

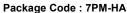
IGBT

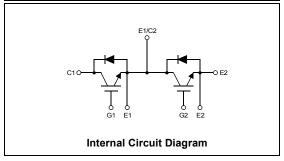
FMG2G150US60

Molding Type Module

General Description

Fairchild IGBT Power Module provides low conduction and switching losses as well as short circuit ruggedness. It's designed for the applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short-circuit ruggedness is required.


Features


- Short Circuit Rated Time; 10us @ $T_C = 100$ °C, $V_{GE} = 15V$
- · High Speed Switching
- Low Saturation Voltage : V_{CE}(sat) = 2.1 V @ I_C = 150A
- · High Input Impedance
- Fast & Soft Anti-Parallel FWD
- · UL Certified No.E209204

Application

- AC & DC Motor Controls
- · General Purpose Inverters
- Robotics
- · Servo Controls
- UPS

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FMG2G150US60	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 80°C	150	Α
I _{CM (1)}	Pulsed Collector Current		300	Α
I _F	Diode Continuous Forward Current	@ T _C = 80°C	150	Α
I _{FM}	Diode Maximum Forward Current		300	Α
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	595	W
T _{SC}	Short Circuit Withstand Time @ T _C = 100°C		10	us
T _J	Operating Junction Temperature		-40 to +150	°C
T _{STG}	Storage Temperature Range		-40 to +125	°C
V _{ISO}	Isolation Voltage @ AC 1minute		2500	V
Manustina Tanana	Power Terminal Screw : M5		4.0	N.m
Mounting Torque	Mounting Screw : M6		4.0	N.m

Notes

(1) Repetitive rating : Pulse width limited by max. junction temperature

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔΤ _J	Temperature Coeff. of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	Gate - Emitter Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA

V _{GE(th)}	Gate - Emitter Threshold Voltage	I_C = 150mA, V_{CE} = V_{GE}	5.0	6.5	8.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 150A$, $V_{GE} = 15V$	I	2.1	2.7	V

Switching Characteristics

t _{d(on)}	Turn-On Delay Time			140		ns
t _r	Rise Time	\/ 000\/ L 4504		80		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V, } I_{C} = 150 \text{A,}$		120		ns
t _f	Fall Time	$R_G = 2\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25$ °C		130	250	ns
t _f E _{on}	Turn-On Switching Loss	inductive Load, 1 _C = 25 C		2.3		mJ
E _{off}	Turn-Off Switching Loss			4.7		mJ
t _{d(on)}	Turn-On Delay Time			180		ns
t _r	Rise Time	\/ 000\/ L 4504		90		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V, } I_{C} = 150 \text{A,}$ $R_{G} = 2\Omega, V_{GE} = 15 \text{V,}$ Inductive Load, $T_{C} = 125^{\circ}\text{C}$		150		ns
t _f	Fall Time			270		ns
t _f E _{on}	Turn-On Switching Loss	inductive Load, T _C = 123 O		3.1		mJ
E _{off}	Turn-Off Switching Loss			7.7		mJ
T _{sc}	Short Circuit Withstand Time	$V_{CC} = 300 \text{ V}, V_{GE} = 15 \text{V}$ @ $T_{C} = 100^{\circ}\text{C}$	10			us
Qq	Total Gate Charge	_		460		nC
Q _{ae}	Gate-Emitter Charge	$V_{CE} = 300 \text{ V, I}_{C} = 150 \text{A},$		130		nC
Q _g Q _{ge} Q _{gc}	Gate-Collector Charge	V _{GE} = 15V		190		nC

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condi	tions	Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I	T _C = 25°C		1.9	2.8	V
V _{FM} D			T _C = 100°C		1.8		
t _{rr} Diode Reverse Recovery Tir	Diada Bayaraa Basayary Tima		T _C = 25°C		90	130	no
	blode Reverse Recovery Time	T	T _C = 100°C		130		ns
	I _{rr} Diode Peak Reverse Recovery Current	I _F = 150A	T _C = 25°C		15	20	Α
'rr		Current $di / dt = 300 \text{ A/us}$ $T_C = 100$	T _C = 100°C		22		_ ^
0	Diode Reverse Recovery Charge	Diada Bayaraa Basayary Chargo	T _C = 25°C		675	1270	nC
Q _{rr}			T _C = 100°C		1430		IIC

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)		0.21	°C/W
$R_{\theta JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)		0.48	°C/W
$R_{\theta JC}$	Case-to-Sink (Conductive grease applied)	0.045		°C/W
Weight	Weight of Module	240		g

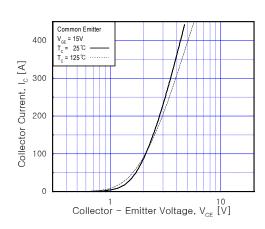


Fig 1. Typical Output Characteristics

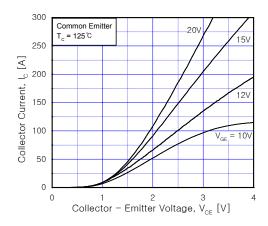


Fig 3. Typical Saturation Voltage Characteristics

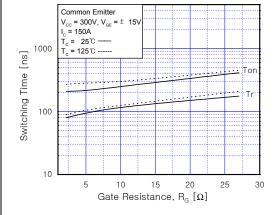


Fig 5. Turn-On Characteristics vs.

Gate Resistance

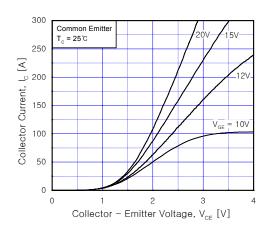


Fig 2. Typical Saturation Voltage Characteristics

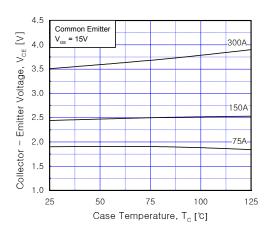


Fig 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

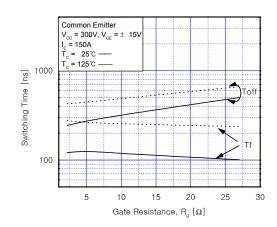


Fig 6. Turn-Off Characteristics vs.
Gate Resistance

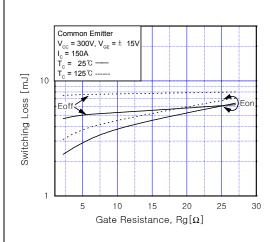


Fig 7. Switching Loss vs. Gate Resistance

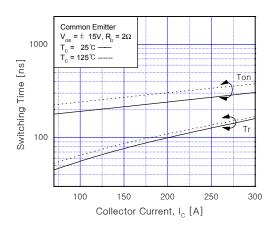


Fig 8. Turn-On Characteristics vs. Collector Current

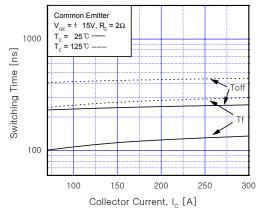


Fig 9. Turn-Off Characteristics vs. Collector Current

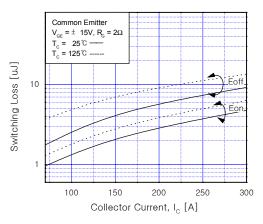


Fig 10. Switching Loss vs. Collector Current

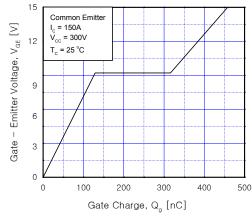


Fig 11. Gate Charge Characteristics

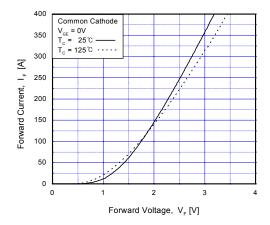
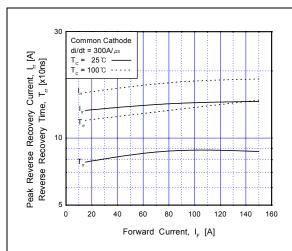
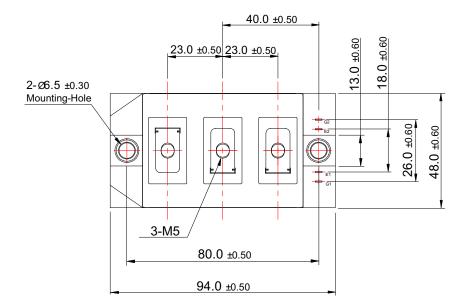
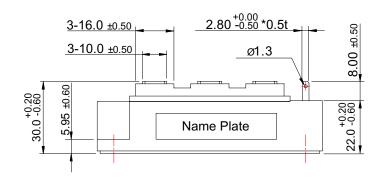
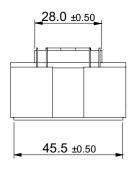


Fig 12. Forward Characteristics(diode)

©2003 Fairchild Semiconductor Corporation


Fig 13. Reverse Recovery Characteristics(diode)

Package Dimension

7PM-HA

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
$CROSSVOLT^{\text{TM}}$	FRFET™	MicroPak™	QFET™	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C™	OCX™	RapidConfigure™	UHC™ _
Across the board.	Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™		OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable Ad	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.