Power MOSFET and Schottky Diode

20 V, 3.9 A, N-Channel, with 3.7 A Schottky Barrier Diode, ChipFET™

Features

- Leadless SMD Package Featuring a MOSFET and Schottky Diode
- 40% Smaller than TSOP-6 Package with Better Thermals
- Super Low Gate Charge MOSFET
- Ultra Low V_F Schottky
- Pb-Free Package is Available

Applications

- Fast Switching, low Gate Charge for DC-to-DC Buck and Boost Converters
- Li-Ion Battery Applications in Cell Phones, PDAs, DSCs, and Media Players
- Load Side Switching

MOSFET MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

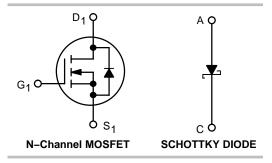
,						
Param	neter		Symbol	Value	Unit	
Drain-to-Source Volta	Drain-to-Source Voltage				V	
Gate-to-Source Volta	V_{GS}	±12	V			
Continuous Drain	Steady	T _J = 25°C	I _D	2.9	Α	
Current	State	T _J = 85°C		2.1		
	t ≤ 5 s	T _J = 25°C		3.9		
Pulsed Drain Current	t _p =10 μs		I _{DM}	12	Α	
Power Dissipation	Steady State	$T_J = 25^{\circ}C$	P _D	0.91	W	
		T _J = 85°C		0.36		
	t ≤ 5 s	$T_J = 25^{\circ}C$		2.1		
Continuous Source Co	ırrent (Bo	dy Diode)	I _S	2.6	Α	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C	
Lead Temperature for (1/8" from case for 10		Purposes	T _L	260	°C	

SCHOTTKY DIODE MAXIMUM RATINGS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

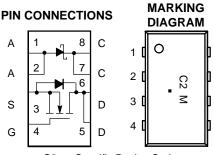
Parameter			Symbol	Value	Unit
Peak Repetitive Reverse Voltage			V_{RRM}	20	V
DC Blocking Voltage			V_R	20	V
Average Rectified Forward Current	Steady State	T _J = 25°C	I _F	2.2	Α
	t ≤ 5 s			3.7	Α

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MOSFET					
V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX			
20 V	60 mΩ @ 4.5 V	3.9 A			
20 V	80 mΩ @ 2.5 V	3.3 A			


SCHOTTKY DIODE

V _R MAX	V _F TYP	I _F MAX
20 V	0.35 V	3.7 A

ChipFET™ CASE 1206A STYLE 3

C2 = Specific Device Code

M = Month Code

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHD4N02FT1	ChipFET	3000/Tape & Reel
NTHD4N02FT1G	ChipFET (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	110	°C/W
Junction–to–Ambient – $t \le 5 s$	$R_{ heta JA}$	60	°C/W

^{1.} Surface Mounted on FR4 Board using 1 in sq. pad size (Cu area = 1.27 in sq. [1 oz] including traces).

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Units
OFF CHARACTERISTICS				•	•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _E	D = 250 μA	20	28		V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	μΑ
		$V_{DS} = 16 V$	T _J = 85°C			5.0	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$				± 100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I	_D = 250 μA	0.6		1.2	V
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 4.5$,	I _D = 2.9 A		0.058	0.080	Ω
		$V_{GS} = 2.5$,	I _D = 2.3 A		0.077	0.115	
Forward Transconductance	9FS	V _{DS} = 10 V,	I _D = 2.9 A		6.0		S
CHARGES AND CAPACITANCES				-	•	•	
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 10 \text{ V}$			180	300	pF
Output Capacitance	C _{OSS}				80	130	
Reverse Transfer Capacitance	C _{RSS}				30	50	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A			2.6	4.0	nC
Gate-to-Source Charge	Q _{GS}				0.6		1
Gate-to-Drain Charge	Q_{GD}				0.7		1
SWITCHING CHARACTERISTICS (Note	e 3)						
Turn-On Delay Time	t _{d(ON)}				5.0	10	ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, \text{ V}$	V _{DD} = 16 V,		9.0	18	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 2.9 \text{ A, F}$	$R_{\rm G} = 2.5 \Omega$		10	20	1
Fall Time	t _f				3.0	6.0	1
DRAIN-SOURCE DIODE CHARACTER	ISTICS (Note 2)						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	I _S = 2.6 A		0.8	1.15	V
Reverse Recovery Time	t _{RR}				12.5		ns
Charge Time	ta	$V_{GS} = 0 \text{ V}, \text{ I}$	s = 2.6 A,		9.0		1
Discharge Time	tb	$dl_S/dt = 1$	00 A/μs		3.5		1
Reverse Recovery Charge	Q _{RR}				6.0		nC

$\textbf{SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Maximum Instantaneous Forward Voltage	V _F	I _F = 0.1 A			0.31	V
		I _F = 1.0 A			0.365	
Maximum Instantaneous Reverse Current	I _R	V _R = 10 V			0.75	mA
		V _R = 20 V			2.5	
Non-Repetitive Peak Surge Current	I _{FSM}	Halfwave, Single Pulse, 60 Hz			23	Α

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL MOSFET PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

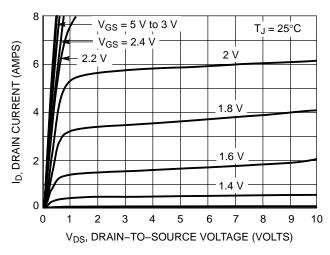


Figure 1. On-Region Characteristics

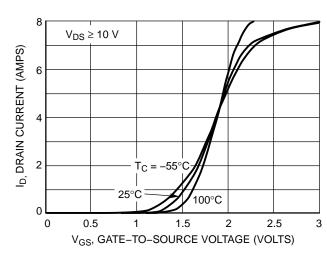


Figure 2. Transfer Characteristics

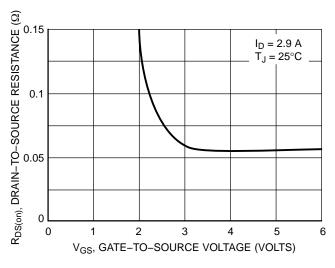


Figure 3. On-Resistance vs. Gate-to-Source Voltage

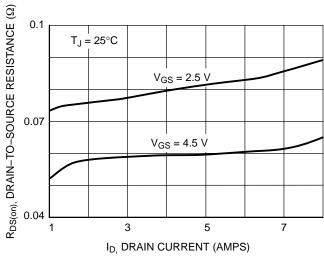


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

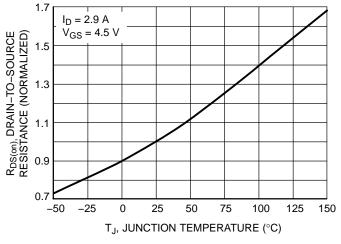


Figure 5. On–Resistance Variation with Temperature

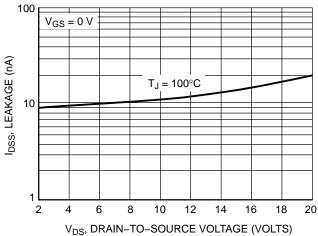
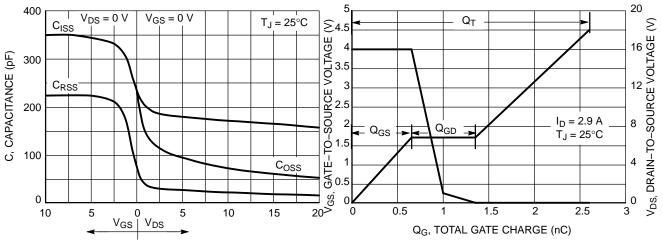



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL MOSFET PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

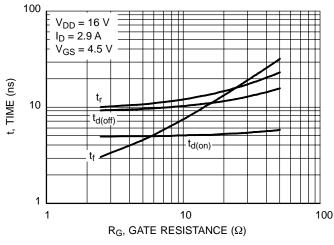


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

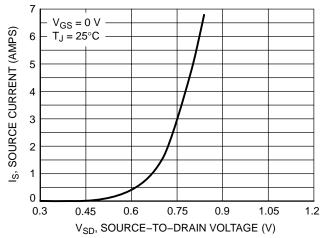
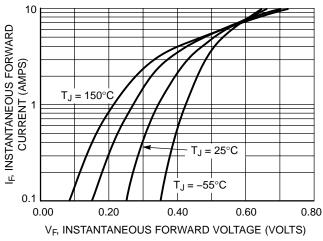
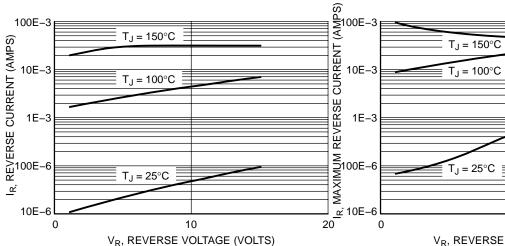



Figure 10. Diode Forward Voltage vs. Current


TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

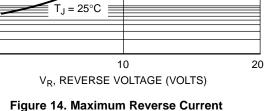

VOLTAGE (VOLTS)

Figure 11. Typical Forward Voltage

Figure 12. Maximum Forward Voltage

Figure 13. Typical Reverse Current

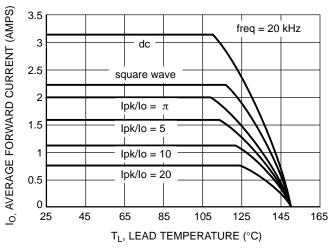


Figure 15. Current Derating

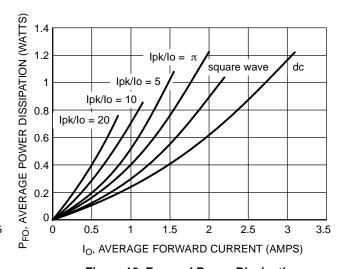
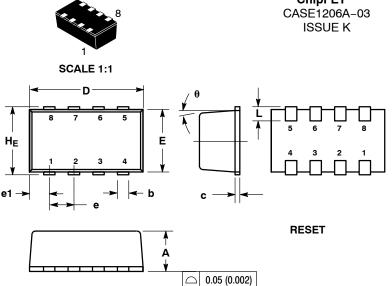
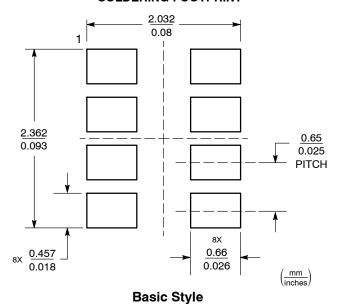



Figure 16. Forward Power Dissipation

ChipFET™

DATE 19 MAY 2009


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
- AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD
- SURFACE.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC			0.025 BSC	
e1		0.55 BSC			0.022 BSC	
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ		5° NOM			5° NOM	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. DRAIN	PIN 1. SOURCE 1	PIN 1. ANODE	PIN 1. COLLECTOR	PIN 1. ANODE	PIN 1. ANODE
DRAIN	GATE 1	2. ANODE	COLLECTOR	ANODE	2. DRAIN
DRAIN	SOURCE 2	SOURCE	COLLECTOR	DRAIN	3. DRAIN
GATE	4. GATE 2	4. GATE	4. BASE	DRAIN	4. GATE
SOURCE	5. DRAIN 2	5. DRAIN	EMITTER	SOURCE	SOURCE
6. DRAIN	6. DRAIN 2	6. DRAIN	COLLECTOR	6. GATE	6. DRAIN
7. DRAIN	7. DRAIN 1	CATHODE	COLLECTOR	CATHODE	7. DRAIN
8. DRAIN	8. DRAIN 1	CATHODE	COLLECTOR	CATHODE	8. CATHODE / DRAIN

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

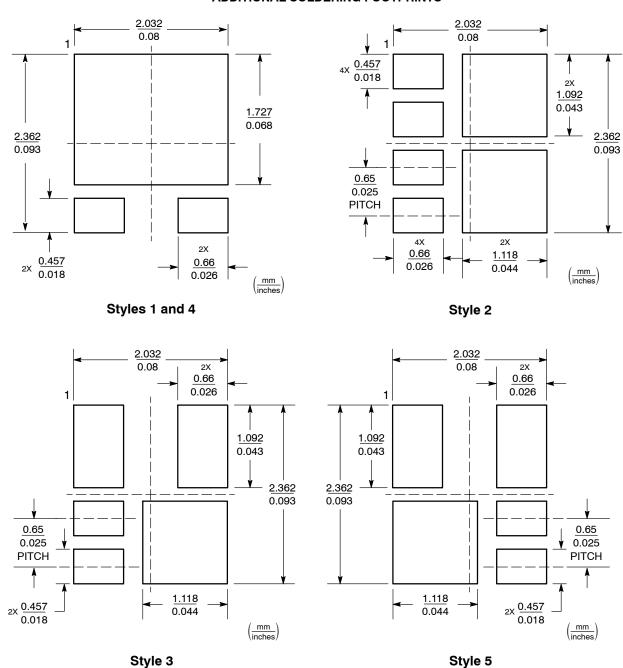
= Specific Device Code XXX

М = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 1 OF 2	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 2 OF 2	

ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales