3Phase spindle motor driver for CD-ROM BD6669FV

BD6669FV is a 3-phase spindle motor driver adopting 180° PWM direct driving system. Noise occurred from the motor driver when the disc is driven can be reduced. Low power consumption and low heat operation are achieved by using DMOS FET and driving directly.

Applications

CD-ROM

Features

- 1) Direct-PWM-Linear driving system.
- 2) Built in power save circuit.
- 3) Built in current limit circuit.
- 4) Built in FG-output.
- 5) Built in hall bias circuit.

- 6) Built in reverse protection circuit.
- 7) Built in short brake circuit.
- 8) Low consumption by MOS-FET.
- 9) Built in capacitor for oscillator.
- 10) Built in rotation detect.

Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7	V
Supply voltage for motor	Vм	7	V
VG pin voltage	Vg	20	V
Output current	Іомах	1000 *1	mA
Power dissipation	Pd	1020 ^{*2}	mW
Junction temperature	Тјмах	150	°C
Operating temperature range	Topr	-20~+75	°C
Storage temperature range	Tstg	-55~+150	°C

*1 However, do not exceed Pd, ASO and Tj=150°C.

*2 70mm×70mm×1.6mm glass epoxy board.

Reduce power by 8.16mW for each degree above 25°C.

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	-	5.5	V
Supply voltage for motor	Vм	3	-	6.5	V
VG pin voltage	VG	7.5	-	14	V

This product described in this specification isn't judged whether it applies to cocom regulations.

Please confirm in case of export. © This product is not disigned for protection against radioactive rays.

Motor driver ICs

Motor driver ICs

Pin No.	Pin name	Function				
1	A31	Output3 for motor				
2	A32	Output3 for motor				
3	A21	Output2 for motor				
4	A22	Output2 for motor				
5	A11	Output1 for motor				
6	A12	Output1 for motor				
7	Vm1	Power supply fo driver				
8	Vн	Hall bias pin				
9	H1 ⁺	Hall input AMP 1 positive input				
10	H1 [−]	Hall input AMP 1 negative input				
11	H2 ⁺	Hall input AMP 2 positive input				
12	H2 ⁻	Hall input AMP 2 negative input				
13	H3+	Hall input AMP 3 positive input				
14	H3-	Hall input AMP 3 negative input				
15	GND	GND				
16	CP1	Capacitor pin 1 for charge pump				
17	CP2	Capacitor pin 2 for charge pump				
18	VPUMP	Capacitor connection pin for charge pump				
19	CNF	Capacitor connection pin for phase compensation				
20	SB	Short brake pin				
21	RNF2	Resistor connection pin for current sense				
22	Vcc	Power supply for signal division				
23	Vm2	Power supply for driver				
24	ECR	Torque control standard voltage input terminal				
25	EC	Torque control voltage input terminal				
26	FG	FG output pin				
27	PS	Power save pin				
28	RNF1	Resistor connection pin for current sense				

Input output circuits

ROHM

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Test Circu
<total></total>							
Circuit current 1	Icc1	-	-	5	μA	Sutand by mode	Fig.2
Circuit current 2	Icc2	5	11	17	mA		Fig.2
<power save=""></power>							
ON voltage range	VPSON	-	-	1.0	V	Sutand by mode	Fig.2
OFF voltage range	VPSOFF	2.5	-	-	V		Fig.2
<hall bias=""></hall>							
Hall bias voltage	Vнв	0.6	1.0	1.4	V	Інв=10mA	Fig.2
<hall amp=""></hall>							
Input bias current	Іна	-8.0	-2.0	-	μA		Fig.4
In-phase input voltage range	VHAR	1.4	-	3.6	V		Fig.4
Minimum input level	VINH	100	-	-	тVрр	Hall input Amp	Fig.4
Hall hysteresis level (+)	VHYS ⁺	5	20	40	mV		Fig.8
Hall hysteresis level (–)	VHYS ⁻	-40	-20	-5	mV		Fig.8
<torque control=""></torque>							
Input voltage range	Ec, Ecr	0	-	5	V	Linear range 0.5V~3.3V	Fig.6
Offset voltage (+)	Ecofs+	5	50	100	mV		Fig.6
Offset voltage (-)	Ecofs-	-100	-50	-5	mV		Fig.6
Input current	Ecin	-12	-2.5	-	μΑ	Ec=Ecr=1.65V	Fig.6
<short brake="" sw=""></short>			•			1	
ON voltage range	VSBON	2.5	-	-	V	Short brake	Fig.7
OFF voltage range	VSBOFF	-	-	1.0	V		Fig.7
<output></output>							
Input / Output gain	Gec	0.8	1.0	1.2	A/V		Fig.6
Output ON-resistance	Ron	0.3	0.5	0.7	Ω	Io=±600mA (Upper+Lower)	Fig.5
Torque limit voltage	Vtl	0.16	0.2	0.24	V		Fig.3
<fg output=""></fg>							
High voltage	Vfgh	4.6	-	-	V	Ι _{FG} =–100μΑ	Fig.6
Low voltage	VFGL	-	-	0.4	V	IFG=+100μA	Fig.6
<charge pump="" voltage=""></charge>							
Charge pump output voltage	Vpump	6	10	14	V	Vcc=Vm=5V	Fig.9

•Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=5V, VM=5V)

Measuring circuit

RL=5 Ω , RNF=0.33 Ω

2. Input-output table

	Innut condition					Output condition						
		Input condition					Ec <ecr< td=""><td colspan="3">Ec>Ecr</td></ecr<>			Ec>Ecr		
Pin No.	23	24	25	26	27	28	17.18	14.15	11.12	17.18	14.15	11.12
FILLINO.	H1+	H1 ⁻	H_{2}^{+}	H ₂ -	H3+	Нз−	A1	A ₂	A3	A 1	A ₂	Aз
Condition1	L	М	Н	М	М	М	н	L	L	L	Н	Н
Condition2	Н	М	L	М	М	М	L	н	Н	Н	L	L
Condition3	М	М	L	М	Н	М	L	Н	L	Н	L	Н
Condition4	М	М	Н	М	L	М	н	L	Н	L	Н	L
Condition5	Н	М	М	М	L	М	L	L	Н	Н	Н	L
Condition6	L	М	М	М	Н	М	Н	Н	L	L	L	Н

Input voltage (H=2.8V

(H=2.8V M=2.5V L=2.2V Output logic (H : Upper Tr ON L : Lower Tr ON

3. Measuring circuit

Fig.2

Icc1 : Value of A1 VPs=0 [V] Hall input condition : condition1

Icc2 : Value of A1 VPs=5 [V] Hall input condition : condition1

Vнв : Value of V1 Vps=5 [V] Iнв=10 [mA]

VPSON : Range of Vps output pins become input-output table.

VPSOFF : Range of Vps output pins become open.

Motor driver ICs

 V_{TL} : Range of V_{RNF2} that V_{M} current (IM) become 0A. $V_{\text{PS}}\text{=}5~[V]$

Fig.3

Fig.4

I_{HA} : Value of 'A1' (Hn⁺=2.5V, Hn⁻=2.0V) Value of 'A2' (Hn⁺=2.0V, Hn⁻=2.5V) n=1, 2, 3

V_{HAR} : HALL voltage range that output pins become input-output table.

VINH : HALL input level that output pins become input-output table.

VINH : |Hn⁺-Hn⁻| Hn⁻=2.5 V

Motor driver ICs

Fig.6

ROHM

8/16

 $V_{\mbox{\scriptsize SBON}}$: Volatge range of 'V_{\mbox{\scriptsize SB}}' that output pins become 'L'.

VSBOFF : Range of 'VSB' that output pins become input-output table.

Fig.7

V_{HYS} : Voltage difference H3⁺ to H3⁻ that FG voltage change V1.

Fig.8

Fig.9

Circuit operation

1. Application

(1) Hall input

Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input level.

A motor doesn't reach the regular number of rotation, if hall input level decrease under high temperature.

Fig.10

2. Torque voltage

By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig.11 below.

Fig.11

The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF.

(3) Current limit

The maximum value of the current driving motor can be changed by the resistance of RNF.

ITLL=0.2 / RNF (A)

(4) Short brake

The short brake is switched by SB pin and its operation is shown in table below.

SB	EC < ECR	EC > ECR		
L	Rotating forward	Reverse brake		
Н	Short brake	Short brake		

Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig.12.

(5) Reverse detection

Reverse detection is constructed as shown in Fig.13. Output is opened when EC>ECR and the motor is rotating reverse.

ROHM

12/16

Motor rotation at reverse detection

(6) Timing chart

Fig.14

•Application example

Fig.15

•Operation notes

1. Absolute maximum ratings

Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.

2. GND potential

The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under this GND level, even in transition.

3. Thermal design

The thermal design should allow enough margin for actual power dissipation.

- 4. Mounting failures Mounting failures, such as misdirection or mismounts, may destroy the device.
- 5. Electromagnetic fields

A strong electromagnetic field may cause malfunctions.

6. Coil current flowing into $\mathsf{V}\mathsf{M}$

A coil current-flows from motor into VM when torque control input changes from EC<ECR into EC>ECR, and VM voltage rises if VM voltage source doesn't have an ability of current drain.

Make sure that surrounding circuits work correctly and aren't destroyed, when $\mathsf{V}\mathsf{M}$ voltage rises.

Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions.

7. CNF pin

An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn't oscillate, even in transition.

Fig.16 Power dissipation curve
