BOURNS® - Designed for Complementary Use with the BD743 Series - 90 W at 25°C Case Temperature - 15 A Continuous Collector Current - 20 A Peak Collector Current - Customer-Specified Selections Available # **TO-220 PACKAGE** Pin 2 is in electrical contact with the mounting base. MDTRACA # absolute maximum ratings at 25°C case temperature (unless otherwise noted) | RATING | SYMBOL | VALUE | UNIT | | |---|--------|-------------------------------|-------------|----| | | BD744 | | -50 | | | Collector-base voltage (I _E = 0) | BD744A | | -70 | V | | | BD744B | У СВО | -90 | V | | | BD744C | | -110 | | | | BD744 | | -45 | | | Collector-emitter voltage (I _B = 0) | BD744A | V | -60 | V | | | BD744B | V _{CEO} | -80 | V | | | BD744C | | -100 | | | Emitter-base voltage | | V _{EBO} | -5 | V | | Continuous collector current | | I _C | -15 | Α | | Peak collector current (see Note 1) | | I _{CM} | -20 | Α | | Continuous base current | | Ι _Β | -5 | Α | | Continuous device dissipation at (or below) 25°C case temperature (see Note 2) | | P _{tot} | 90 | W | | Continuous device dissipation at (or below) 25°C free air temperature (see Note | 3) | P _{tot} | 2 | W | | Unclamped inductive load energy (see Note 4) | | ½Ll _C ² | 90 | mJ | | Operating free air temperature range | | T _A | -65 to +150 | °C | | Operating junction temperature range | | Tj | -65 to +150 | °C | | Storage temperature range | | T _{stg} | -65 to +150 | °C | | Lead temperature 3.2 mm from case for 10 seconds | | T _L | 260 | °C | NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$. - 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/°C. - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C. - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V. #### electrical characteristics at 25°C case temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | | | | MIN | TYP | MAX | UNIT | |----------------------|---|---|--|---|--|---------------------------|-----|--|------| | V _{(BR)CEO} | Collector-emitter breakdown voltage | I _C = -30 mA | I _B = 0 | (see Note 5) | BD744
BD744A
BD744B
BD744C | -45
-60
-80
-100 | | | V | | І _{СВО} | Collector cut-off current | $V_{CE} = -90 \text{ V}$ $V_{CE} = -110 \text{ V}$ $V_{CE} = -50 \text{ V}$ $V_{CE} = -70 \text{ V}$ $V_{CE} = -90 \text{ V}$ $V_{CE} = -110 \text{ V}$ | $V_{BE} = 0$ | $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ | BD744
BD744A
BD744B
BD744C
BD744
BD744A
BD744B
BD744C | | | -0.1
-0.1
-0.1
-0.1
-5
-5
-5 | mA | | I _{CEO} | Collector cut-off current | $V_{CE} = -30 \text{ V}$ $V_{CE} = -60 \text{ V}$ | I _B = 0
I _B = 0 | | BD744/744A
BD744B/744C | | | -0.1
-0.1 | mA | | I _{EBO} | Emitter cut-off current | V _{EB} = -5 V | · · | | | | | -0.5 | mA | | h _{FE} | Forward current transfer ratio | $V_{CE} = -4 V$ $V_{CE} = -4 V$ $V_{CE} = -4 V$ | $I_C = -5 A$ | (see Notes 5 ar | nd 6) | 40
20
5 | | 150 | | | V _{CE(sat)} | Collector-emitter saturation voltage | I _B = -5 A | | (see Notes 5 and 6) | | | | -1
-3 | V | | V_{BE} | Base-emitter voltage | $V_{CE} = -4 V$ $V_{CE} = -4 V$ | - | (see Notes 5 and 6) | | | | -1
-3 | V | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = -10 V | I _C = -1 A | f = 1 kHz | * | 25 | | | | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = -10 V | I _C = -1 A | f = 1 MHz | | 5 | | | | NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$. ## thermal characteristics | PARAMETER | | | TYP | MAX | UNIT | |-----------------|---|--|-----|------|------| | $R_{\theta JC}$ | Junction to case thermal resistance | | | 1.4 | °C/W | | $R_{\theta JA}$ | Junction to free air thermal resistance | | | 62.5 | °C/W | ## resistive-load-switching characteristics at 25°C case temperature | | PARAMETER | TEST CONDITIONS † | | | MIN | TYP | MAX | UNIT | |----------------|--------------|-----------------------|----------------------|------------------------------|-----|-----|-----|------| | t _d | Delay time | | | | | 20 | | ns | | t _r | Rise time | I _C = -5 A | $I_{B(on)} = -0.5 A$ | $I_{B(off)} = 0.5 A$ | | 120 | | ns | | t _s | Storage time | $V_{BE(off)} = 4.2 V$ | $R_L = 6 \Omega$ | $t_p = 20 \mu s, dc \le 2\%$ | | 600 | | ns | | t _f | Fall time | | | | | 300 | | ns | $[\]begin{tabular}{ll} \dagger Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. \end{tabular}$ ^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts. #### **TYPICAL CHARACTERISTICS** #### MAXIMUM SAFE OPERATING REGIONS #### THERMAL INFORMATION #### **MAXIMUM POWER DISSIPATION** Figure 4.