Complementary Power Transistors # For Isolated Package Applications Designed for general-purpose amplifier and switching applications, where the mounting surface of the device is required to be electrically isolated from the heatsink or chassis. #### **Features** - Electrically Similar to the Popular MJE15030 and MJE15031 - No Isolating Washers Required, Reduced System Cost - High Current Gain-Bandwidth Product - UL Recognized, File #E69369, to 3500 V_{RMS} Isolation - These Devices are Pb-Free and are RoHS Compliant* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|--------------|------------------| | Collector-Emitter Voltage | V_{CEO} | 150 | Vdc | | Collector-Base Voltage | V_{CB} | 150 | Vdc | | Emitter-Base Voltage | V_{EB} | 5 | Vdc | | RMS Isolation Voltage (Note 1)
(t = 0.3 sec, R.H. ≤ 30%, T _A = 25°C)
Per Figure 11 | V _{ISOL} | 4500 | V _{RMS} | | Collector Current - Continuous | Ic | 8 | Adc | | Collector Current - Peak | I _{CM} | 16 | Adc | | Base Current | Ι _Β | 2 | Adc | | Total Power Dissipation (Note 2) @ T _C = 25°C Derate above 25°C | P _D | 36
0.286 | W
W/°C | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D | 2.0
0.016 | W
W/°C | | Operating and Storage Temperature Range | T _J , T _{stg} | -65 to +150 | °C | ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | Thermal Resistance, Junction-to-Case (Note 2) | $R_{\theta JC}$ | 3.5 | °C/W | | Lead Temperature for Soldering Purposes | TL | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. Proper strike and creepage distance must be provided. - 2. Measurement made with thermocouple contacting the bottom insulated surface (in a location beneath the die), the devices mounted on a heatsink with thermal grease and a mounting torque of \geq 6 in. lbs. # ON Semiconductor® http://onsemi.com # **COMPLEMENTARY SILICON** POWER TRANSISTORS **8 AMPERES 150 VOLTS, 36 WATTS** MJF1503x = Specific Device Code x = 0 or 1G = Pb-Free Package Α = Assembly Location = Year WW = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------|------------------------------|---------------| | MJF15030G | TO-220 FULLPACK
(Pb-Free) | 50 Units/Rail | | MJF15031G | TO-220 FULLPACK
(Pb-Free) | 50 Units/Rail | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |--|-----------------------|----------------------|-------------|------| | OFF CHARACTERISTICS | | | | | | Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 10 \text{ mAdc}, I_B = 0)$ | V _{CEO(sus)} | 150 | - | Vdc | | Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ | I _{CEO} | - | 10 | μAdc | | Collector Cutoff Current (V _{CB} = 150 Vdc, I _E = 0) | I _{CBO} | - | 10 | μAdc | | Emitter Cutoff Current $(V_{BE} = 5 \text{ Vdc}, I_C = 0)$ | I _{EBO} | - | 10 | μAdc | | ON CHARACTERISTICS (Note 3) | | | | | | DC Current Gain (I_C = 0.1 Adc, V_{CE} = 2 Vdc)
(I_C = 2 Adc, V_{CE} = 2 Vdc)
(I_C = 3 Adc, V_{CE} = 2 Vdc)
(I_C = 4 Adc, V_{CE} = 2 Vdc) | h _{FE} | 40
40
40
20 | -
-
- | - | | | | Тур | | | | DC Current Gain Linearity (V_{CE} from 2 V to 20 V, I_{C} from 0.1 A to 3 A) (NPN to PNP) | h _{FE} | 2 3 | | | | Collector–Emitter Saturation Voltage ($I_C = 1 \text{ Adc}$, $I_B = 0.1 \text{ Adc}$) | V _{CE(sat)} | - | 0.5 | Vdc | | Base–Emitter On Voltage ($I_C = 1$ Adc, $V_{CE} = 2$ Vdc) | V _{BE(on)} | - | 1 | Vdc | | DYNAMIC CHARACTERISTICS | <u>.</u> | - | • | • | | Current Gain – Bandwidth Product (Note 4) $(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 10 \text{ MHz})$ | f _T | 30 | - | MHz | ^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. ^{4.} $f_T = |h_{fe}| \cdot f_{test}$. Figure 1. Thermal Response dissipation than the curves indicate. The data of Figures 2 and 3 is based on $T_{J(pk)} = 150^{\circ} C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater Figure 2. Forward Bias Safe Operating Area Figure 3. Reverse Bias Switching Safe Operating Area Figure 5. Small-Signal Current Gain Figure 4. Capacitances Figure 6. Current Gain — Bandwidth Product ## **DC CURRENT GAIN** 1K 500 V_{CE} = 2 V $T_J = 150^{\circ}C$ hFE, DC CURRENT GAIN 200 $T_J = 25^{\circ}C$ 100 $T_J = -55^{\circ}C$ 50 20 10 0.2 0.5 5 0.1 10 I_C, COLLECTOR CURRENT (AMP) Figure 7a. MJF15030 NPN Figure 7b. MJF15031 PNP ## "ON" VOLTAGE Figure 8a. MJF15030 NPN Figure 8b. MJF15031 PNP Figure 9. Turn-On Times Figure 10. Turn-Off Times #### **TEST CONDITIONS FOR ISOLATION TESTS*** FULLY ISOLATED PACKAGE Figure 11. Mounting Position *Measurement made between leads and heatsink with all leads shorted together. #### MOUNTING INFORMATION Figure 12. Typical Mounting Techniques* Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to $8 \text{ in} \cdot \text{lbs}$ is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions. Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability. Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in · lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in · lbs of mounting torque under any mounting conditions. ^{**} For more information about mounting power semiconductors see Application Note AN1040. # **MECHANICAL CASE OUTLINE** SCALE 1:1 3. CATHODE ### TO-220 FULLPAK CASE 221D-03 ISSUE K **DATE 27 FEB 2009** 0 **AYWW** xxxxxxG AKA - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH - 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03. | | INCHES | | MILLIN | IETERS | |-----|-----------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.617 | 0.635 | 15.67 | 16.12 | | В | 0.392 | 0.419 | 9.96 | 10.63 | | C | 0.177 | 0.193 | 4.50 | 4.90 | | D | 0.024 | 0.039 | 0.60 | 1.00 | | F | 0.116 | 0.129 | 2.95 | 3.28 | | G | 0.100 BSC | | 2.54 BSC | | | Н | 0.118 | 0.135 | 3.00 | 3.43 | | J | 0.018 | 0.025 | 0.45 | 0.63 | | K | 0.503 | 0.541 | 12.78 | 13.73 | | L | 0.048 | 0.058 | 1.23 | 1.47 | | N | 0.200 BSC | | 5.08 BSC | | | Q | 0.122 | 0.138 | 3.10 | 3.50 | | R | 0.099 | 0.117 | 2.51 | 2.96 | | S | 0.092 | 0.113 | 2.34 | 2.87 | | U | 0.239 | 0.271 | 6.06 | 6.88 | ## **MARKING DIAGRAMS** STYLE 1: PIN 1. GATE STYLE 2: PIN 1. BASE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER CATHODE ANODE 2. DRAIN 2. 3. SOURCE STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE ANODE = Assembly Location xxxxxx = Specific Device Code G = Pb-Free Package Υ = Year Α = Assembly Location WW = Work Week Υ = Year XXXXXX = Device Code = Work Week = Pb-Free Package WW G AKA = Polarity Designator | DOCUMENT NUMBER: | 98ASB42514B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|----------------|---|-------------| | DESCRIPTION: | TO-220 FULLPAK | | PAGE 1 OF 1 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales