24 Watt Peak Power Zener Transient Voltage Suppressors # SOT-23 Dual Common Anode Zeners for ESD Protection This dual monolithic silicon Zener diodes is designed for applications requiring transient overvoltage protection capability. This is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. The dual junction common anode design protects two separate lines using only one package. This device is ideal for situations where board space is at a premium. #### **Features** - SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration - Working Peak Reverse Voltage Range 3 V - Standard Zener Breakdown Voltage Range 5.6 V - Peak Power 24 W @ 1.0 ms (Unidirectional), per Figure 5 Waveform - ESD Rating: - Class 3B (> 16 kV) per the Human Body Model - Class C (> 400 V) per the Machine Model - Maximum Clamping Voltage @ Peak Pulse Current - Low Leakage < 0.1 μA - Flammability Rating UL 94 V-0 - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Mechanical Characteristics** **CASE:** Void-free, transfer-molded, thermosetting plastic case FINISH: Corrosion resistant finish, easily solderable # MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel ## ON Semiconductor® #### www.onsemi.com #### MARKING DIAGRAM SOT-23 CASE 318 STYLE 12 5V6 = Specific Device Code M = Date Code = Pb–Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION | Device | Package | Shipping [†] | |---------------|---------------------|------------------------| | NZ23C5V6ALT1G | SOT-23
(Pb-Free) | 3,000 /
Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **DEVICE MARKING INFORMATION** See specific marking information in the device marking column of the table on page 2 of this data sheet. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|--------------|-------------| | Peak Power Dissipation @ 1.0 ms (Note 1) @ T _L ≤ 25°C | P _{pk} | 24 | W | | Total Power Dissipation on FR–5 Board (Note 2) @ T _A = 25°C Derate above 25°C | P _D | 225
1.8 | mW
mW/°C | | Thermal Resistance Junction-to-Ambient | $R_{ heta JA}$ | 556 | °C/W | | Total Power Dissipation on Alumina Substrate (Note 3) @ T _A = 25°C Derate above 25°C | P _D | 300
2.4 | mW
mW/°C | | Thermal Resistance Junction–to–Ambient | $R_{ heta JA}$ | 417 | °C/W | | Junction and Storage Temperature Range | T _J , T _{stg} | - 55 to +150 | °C | | Lead Solder Temperature – Maximum (10 Second Duration) | T_L | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Non-repetitive current pulse per Figure 5 and derate above $T_A = 25$ °C per Figure 6. - 2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in. - 3. Alumina = $0.4 \times 0.3 \times 0.024$ in, 99.5% alumina. #### **ELECTRICAL CHARACTERISTICS** $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3) | Symbol | Parameter | |------------------|--| | I _{PP} | Maximum Reverse Peak Pulse Current | | V _C | Clamping Voltage @ IPP | | V_{RWM} | Working Peak Reverse Voltage | | I _R | Maximum Reverse Leakage Current @ V _{RWM} | | V_{BR} | Breakdown Voltage @ I _T | | I _T | Test Current | | ΘV _{BR} | Maximum Temperature Coefficient of V _{BR} | | lF | Forward Current | | V _F | Forward Voltage @ I _F | | Z _{ZT} | Maximum Zener Impedance @ I _{ZT} | | I _{ZK} | Reverse Current | | Z _{ZK} | Maximum Zener Impedance @ I _{ZK} | #### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3) $(V_F = 0.9 \text{ V Max } @ I_F = 10 \text{ mA})$ **24 WATTS** | | | | | Breakdown Voltage | | | | ax Zene
ance (N | | V _C @
(Not | P I _{PP} (e 6) | | | |---------------|---------|------------------|--------------------------------------|-------------------|------------|-----|------------------|------------------------------|-------------------|--------------------------|--------------------------------|-----------------|------------------| | | Device | V _{RWM} | I _R @
V _{RWM} | V _B | R (Note 4) | (V) | @ I _T | Z _{ZT}
@
20mA | Z _{ZK} (| @ I _{ZK} | v _c | I _{PP} | ΘV _{BR} | | Device | Marking | Volts | μА | Min | Nom | Max | mA | Ω | Ω | mA | ٧ | Α | mV/°C | | NZ23C5V6ALT1G | 5V6 | 1.0 | 0.1 | 5.2 | 5.6 | 6.0 | 5.0 | 11 | 1600 | 0.25 | 8.0 | 3.0 | 1.26 | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 4. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C. - 5. Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for $I_{Z(AC)}$ = 0.1 I_{Z(DC)}, with the AC frequency = 1.0 kHz. Surge current waveform per Figure 5 and derate per Figure 6 ^{*}Other voltages may be available upon request. # **TYPICAL CHARACTERISTICS** Figure 1. Typical Breakdown Voltage versus Temperature (Upper curve is bidirectional mode, lower curve is unidirectional mode) Figure 2. Typical Leakage Current versus Temperature Figure 3. Typical Capacitance versus Bias Voltage (Upper curve is unidirectional mode, lower curve is bidirectional mode) Figure 4. Steady State Power Derating Curve #### **TYPICAL CHARACTERISTICS** Figure 5. Pulse Waveform Figure 6. Pulse Derating Curve Figure 7. Maximum Non-repetitive Surge Power, P_{pk} versus PW Power is defined as $V_{RSM}\,x\,I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk).$ Figure 8. Maximum Non-repetitive Surge Power, $P_{pk}(NOM)$ versus PW Power is defined as $V_Z(NOM) \times I_Z(pk)$ where $V_Z(NOM)$ is the nominal Zener voltage measured at the low test current used for voltage classification. ## **TYPICAL COMMON ANODE APPLICATIONS** A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially when board space is at a premium. Two simplified examples of TVS applications are illustrated below. #### **Computer Interface Protection** ## **Microprocessor Protection** **SOT-23 (TO-236)** CASE 318 ISSUE AT **DATE 01 MAR 2023** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIM | ETERS | | INCHES | | | | |-----|--------|-------|------|--------|-------|-------|--| | DIM | MIN. | N□M. | MAX. | MIN. | N□M. | MAX. | | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 | | | A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 | | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 | | | С | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 | | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | | Ε | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | | e | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 | | | L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 | | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 | | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | | Т | 0* | | 10° | 0* | | 10* | | XXX = Specific Device Code M = Date Code ■ = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. RECOMMENDED MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repo
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------|--|-------------|--|--| | DESCRIPTION: | SOT-23 (TO-236) | | PAGE 1 OF 2 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. # MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS **SOT-23 (TO-236)** CASE 318 ISSUE AT **DATE 01 MAR 2023** | STYLE 1 THRU 5:
CANCELLED | STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR | STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR | STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE | ı | | |---|---|---|---|---|---| | STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE | STYLE 10:
PIN 1. DRAIN
2. SOURCE
3. GATE | STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE | STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE | STYLE 13:
PIN 1. SOURCE
2. DRAIN
3. GATE | STYLE 14:
PIN 1. CATHODE
2. GATE
3. ANODE | | STYLE 15:
PIN 1. GATE
2. CATHODE
3. ANODE | STYLE 16:
PIN 1. ANODE
2. CATHODE
3. CATHODE | STYLE 17:
PIN 1. NO CONNECTION
2. ANODE
3. CATHODE | STYLE 18:
PIN 1. NO CONNECTION
2. CATHODE
3. ANODE | STYLE 19:
I PIN 1. CATHODE
2. ANODE
3. CATHODE-ANODE | STYLE 20:
PIN 1. CATHODE
2. ANODE
3. GATE | | STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN | STYLE 22:
PIN 1. RETURN
2. OUTPUT
3. INPUT | STYLE 23:
PIN 1. ANODE
2. ANODE
3. CATHODE | STYLE 24:
PIN 1. GATE
2. DRAIN
3. SOURCE | STYLE 25:
PIN 1. ANODE
2. CATHODE
3. GATE | STYLE 26:
PIN 1. CATHODE
2. ANODE
3. NO CONNECTION | | STYLE 27:
PIN 1. CATHODE
2. CATHODE
3. CATHODE | STYLE 28:
PIN 1. ANODE
2. ANODE
3. ANODE | | | | | | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------|--|-------------|--|--| | DESCRIPTION: | SOT-23 (TO-236) | | PAGE 2 OF 2 | | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative