

NPT35015 Rev. V1

Features

- Optimized for CW, Pulsed, WiMAX, and other applications from 3.3 3.8 GHz
- 18 W P3dB CW Power
- 25 W P3dB Peak Envelope Power
- 1.7 W Linear Power @ 2% EVM for single carrier OFDM, 10.3 dB peak/average, 10.3 dB @ 0.01% Probability on CCDF, 10.5 dB Gain, 18% Drain Efficiency
- 100% RF tested
- Thermally-Enhanced Surface Mount SOIC
 Package
- High Reliability Gold Metallization Process
- Subject to EAR99 Export Control
- RoHS* Compliant

Applications

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar

Description

The NPT35015 GaN HEMT is a power transistor optimized for 3.3 - 3.5 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 18 W. This transistor is assembled in an industry standard surface mount plastic package.

Ordering Information

Part Number	Package
NPT35015DT	Tube (97 pieces)
NPT35015DR	1500 piece reel

Functional Schematic

Pin Configuration

Pin #	Function
1 - 4	Gate
5 - 8	Drain
9	Paddle ¹

1. The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical 2-Tone RF Performance: (measured in test fixture) Freq. = 3.5 GHz, V_{DS} = 28 V, I_{DQ} = 200 mA, Tone Spacing = 1 MHz, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Peak Envelope Power	3 dB Compression 1 dB Compression	P _{3dB, PEP} P _{1dB, PEP}	14	18 10	—	W
Small Signal Gain	—	G _{SS}	10	11	—	dB
Drain Efficiency	3 dB Compression	η	43	48	_	%

Typical RF Specifications (CW): (measured in Load Pull System) Freq. = 3.5 GHz, V_{DS} = 28 V, I_{DQ} = 200 mA, T_C = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Average Output Power	3 dB Compression	P_{3dB}	—	18	—	W
Small Signal Gain	3 dB Compression 1 dB Compression	P _{3dB, Pulsed} P _{1dB, Pulsed}		20 15	—	W

Typical OFDM Performance: (measured in load pull system, refer to Table 1 and Figure 1)) $V_{DS} = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, Single Carrier OFDM waveform 64-QAM 3/4, 8 burst, 20 ms frame 15 ms frame data 3.5 GHz channel bandwidth Peak/Avg = 10.3 dB @ 0.01%

20 ms frame, 15 ms frame data, 3.5 GHz channel bandwidth, Peak/Avg = 10.3 dB @ 0.01% probability on CCDF, P_{OUT} = 1.7 W avg., T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	3.3 - 3.8 GHz	G _P	—	10.5		dB
Drain Efficiency	3.3 - 3.8 GHz	η	_	18		%
Error Vector Magnitude	3.3 - 3.8 GHz	EVM	_	2		%
Input Return Loss	3.3 - 3.8 GHz	I _{RL}	_	10		dB

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

DC Electrical Characteristics: T_c = 25°C

Parameter	Test Conditions		Min.	Тур.	Max.	Units	
Off Characteristics							
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 8 mA	V_{BDS}	100	_	_	V	
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	_	4	mA	
On Characteristics	On Characteristics						
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 8 mA	V _T	-2.3	-1.8	-1.3	V	
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 200 mA	V_{GSQ}	-2.0	-1.5	-1.0	V	
On Resistance	$V_{GS} = 2 V, I_D = 60 mA$	R _{on}	_	0.45	0.50	Ω	
Drain Current	V_{DS} = 7 V pulsed, pulse width 300 μs 0.2% Duty Cycle, V_{GS} = 2 V	Ι _D	_	5	—	А	

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum		
Drain Source Voltage, V_{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Total Device Power Dissipation (derated above 25°C)	28 W		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

2. Exceeding any one or combination of these limits may cause permanent damage to this device.

3. MACOM does not recommend sustained operation near these survivability limits.

4. Operating at nominal conditions with $T_J \le 200^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	$R_{ ext{ heta}JC}$	6.25	°C/W

5. Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

³

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT	350	15
	Rev.	V1

Table 1: Optimum Impedance Characteristics for Single Carrier OFDM waveform 64-QAM 3/4, 8 burst, 20 ms frame, 15 ms frame data, 3.5 GHz Channel Bandwidth, Peak/Avg = 10.3 dB @ 0.01% probability on CCDF, 2% EVM.

Frequency (MHz)	Z _S (Ω)	Ζ _L (Ω)	Р _{оит} (W)	Gain (dB)	Drain Efficiency (%)
3300	5.4 - j10.3	2.9 - j2.5	1.7	10.9	19
3400	5.0 - j10.7	2.9 - j2.6	1.8	11.0	22
3500	4.4 - j11.2	2.8 - j2.7	1.7	10.9	21
3600	4.0 - j12.5	2.8 - j3.3	1.7	10.9	20
3700	3.5 - j13.4	3.0 - j3.8	1.8	10.8	20
3800	3.5 - j14.6	3.2 - j4.2	1.8	10.7	20

Impedance Reference

Z_S and Z_L vs. Frequency

Figure 1 - Optimum Impedance Characteristics for OFDM Tuning, V_{DS} = 28 V, I_{DQ} = 200 mA

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Load-Pull Data, Reference Plane at Device Leads:

NPT35015 Rev. V1

Figure 2 - CW, pulsed CW, and PEP, 3500MHz, Constant Impedance States

Figure 3 - CW Power Sweep, 3500MHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT35015 Rev. V1

Load-Pull Data, Reference Plane at Device Leads:

Typical Device Characteristics

V_{DS}=28V, I_{DO}=200mA, T_A=25°C unless otherwise noted.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

AD-006 3.4 - 3.6 GHz, 1.7 W Linear WiMAX Application Board & Schematic

802.16e Single Carrier OFDM, 64-QAM 3/4, 8-burst, 20 ms frame 100% filled, 3.5 MHz channel bandwidth, PAR = 10.3 dB @ 0.01% CCDF

Figure 9 - AD-006 Demonstration Board and Schematic

⁷

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT35015 Rev. V1

Parts list

Reference	Value	Tolerance	Manufacturer	Part Number	
C1	0.1 µF	10%	Kemet	C1206C104K1RACTU	
C2, C7	0.01 µF	10%	AVX	12061C103KAT2A	
C3, C6	1000 pF	10%	Kemet	C0805C102K1RACTU	
C5	100 pF	10%	Kemet	C0805C101K1RACTU	
C8	1 µF	10%	Panasonic	ECJ-5YB2A105M	
C4, C9 - C11, C14	5.6 pF	±0.1 pF	ATC	ATC600F5R6B	
C12	0.3 pF	±0.1 pF	ATC	ATC600F0R3B	
C13	0.6 pF	±0.1 pF	ATC	ATC600F0R6B	
C15	150 µF	20%	Nichicon	UPW1C151MED	
C16	270 µF	20%	United Chemi-Con	ELXY630ELL271MK25S	
R1	10 Ω	1%	Panasonic	ERJ-2RKF10R0X	
R2	0.33 Ω	1%	Panasonic	ERJ-6RQFR33V	
РСВ	Rogers RO4350, ε _r =3.5, t = 30 mils				

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

AD-006 3.4 - 3.6 GHz, 1.7 W Linear WiMAX Application Design

802.16e Single Carrier OFDM, 64-QAM 3/4, 8-burst, 20 ms frame 100% filled, 3.5 MHz channel bandwidth, PAR = 10.3 dB @ 0.01% CCDF

Figure 10 - Gain, Efficiency, EVM at 3400MHz

Figure 11 - Gain, Efficiency, EVM at 3500MHz

Figure 12 - Gain, Efficiency, EVM at 3600MHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

NPT35015 Rev. V1

AD-006 3.4 - 3.6 GHz, 1.7 W Linear WiMAX Application Design

802.16e Single Carrier OFDM, 64-QAM 3/4, 8-burst, 20 ms frame 100% filled, 3.5 MHz channel bandwidth, PAR = 10.3 dB @ 0.01% CCDF

Figure 14 - Typical S₁₁ and S₂₁

Figure 13 - ETSI Mask Compliance in Nitronex Demonstration Board at 3500MHz and P_{OUT} = 1.5W

NPT35015 Rev. V1

Mounting Footprint

Package Dimensions and Pin out[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.