Restrictions
	19.6 Disabling IEEE Standard 1149.1 Operation
	Figure�19-4. Disabling JTAG in JTAG Mode
	Figure�19-5. Disabling JTAG in Debug Mode

	19.7 Obtaining the IEEE Standard 1149.1

	Chapter�20 Electrical Specifications
	20.1 General Parameters
	Table�20-1. Absolute Maximum Ratings
	Table�20-2. Operating Temperatures
	Table�20-3. DC Electrical Specifications
	20.1.1 Supply Voltage Sequencing and Separation Cautions
	Figure�20-1. Supply Voltage Sequencing and Separation Cautions
	Figure�20-2. Example Circuit to Control Supply Sequencing

	20.2 Clock Timing Specifications
	Table�20-4. Divide Ratio Encodings
	Figure�20-3. CLKIN-to-Core Clock Frequency Ranges
	Table�20-5. Clock Timing Specification
	Figure�20-4. Clock Timing
	Figure�20-5. PSTCLK Timing

	20.3 Input/Output AC Timing Specifications
	Table�20-6. Input AC Timing Specification
	Table�20-7. Output AC Timing Specification�
	Figure�20-6. AC Timings—Normal Read and Write Bus Cycles
	Figure�20-7. SDRAM Read Cycle with EDGESEL Tied to Buffered CLKIN
	Figure�20-8. SDRAM Write Cycle with EDGESEL Tied to Buffered CLKIN
	Figure�20-9. SDRAM Read Cycle with EDGESEL Tied High
	Figure�20-10. SDRAM Write Cycle with EDGESEL Tied High
	Figure�20-11. SDRAM Read Cycle with EDGESEL Tied Low
	Figure�20-12. SDRAM Write Cycle with EDGESEL Tied Low
	Figure�20-13. AC Output Timing—High Impedance

	20.4 Reset Timing Specifications
	Table�20-8. Reset Timing Specification
	Figure�20-14. Reset Timing

	20.5 Debug AC Timing Specifications
	Table�20-9. Debug AC Timing Specification�
	Figure�20-15. Real-Time Trace AC Timing
	Figure�20-16. BDM Serial Port AC Timing

	20.6 Timer Module AC Timing Specifications
	Table�20-10. Timer Module AC Timing Specification
	Figure�20-17. Timer Module AC Timing

	20.7 I2C Input/Output Timing Specifications
	Table�20-11. I2C Input Timing Specifications between SCL and SDA
	Table�20-12. I2C Output Timing Specifications between SCL and SDA
	Figure�20-18. I2C Input/Output Timings

	20.8 UART Module AC Timing Specifications
	Table�20-13. UART Module AC Timing Specifications
	Figure�20-19. UART0 and UART1 Module AC Timing—UART Mode
	Figure�20-20. UART1 in 8- and 16-bit CODEC Mode
	Figure�20-21. UART1 in AC ‘97 Mode

	20.9 Parallel Port (General-Purpose I/O) Timing Specifications
	Table�20-14. General-Purpose I/O Port AC Timing Specifications
	Figure�20-22. General-Purpose I/O Timing

	20.10 DMA Timing Specifications
	Table�20-15. DMA AC Timing Specifications
	Figure�20-23. DMA Timing

	20.11 IEEE 1149.1 (JTAG) AC Timing Specifications
	Table�20-16. IEEE 1149.1 (JTAG) AC Timing Specifications
	Figure�20-24. IEEE 1149.1 (JTAG) AC Timing

	Appendix�A Migrating from the ColdFire MCF5307 to the MCF5407
	A.1 Overview
	Table�A-1. Differences between MCF5307 and MCF5407

	A.2 Instruction Set Additions
	A.3 Enhanced Memories
	Table�A-2. MOVEC CPU Space Register Map

	A.4 On-Chip DMA Modifications
	Table�A-3. TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT = 01)�
	Table�A-4. TM0 Encoding for MCF5307 Internal DMA as Master (TT = 01)
	Figure�A-1. MCF5307 to MCF5407 TM[2:0] Pin Remapping

	A.5 UART Enhancements
	Figure�A-2. Simplified Block Diagram

	A.6 Timing Differences
	A.6.1 Phase-Locked Loop (PLL)
	Figure�A-3. PLL Module
	Table�A-5. Divide Ratio Encodings

	A.6.2 Timing Relationships

	A.7 Reset Initialization Modifications
	Table�A-6. D[7:0] Multiplexing
	Table�A-7. D7/AA, Automatic Acknowledge of Boot CS0
	Table�A-8. D[6:5]/PS[1:0], Port Size of Boot CS0
	Table�A-9. D4/ADDR_CONFIG, Address Pin Assignment
	Table�A-10. D3/BE_CONFIG, BE[3:0] Boot Configuration

	A.8 Revision C Debug
	A.8.1 Debug Interrupts and Interrupt Requests in Emulator Mode
	Figure�A-4. Exception Stack Frame Form

	A.8.2 On-Chip Breakpoint Registers
	A.8.2.1 Write Debug Module Register (wdmreg)
	Figure�A-5. Write Debug Module Register Command (wdmreg)
	Table�A-11. Definition of DRc Encoding—Write�
	Figure�A-6. wdmreg Command Sequence

	A.8.3 Debug Programming Model
	A.8.3.1 Address Breakpoint 1 Registers (ABLR1, ABHR1)
	A.8.3.2 Address Attribute Breakpoint Register 1 (AATR1)
	A.8.3.3 Program Counter Breakpoint Registers 1–3 (PBR1–PBR3)
	A.8.3.4 Data Breakpoint Register 1 (DBR1, DBMR1)
	A.8.3.5 Extended Trigger Definition Register (XTDR)

	A.8.4 Debug Interrupt Exception Vectors
	Table�A-12. Debug C Exception Vector Assignments

	A.8.5 Processor Status and Debug Data Output Signals
	Table�A-13. Version 4 Debug C Processor Status Encodings�

	A.8.6 Debug C Summary

	A.9 Voltage Input Changes
	A.10 PLL Power Supply Filter Circuit
	Figure�A-7. PLL Power Supply Filter Circuit

	A.11 Pin-Assignment Compatibility

	Appendix�B List of Memory Maps
	Table�B-1. SIM Registers�
	Table�B-2. Interrupt Controller Registers
	Table�B-3. Chip-Select Registers�
	Table�B-4. DRAM Controller Registers
	Table�B-5. General-Purpose Timer Registers�
	Table�B-6. UART0 Control Registers�
	Table�B-7. UART1 Control Registers�
	Table�B-8. Parallel Port Memory Map
	Table�B-9. I2C Interface Memory Map
	Table�B-10. DMA Controller Registers�

